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1 - Introduction

The problem we consider here is the one of solving (m1n)3 (m1n) resul-
tant linear systems of the form

[Tn [c]NTm [a× ]] x4b ,(1)

where c4 [1 , c1 , R , cm ]T and a×4 [an , an21 , R , 1 ]T are the coefficient vectors
of two given Laurent polynomials
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and, moreover, for any polynomial p(z)4 !
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pi z 2i , the associated (j1r)3 j

triangular Toeplitz matrix Tj [p] is given by:

Tj [p]T4

C
`
`
`
D

p0

0

QQ
Q

0

p1

p0

Q Q
Q

. . .

. . .

Q Q
Q

0

. . .

. . .

p0

pr

pr21

. . .

0

pr

. . .

. . .

Q Q
Q

Q Q
Q

0

QQ
Q

0

pr

E
`
`
`
F

.

(*) Dip. Mat. Univ. Pisa, Via Buonarroti 2, 56127 Pisa, Italy.
(**) Received July 17, 2000. AMS classification 65F05.



260 LUCA GEMIGNANI [2]

If we introduce the Laurent polynomials b(z), x1 (z) and x2 (z) defined by the
coefficients of b4 [bn21 , R , b0 , R , b2m ]T and x4 [xn21 , R , x0 , R , x2m ]T ac-
cording to

b(z)4 !
i42m

n21

bi z 2i , x1 (z)4 !
i40

n21

xi z 2i , x2 (z 21 )4 !
i42m

21

xi z 2i ,

then it can be easily seen that (1) reduces to the polynomial equation

c(z 21 ) x1 (z)1a(z) x2 (z 21 )4b(z) ,(2)

where a(z)4z 2n a×(z 21 ). Throughout this paper we will refer to (2) as to the po-
lynomial counterpart of (1).

Systems of the type (1) together with their polynomial formulation (2) are of-
ten encountered in many diverse applicative fields. In particular, they are a basic
computation in computer algebra where the sub-resultant theory [17], [13], provi-
des a fundamental tool in the construction of polynomial GCD-algorithms. Based
on this close connection between resultant matrices and the Euclidean scheme
computation, over the years several different fast and superfast solvers had
appeared (see [3], [4], [21], [22], [40] and [15]). However, due to the exponential
growth of the coefficients of Euclidean remainders, these solution methods may
suffer from ill-conditioning problems and numerical instabilities and, therefore,
their applicability is usually confined within the framework of symbolic computa-
tion and/or multi-precision software packages.

On the other hand, the solution of (1) and (2) often arises also in many rele-
vant applicative and industrial problems of data modeling, control theory and di-
gital signal processing, where the primary focus is on the study of process dy-
namics by means of numerical procedures. These include time series analysis,
Wiener filtering, noise variance estimation, covariance matrix computations and
the study of multichannel systems (see [19], [18], [20], [43], [1] and [33]). In all
these applications, the considered input-output models are generally represented
by means of transfer functions given by the ratio of two polynomials in z 21 . In
addition, the transfer functions are supposed to be stable, which means that all
the roots of the denominator polynomials lie inside the unit circle in the complex
plane. These observations thus motivate the search of effective computational
methods solving (1) and (2) under the auxiliary conditions that both a(z) and c(z)
have all their roots inside the unit circle. If this is true, then we will refer to the
system (1) as to a stable resultant linear system (SRLS).

In this paper a new purely numerical approach to the solution of stable resul-
tant linear systems is devised. It relies on a blend of ideas from structured nume-
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rical linear algebra, computational complex analysis and linear operator theory;
moreover, it provides interesting links to the inverse problem of finding the coeffi-
cients of the spectral factors a(z) and c(z) from those of a(z)c(z 21 ) (compare with
[42], [5], [26] and [23]).

Specifically, the original problems (1) and (2) are reduced to that one of deter-
mining the central coefficients of the reciprocal of the Laurent polynomial
a(z) c(z 21 ) given in its factored form. This latter computation is then re-phrased
in the matrix setting as the evaluation of the central entries in the central column
of the inverse of a bi-infinite Toeplitz matrix defining an invertible bounded linear
operator T acting on the l 2 (Z) Hilbert space.

In order to approximate such entries of T 21 , the cyclic reduction process, ori-
ginally introduced in [14] for the solution of partial differential equations and, mo-
re recently, adjusted in [8], [7] and [6] for solving certain queueing problems, can
be used. It generates a sequence of invertible linear operators ]T (s)(s�N , T (0)4T ,
approaching a block diagonal bi-infinite matrix from which the sought entries can
be retrieved. We are able to provide a description of the cyclic reduction process
where the Wiener-Hopf factorizations of T (s) are recursively updated starting
from that one of T which is explicitly determined by the coefficients of the known
factors of the given Laurent polynomial. In this way, the updating relations invol-
ve the powers of the Frobenius matrices associated with the spectral factors and
they can be performed in a very efficient way by means of fast polynomial ari-
thmetic using FFTs.

Based on these achievements, effective finite and iterative schemes for com-
puting the sought coefficients of 1 /a(z) c(z 21 ) are obtained. They are the core of
our composite methods for the solution of the resultant linear systems (1) genera-
ted by a pair of stable polynomials. Such methods can be implemented at the cost
of the better existing procedures and, in particular, they lead to fast and superfast
solvers. Moreover, our numerical experience indicates that they generally have
quite good stability properties and, therefore, they are efficient and numerically
reliable.

The paper is organized in the following way. In section 2 we provide a basic
description of our approach to the solution of (1) and (2) by means of reciproca-
tion of Laurent polynomials. In section 3 a matrix algorithm for this latter compu-
tation is introduced and analyzed in the framework of structured numerical linear
algebra. In section 4, it is reformulated to take into account the specific features
of the present case and, in this way, simplified versions are found. In section 5 we
report the results of the numerical experiments performed with Mathematica TM

implementations of our algorithms. Conclusions and possible developments are fi-
nally drawn in section 6.
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2 - Solving stable resultant linear systems and its polynomial counterpart

Let a(z) and c(z) denote two real stable polynomials of degree n and m ,
respectively:

a(z)4 »
i41

n

(12a i z 21 )411 !
i41

n

ai z 2i , ai�R , 0ENa iNE1 ,

c(z)4 »
i41

m

(12g i z 21 )411 !
i41

m

ci z 2i , ci�R , 0ENg i NE1 .
(3)

For the sake of notational convenience, assume that the zeros a i and g i of a(z)
and c(z) are ordered so that

0ENa 1NGNa 2NGRGNa nNE1, 0ENg 1NGNg 2NGRGNg mNE1(4)

holds.
In this paper we address the problem of efficiently computing the solution

x�Rm1n of the linear system

[Tn [c]NTm [a×]] x4b , x�Rm1n(5)

where a×(z)4z 2n a(z 21 ) and, moreover, for any polynomial p(z)4 !
i40

r

pi z 2i with

coefficient vector p4 [p0 , p1 , R , pr ]T , we define the associated ( j1r)3 j trian-
gular Toeplitz matrix Tj [p] as follows:
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The coefficient matrix [Tn [c]NTm [a×] ] of (5) is usually named the Sylvester re-
sultant matrix generated by a×(z) and c(z). It is well known that its determinant
can be explicitly expressed in terms of the zeros of its polynomial generators [1],
namely,

det [Tn [c]NTm [a×] ]4 »
i41

n

»
j41

m

(12a i g j ) .

Hence, the stability assumption (4) immediately implies that the coefficient matrix
of (5) is nonsingular and, therefore, for any fixed known vector b , the solution x
of (5) is uniquely determined.
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We state below the precise description of the considered matrix problem of
solving resultant linear systems generated by a pair of stable polynomials.

P r o b l e m 1 [Solving a stable resultant linear system]. Let a(z) and c(z) be
two real polynomials in z 21 of degree n and m , respectively, whose zeros lie in-
side the unit circle. For any given real vector b�Rm1n , compute the entries xi ,
2mG iGn21, of the solution x of the (m1n)3 (m1n) linear system

[Tn [c]NTm [a×]] x4b ,

where we set a×(z)4z 2n a(z 21 ).

In this paper we develop both finite and iterative procedures for solving Pro-
blem 1. Our solution methods rely upon an equivalent polynomial formulation of
Problem 1 obtained by expressing (5) as a polynomial equation. To do this, let us
first introduce the Laurent polynomials x(z) and b(z) defined, respectively, by the
coefficients of the solution vector x4 [xn21 , R , x0 , R , x2m ]T and by the coeffi-
cients of the known vector b4 [bn21 , R , b0 , R , b2m ]T according to the following
rules:

b(z)4 !
i42m

n21

bi z 2i ,

x1 (z)4 !
i40

n21

xi z 2i , x2 (z 21 )4 !
i42m

21

xi z 2i , x(z)4x1 (z)1x2 (z 21 ) .

Then it can be easily seen that (5) reduces to the polynomial equation

c(z 21 ) x1 (z)1a(z) x2 (z 21 )4b(z) .(7)

The next statement gives the equivalent polynomial version of Problem 1. He-
re and hereafter we will denote by Ls

r the vector space of real Laurent polyno-

mials of the form !
i42s

r

pi z i .

P r o b l e m 2 [Solving an equivalent polynomial equation]. Given two stable
polynomials a(z)� Ln

0 and c(z)� Lm
0 , then, for any b(z)� Ln21

m , determine the
coefficients of y1 (z)� Ln21

0 and y2 (z)� Lm21
0 such that

c(z 21 )y1 (z)1a(z)zy2 (z 21 )4b(z) .

Our approach to the solution of Problem 2 is based on the observation that (7) can
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be equivalently rewritten as

x1 (z)

a(z)
1

x2 (z 21 )

c(z 21 )
4

b(z)

a(z)c(z 21 )
.(8)

It is worth pointing out that the rational function g1 (z)4x1 (z) /a(z) is analytic in
the domain

G14]z�C : NzNDNa n N(

and, therefore, in G1 it admits a convergent Taylor expansion in powers of z 21 ,
namely,

g1 (z)4 !
i40

Q

g (1)
i z 2i , (z�G1 .(9)

Conversely, the rational function g2 (z)4x2 (z 21 ) /c(z 21 ), where g2 (0)40, is
analytic in the disk

G24]z�C : NzNEN1/g mN( .

Hence, in G2 it has a convergent Taylor expansion of the form,

g2 (z)4 !
i41

Q

g (2)
i z i , (z�G2 .(10)

By replacing (9) and (10) into the equation (8), we find that the function on the ri-
ght hand side of (8) can be represented in the annulus G4G1OG2 by the con-
vergent Laurent series

g1 (z)1g2 (z)4 !
i40

Q

g (1)
i z 2i1 !

i41

Q

g (2)
i z i , (z�G .

It is now clear that the function 1 /(a(z)c(z 21 ) ) also possesses a Laurent expan-
sion in G ,

1

a(z) c(z 21 )
4 !

i�Z
hi z i , (z�G ,

and, then, the same holds for b(z) /(a(z) c(z 21 ) ). From the uniqueness of the Lau-
rent series of an analytic function in a given annulus [30], we may therefore con-
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clude that
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The observation that the coefficients of x1 (z) and x2 (z) can be retrieved from
g (1)

0 , R , g (1)
n21 and from g (2)

1 , R , g (2)
m , respectively, finally leads to the following

procedure for the solution of Problem 2.

Procedure SolveSRLS

1. Evaluate the central coefficients h2m2n11 , R , hm1n21 of the Laurent
expansion of the reciprocal of a(z)c(z 21 ).

2. Compute the first n coefficients of g1 (z) and the first m coefficients of
g2 (z) by means of relations (11). Set

g×1 (z)4g1 (z)( mod z 2n ), g×2 (z)4g2 (z)( mod z m11 ) .

3. Determine the coefficients of x1 (z)4y1 (z) such that

x1 (z)4a(z) g×1 (z) (mod z 2n ) ,

and, analogously, find the coefficients of x2 (z 21 )4zy2 (z 21 ) by

x2 (z 21 )4c(z 21 ) g×2 (z) (mod z m11 ) .

Since the steps 2 and 3 of SolveSRLS essentially amount to perform polyno-
mial multiplications, for which fast schemes based on FFTs can be applied at the
cost of O( (m1n) log (m1n) ) arithmetic operations, it is quite obvious that the
most expensive computation of SolveSRLS is to be carried out at the step 1. Rou-
ghly speaking, this means that, from a computational point of view, the previous
procedure reduces the solution of Problem 1 and Problem 2 to the evaluation of
certain central coefficients of the Laurent series of the reciprocal of a(z) c(z 21 ).
We state below the precise formulation of this latter computational problem:

P r o b l e m 3 [Reciprocation of Laurent polynomials in factored form]. Given
an odd integer k and two stable polynomials a(z)� Ln

0 and c(z)� Lm
0 whose zeros
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a i , 1G iGn , and g i , 1G iGm , satisfy (4), compute the k central coefficients
h2(k21) /2 , R , h2(k21) /2 of the Laurent series of 1/(a(z)c(z 21 ) ) in the annulus
G4]z�C : Na nNENzNENg mN21(.

This problem is a specific instance of the more general issue of finding the
central coefficients of the Laurent expansion of the reciprocal of a Laurent po-
lynomial having no zeros on the unit circle in the complex plane. In the next sec-
tion we will first introduce a matrix analogue of this latter polynomial computa-
tion involving manipulations with bi-infinite Toeplitz matrices (operators). Then,
we will show that the knowledge of the spectral factorization of the given Laurent
polynomial can be exploited to produce effective computational schemes for solv-
ing Problem 3. By complementing Procedure SolveSRLS with these algorithms,
we thus obtain a family of composite procedures for the efficient solution of stable
resultant linear systems.

3 - Reciprocation of Laurent polynomials in the framework of structured nume-

rical linear algebra

This section is concerned with the problem of the reciprocation of Laurent po-
lynomials. We first provide a solution of the general problem based on the cyclic
reduction process and, then, we specialize it for the more specific case, treated in
Problem 3, where the spectral factorization of the input polynomial is assumed to
be known.

By virtue of the Cauchy integral representation of the Laurent coefficients of
a meromorphic function [30], it follows that such coefficients can be computed by
sampling the function in sufficiently many equidistant points on a circle and then
by applying a discrete Fourier transform. This approach was considered in [38]
and applied in [36] for the fast evaluation of contour integrals of rational func-
tions. An implementation of this scheme needs the preliminary selection of the
number of points and of the radius of the integration circle. Both of them are cru-
cial parameters for the convergence and for the computational performance of the
resulting quadrature procedure. A large number of points slows down the compu-
tation whereas big and small radii can lead to numerical instabilities.

The approach taken here proceeds in a very different way without requiring
any critical initialization. A numerical comparison between the diverse methods
for computing Laurent coefficients of meromorphic functions is planned in a sub-
sequent work.

Let p(z)4 !
i42n

m

pi z i� L n
m be a real Laurent polynomial of degree
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r4max ]n , m(. Assume that p(z) can be factored as

p(z)4ja(z) c(z 21 ) ,(12)

where the factors a(z) and c(z) satisfy (3) and (4) and j4pm /cm . Without loss of
generality, throughout this paper j41 will be always assumed. If is so, then a(z)
and c(z) are stable Laurent polynomials and the considered factorization of p(z) is
known as its spectral factorization.

The application that associates the Laurent polynomial p(z) with the bi-infinite
band Toeplitz matrix T [p],
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,(13)

is clearly an isomorphism between the ring of infinite band Toeplitz matrices, with
the operations of addition and row by column multiplication, and the ring of Lau-
rent polynomials. The key role played by the spectral factorization (12) is made
clear by the following remarkable fact: it induces a very special triangular factori-
zation — named Wiener-Hopf factorization — of the corresponding bi-infinite
banded Toeplitz matrix T [p].

The description of such an intimate connection between matrix and polynomial
factorizations requires a preliminary introduction to linear algebra manipulations
with infinite Toeplitz matrices ([35] and [12] give a detailed exposition of these
subjects). The appropriate framework for studying infinite matrices is the theory
of linear operators acting on Banach spaces of sequences. In general, we are
concerned with the Hilbert space l 2 (Z) of real square summable sequences
w4]wk(k�Z with the norm

VwV

24 !
k�Z

wk
2 .

A bounded linear operator on l 2 (Z) can always be represented by a bi-infinite
matrix T4 (ti , j ), i , j�Z , in such a way that

Tw4 m!
j�Z

tk , j wjn
k�Z

, (w� l 2 (Z) ,
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with

VTV4 sup
VwVG1

VTwV .

In this way, the algebra of infinite matrix representations of bounded linear ope-
rators acting on l 2 (Z) provides a natural extension of the usual matrix algebra.

In the case where T4 (ti2 j ), i , j�Z , exhibits the Toeplitz structure, then
many properties of T can be expressed in terms of corresponding properties of
the associated symbol

t(z)4 !
k�Z

tk z k .

In particular, since p(z) is a continuous function with no zeros on the unit circle, it
follows that T [p] defines an invertible bounded linear operator acting on l 2 (Z)
with norm

VT [p]V4 max
NzN41

Np(z)N .

The inverse of T [p] is the bi-infinite Toeplitz matrix T [1 /p]4 (hi2 j ), i , j�Z ,
where

1

p(z)
4 !

k�Z
hk z k , (z : Na nNENzNENg mN21 ,

and, moreover,

V(T [p] )21
V4 VT k 1

p
l V4 max

NzN41

1

Np(z)N
4

1

min
NzN41

Np(z)N
.

Further, the spectral factorization (12) induces the following Wiener-Hopf factori-
zation of T [p],

T [p]4T [c×] T [a]4T [a] T [c×] ,(14)

where c×(z)4c(z 21 ). Note that T [c×] is a bi-infinite lower triangular Toeplitz ma-
trix whereas T [a] is a bi-infinite upper triangular Toeplitz matrix; therefore, (14)
represents a factorization of T [p] into the product of triangular factors. Obviou-
sly, other different triangular factorizations of T [p] are formally possible but (14)
is the only one where the triangular factors are themselves invertible operators
on l 2 (Z).
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As an application of the preceding theory, one may consider the block solution
of the linear system

T [p] X4E ,(15)

where X and E are bi-infinite vectors with n1m columns � l 2 (Z), X , E :
ZKR(n1m)3 (n1m) , with E(0)4I and, otherwise, E( j)40 for jc0. Then, it can
be easily seen that X(0)4 (hi2 j ) with 1G i , jGn1m . Hence, the first and the
last column of X(0) provide the sought coefficients of the reciprocal of the Lau-
rent polynomial p(z).

R e m a r k 1. By using the equivalence between Problem 1 and its polyno-
mial counterpart, one may deduce the invertibility of the matrix X(0). We pro-
ceed by contradiction. If X(0) has a non-trivial kernel, then, in the view of rela-
tions (11), one finds that there exists a nonzero polynomial b(z) such that x1 (z)
40 and x2 (z)40 is a solution of the corresponding equation (7).

Our approach to the solution of (15) is based upon the use of the cyclic reduc-
tion scheme, originally introduced in [14] for the solution of partial differential
equations and, more recently, adjusted in [8], [7] and [6] for solving certain
queueing problems. By using a block partitioning of T [p] into blocks Pk ,
k421, 0 , 1 , Pk4Pk

(0)4 (pi2 j1k(n1m) ), 1G i , jGn1m , pk40 if kDm or
kE2n , we are able to reduce the system (15) to a block tridiagonal form with a
block Toeplitz structure, namely,

.
/
´

P1
(0) X(h22)1P0

(0) X(h21)1P21
(0) X(h)4E(h21)

P1
(0) X(h21)1P0

(0) X(h)1P21
(0) X(h11)4E(h), h�Z .

P1
(0) X(h)1P0

(0) X(h11)1P21
(0) X(h12)4E(h11)

Assume now that P0
(0) is nonsingular; then, by multiplying the first equation by

P1
(0) (P0

(0) )21 and the last equation by P21
(0) (P0

(0) )21 and by subtracting them from
the second one, we obtain

P1
(1) X(h22)1P0

(1) X(h)1P21
(1) X(h12)4E(h) , h42 l , l�Z ,

where we set

P1
(1)42P1

(0) (P0
(0) )21 P1

(0)

P0
(1)4P0

(0)2P1
(0) (P0

(0) )21 P21
(0)2P21

(0) (P0
(0) )21 P1

(0) .

P21
(1)42P21

(0) (P0
(0) )21 P21

(0)

(16)
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These formulae allow us to define a new bounded block tridiagonal operator T (1) ,
with T (0)4T [p], given by

T (1)4 (Pi2 j
(1) )i , j�Z , Pi2 j

(1) 40 if Ni2 jND1 ,

such that

T (1) X (1)4E ,(17)

where X (1) (k)4X (0) (2k)4X(2k), k�Z .
The iterative application of formulae (16) defines the cyclic reduction process

for the approximation of X(0). The structure properties of the matrices Pi
( j) gene-

rated by this process as well as its convergence behavior have been widely inve-
stigated in the papers [8] and [7]. In what follows, we will consider a different
look at the cyclic reduction algorithm which is here used as a means for the itera-
tive construction of the Wiener-Hopf factorization of T (i) rather than of its block
entries Pk

(i) , k421, 0 , 1 . This has the important advantage of replacing (16)
with a set of formulae involving terms explicitly related to the given spectral fac-
tors a(z) and c(z 21 ) of p(z).

Suppose that T [c×] and T [a] are partitioned commensurably with T [p], that is,
we set T [c×]4 (L (0)

i ), L (0)
i �R(n1m)3 (n1m) , where L (0)

i 40 if iE0 or iD1, and
T [a]4 (U (0)

i ), U (0)
i �R(n1m)3 (n1m) , where U (0)

i 40 if iE21 or iD0. In addi-
tion, both the upper triangular matrix U (0)

0 and the lower triangular matrix L (0)
0

are nonsingular with unit diagonal entries.
In this way, the Wiener-Hopf factorization (14) of T (0) can be rewritten into a

block form as
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4F (0) D (0) G (0) ,

where F1
(0)4L (0)

1 (L (0)
0 )21 , D0

(0)4L (0)
0 U (0)

0 and G21
(0)4 (U (0)

0 )21 U (0)
21 . Furthermo-

re, the commuting property of (14) translates into the block relations:

U (0)
0 L (0)

0 1U (0)
21 L (0)

1 4L (0)
0 U (0)

0 1L (0)
1 U (0)

21 ,(18)
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and

U (0)
0 L (0)

1 4L (0)
1 U (0)

0 , U (0)
21 L (0)

0 4L (0)
0 U (0)

21 .(19)

Observe that the equalities (19) also follow from the fact that upper (lower) trian-
gular Toeplitz matrices commute.

The matrices F1
(0) and G21

(0) show very interesting properties related to the ze-
ros of c×(z) and a(z). In particular, the next result says that they coincide with the
(m1n)-th power of a permuted version of the Frobenius matrix associated with
z n1m c(z) and z n1m a(z), respectively. Since these polynomials have all their zeros
inside the unit circle, it follows that both G (0) and F (0) define invertible
operators.

T h e o r e m 2. Let C(z n1m a(z) ) denote the Frobenius matrix of order n1m
associated with the polynomial z n1m a(z), that is,

C(z n1m a(z) )4

C
`
`
`
D

0

0

1

Q Q
Q

. . .

Q Q
Q

Q Q
Q

2an

Q Q
Q

0
. . .

1

2a1

E
`
`
`
F

.

Analogously, let C(z n1m c(z) ) be the Frobenius matrix of order n1m associated
with the polynomial z n1m c(z). Finally, let J be the (n1m)3 (n1m) permuta-
tion matrix with unit anti-diagonal entries. Then we have that

F1
(0)42(JC(z n1m c(z) )T J)n1m , G21

(0)42(JC(z n1m a(z) )J)n1m .(20)

Hence, the bi-infinite triangular matrices F (0) and G (0) are invertible and their
inverses are given by:

( (F (0) )21 )i , j4 ( (JC(z n1m c(z) )T J)m1n )i2 j , iF j , i , j�Z ,

and

( (G (0) )21 )i , j4 ( (JC(z n1m a(z) )J)m1n )j2 i , jF i , j , i�Z .

P r o o f . We shall consider the matrix G (0) only, since the results for F (0) can
be proven in exactly the same way. Let ae (z)4a(z)1ez 2n2m be a Laurent po-
lynomial of degree n1m , where e is chosen in a neighborhood of the origin of the
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complex plane in such a way to guarantee that ae (z) has n1m distinct zeros de-
noted by a e , 1 , R , a e , n1m . These zeros can be grouped so that, as e approaches
0, a e , i converges to a i for 1G iGn , whereas a e , i converges to 0 for iDn . The
(n1m)32(n1m) Toeplitz matrix Tn1m [ae ]T of (6) satisfies

Tn1m [ae ]T4 [ U0
(0) U21

(0)1eI] ,

from which it follows that

(a e , j
n1m U0

(0)1 (U21
(0)1eI) )[a e , j

n1m21 , R , 1 ]T40

holds for 1G jGn1m . This implies that (U0
(0) )21 (U21

(0)1eI) coincides with
2J(C(z n1m ae (z) ) )n1m J and this matrix converges to 2J(C(z n1m a(z) ) )n1m J as
e goes to 0 .

The existence of the linear inverse of (G (0) )21 now follows from Banach’s theo-
rem [35]. In fact, in view of the matrix theory for the finite dimensional case, one
obtains that, for any s satisfying Na nNn1mEsE1, there exists a suitable matrix
norm V QV* such that VG (0)

21 V*Gs . Moreover, for any matrix norm V QV on
R(n1m)3 (n1m) there exists a positive constant C satisfying VBVGCVBV*, for any B
�R(n1m)3 (n1m) . Thus, by setting G (0)4I2G×(0) , we find that, for any integer h ,
it holds

V(G×(0) )h
VGCs h .(21)

This finally implies that G (0) is invertible and its inverse is given by

(G (0) )214 !
i40

Q

(G×(0) )i . r

Theorem 2 describes the Wiener-Hopf factorization of T (0)4T [p] in terms of
the Frobenius matrices associated with the spectral factors of p(z). The next re-
sult shows that this decomposition can be used as the initial guess of an iterative
scheme which produces the sequence of the triangular factorizations of the linear
operators T (s) generated by the cyclic reduction process.

T h e o r e m 3. Let ]T (s)(s�N , T (s)4 (P (s)
i , j ), be the sequence of linear opera-

tors generated by the cyclic reduction process starting from T (0)4T [p] by
means of relations (16), where we assume that all the matrices to be inverted are
nonsingular and, therefore, the process does not break down at any step. We ha-
ve that T (s) , s�N , is a bi-infinite block Toeplitz matrix in block tridiagonal
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form and, moreover, it has a block triangular factorization of the form

T (s)4F (s) D (s) G (s) ,(22)

where F (s) is block lower bidiagonal, G (s) is block upper bidiagonal and D (s) is
block diagonal. In addition, for s41, 2 , R , the factorization of T (s) can be con-
structed recursively from the one of T (s21) according to the following rules. It
holds:

F (s)4 (F (s)
i2 j )i , j�Z , F (s)

0 4I , F (s)
1 42(F (s21)

1 )2 ,

G (s)4 (G (s)
i2 j )i , j�Z , G (s)

0 4I , G (s)
2142(G (s21)

21 )2 ,

and D (s)4 (D (s)
i2 j )i , j�Z with

D0
(s)4D0

(s21)2D0
(s21) G (s21)

21 (D0
(s21)1F (s21)

1 D0
(s21) G (s21)

21 )21 F (s21)
1 D0

(s21) .

P r o o f . The proof follows from some straightforward calculations and, wi-
thout loss of generality, we may restrict ourselves to the case where s41. From
the Wiener-Hopf factorization of T (0)4T [p], it follows that

P0
(0)4D0

(0)1F1
(0) D0

(0) G21
(0) ;

P21
(0)4D0

(0) G21
(0) , P1

(0)4F1
(0) D0

(0) ;
(23)

therefore, D0
(1) is well defined if and only if P0

(0) is nonsingular or, equivalently,
the first step of cyclic reduction can be performed. Hence, we are able to introdu-
ce the block Toeplitz matrix in block tridiagonal form T× defined by

T×4 (T×i2 j )4F (1) D (1) G (1) .

The theorem is so established by first replacing (23) into the formulae (16) and,
then, by showing that T (1)4T×. For the sake of notational simplicity we omit
both the superscripts and the subscripts when it is possible. In this way, we set
F1

(0)4F , G21
(0)4G and D0

(0)4D . Then, we find that

T×02P0
(1)4F 2]D2DG(D1FDG)21 FD(G 212FDG1FD(D1FDG)21 DG

4F]FDG2FDG(D1FDG)21 FDG2D1D(D1FDG)21 D( G .

Since we have

FDG2FDG(D1FDG)21 FDG4D(D1FDG)21 FDG ,
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one gets that

T×02P0
(1)4F]D(D1FDG)21 FDG2D1D(D1FDG)21 D( G

4FD(D1FDG)21]FDG2 (D1FDG)1D( G40 .

Analogously, by comparing the subdiagonal block entries, we obtain that

T×12P1
(1)42F 2]D2DG(D1FDG)21 FD(1FD(D1FDG)21 FD

4]2F1F 2 DG(D1FDG)211FD(D1FDG)21(FD

4]2F(D1FDG)1F 2 DG2FD((D1FDG)21 FD40 .

The proof for the superdiagonal block entry follows in exactly the same
way. r

Based on this proposition, next we shall prove that the cyclic reduction process
applied to T (0)4T [p] generates a sequence of bounded invertible linear opera-
tors on l 2 (Z) converging in norm to a suitable bi-infinite block diagonal ma-
trix.

T h e o r e m 4. Let us assume that the cyclic reduction algorithm applied to
T (0)4T [p] does not break down at any step. Then, it generates a sequence of li-
near operators ]T (s)(s�N acting on l 2 (Z) for which the following statements
hold.

1. Each T (s) is a bounded linear invertible operator, and, therefore, the bi-in-
finite block vector X (s) , s�N , defined recursively by X (s) (k)4X (s21) (2k), k�Z ,
with X (0)4X solution of (15), is the unique solution of the linear systems

T (s) X (s)4E , s�N .

2. Denote by IQ the bi-infinite identity matrix. For any s with

max ]Na nNn1m , Ng mNn1m(EsE1 ,

there exists a positive constant C such that

VT (s)2D (Q)
VGCs 2s

,

where D (Q)4IQ7D , D4 (X (0) (0 ) )21 , X (0) (0 )4 (hi2 j ), 1G i , jGn1m .

P r o o f . The first part of the theorem is established by showing that the in-
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verse of D (s) can be explicitly constructed starting from the one of D (s21) . Again,
as in the proof of Theorem 3, for the sake of notational simplicity, we consider the
case s41 and we omit superscripts and subscripts when it is possible. Note that
D0

(0) is invertible since it is given by the product of invertible triangular Toeplitz
matrices. As the cyclic reduction process is applicable, D0

(1)4D2DG(D
1DFG)21 FD is well defined. The matrix W4D 211GD 21 F is our candidate to
be the inverse of D0

(1) . We have that:

D0
(1) W4I1DGD 21 F2DG(D1FDG)21 F2DG(D1FDG)21 FDGD 21 F

4I1DG(D1FDG)21]I1DDGD 212I2FDGD 21( F4I .

In this way, by induction, we find that

(D0
(s) )214 (D0

(s21) )211G21
(s21) (D0

(s21) )21 F1
(s21) , s�N1 .(24)

This relation also implies that the matrices (D0
(s) )21 are of uniformly bounded

norm. In fact, from (24) it follows that

V(D0
(s) )21

VG (11C1 s 2s
)V(D0

(s21) )21
V , s�N1 ,

holds for a suitable positive constant C1 . Let hD1 a positive integer such that
C1 s 2sG1 for sFh . The increasing sequence ]dk( defined by

dk4 »
i40

k

(11C1 s 2h1 i
) , k40, 1 , R ,

can be bounded from above as follows:

dk4EXP(log (dk ) )4EXP g!
i40

k

log (11C1 s 2h1 i
)hGEXP gC1 !

i40

k

s 2h1 ihGL .

Hence, one easily gets that

V(D0
(s) )21

VGL »
i41

h21

(11C1 s 2i
)V(D0

(0) )21
V , sF1 .

In the view of Theorem 3, one therefore finds that,

V(T (s) )212 (D (s) )21
VGC2 s 2s

,

where C2 is a given positive constant. On the other hand, for any s�N , the matri-
ces (T (s) )21 have the same entries in the positions i , j with 1G i , jGn1m . Un-
der our notations, (X (0) (0 ) ) is the (n1m)3 (n1m) Toeplitz matrix made up by
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these entries, where we recall that X (0) (0 )4X (s) (0 )4 (hi2 j ), for sF0, and, mo-
reover, X (0) (0 ) is nonsingular by virtue of Remark 1. Thus we obtain that the dia-
gonal block (D0

(s) )21 of (D (s) )21 approaches X (0) (0 ) so that

V(D0
(s) )212X (0) (0 )VGC3 s 2s

, s�N .

This means that D (s) are themselves uniformly bounded and, therefore, by using
Theorem 3 again, we may conclude that

VT (s)2D (Q)
VGCs 2s

, s�N ,

holds for a suitable positive constant C . r

This theorem says that the cyclic reduction scheme applied to T [p] is eligible
for the task of evaluating the sought coefficients of the Laurent series of 1 /p(z)
41/(a(z)c(z 21 ) ). In the next section, computationally effective procedures for
performing this task will be developed that are based on the given description of
cyclic reduction in terms of the block entries of the Wiener-Hopf factorization of
T [p].

4 - Efficient direct and iterative methods for reciprocation of factored Laurent

polynomials

In this section the theory developed above is used in order to derive two diffe-
rent computational schemes for the efficient evaluation of the central coefficients
h2n2m11 , R , hn1m21 of the Laurent series of the reciprocal of a(z)c(z 21 ).

The first method comes from the observation that

(T (0) )214 (X (0)
i2 j )4 (G (0) )21 (D (0) )21 (F (0) )21 .

This implies that the Toeplitz matrix X4X (0) (0 )4 (hi2 j ), 1G i , jGn1m , can
be expressed as

X4 !
i40

Q

(JC(z n1m a(z) ) J)i(n1m) (D0
(0) )21 (JC(z n1m c(z) )T J)i(n1m) .

Hence, it follows that X is the unique solution of the discrete Lyapunov matrix
equation

X2 (JC(z n1m a(z) ) J)n1m X(JC(z n1m c(z) )T J)n1m4 (D0
(0) )21 .(25)

The subsequent investigation of (25) largely follows from the results of [29]. By
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virtue of Theorem 2, this equation can equivalently be rewritten as

U0
(0) XL0

(0)2U21
(0) (U0

(0) )21 U0
(0) XL0

(0) (L0
(0) )21 L1

(0)4I ,

from which, by setting Y4U0
(0) XL0

(0) , one has that Y is the unique solution of

Y4I1U21
(0) (U0

(0) )21 Y(L0
(0) )21 L1

(0) .

By means of a straightforward calculation we find that

Y 214I2W4 (I1U21
(0) (U0

(0) )21 Y(L0
(0) )21 L1

(0) )21

4I2U21
(0) (U0

(0) )21 (Y 211 (L0
(0) )21 L1

(0) U21
(0) (U0

(0) )21 )21 (L0
(0) )21 L1

(0) .

This implies that the matrix W is the unique solution of the matrix equation

W4U (0)
21 (L (0)

0 U (0)
0 2L (0)

0 WU (0)
0 1L (0)

1 U (0)
21 )21 U (0)

1 .

In this way, by using the commuting properties (18) and (19), it is easily found
that

W4 (L (0)
0 )21 U (0)

21 L (0)
1 (U (0)

0 )21 ,

from which we finally conclude that

D4X 214L (0)
0 U (0)

0 2U (0)
21 L (0)

1 .

Summing up, we have the following:

T h e o r e m 5. For the (n1m)3(n1m) Toeplitz-like matrix D4(X (0) (0))21,
X (0) (0 )4 (hi2 j ), 1G i , jGn1m , the following representation holds

D4X 214L (0)
0 U (0)

0 2U (0)
21 L (0)

1 .(26)

By means of this result, the problem of computing the entries in the first and
in the last column of X 21 is then reduced to the problem of solving a linear
system whose coefficient matrix is of the form of (26). Systems of this type are
well studied and investigated in the structured numerical linear algebra frame-
work and over the years many diverse fast and superfast algorithms for their sol-
ution have appeared [34]. By incorporating any of these efficient solvers in the
procedure SolveSRLS, we obtain an effective computational scheme for the sol-
ution of both Problem 1 and Problem 2.

In particular, the importance of the present reduction is evident in the case
where a(z)4c(z) that is relevant for applications in signal and control theory
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[18]. In fact, in this situation the matrix D results to be positive definite and, the-
refore, superfast algorithms can be applied in a stable way. Moreover, in this case
the matrix D is also related to the Schur-Cohn test for determining the stability of
a given polynomial. A numerical comparison of the performance of superfast algo-
rithms for solving the considered definite linear system as well as the exploitation
of the Schur-Cohn algorithm in such a context are presently ongoing works.

A completely different approach to the computation of the sought coefficients
of 1 /(a(z)c(z 21 ) ) is based on the iterative approximation of X itself, instead of its
inverse matrix D , by using relation (24). Indeed, (24) provides an iterative process
quadratically converging towards the matrix X . The problem we are interested
now is the efficient implementation of this process at a low computational cost.

To do this, let us introduce the displacement operator

F1 : R(n1m)3 (n1m)KR(n1m)3 (n1m) ,

defined by

F1 (A)4A2 (JC(z n1m a(z) ) J) A(JC(z n1m c(z) )T J) .

This operator can immediately be related to the more classical displacement
operator

F2 (A)4A2ZAZ T ,

where Z denotes the down-shift matrix of order n1m given by

Z4 [e2 N . . .Nen1mN0] ,

and ei is the i-th column of the identity matrix I of order n1m . In fact, we
have

JC(z n1m a(z) ) J4Z2e1 aT Z , JC(z n1m c(z) ) J4Z2e1 cT Z ,(27)

where a4 [1 , a1 , R , an , 0 , R , 0 ]T and c4 [1 , c1 , R , cm , 0 , R , 0 ]T .
The rank of Fj (A), j41, 2 , is called the j-displacement rank of A . The 2-di-

splacement rank of a matrix A can also be regarded as the smallest integer l such
that A can be written as

A4 !
i41

l

Li Ui ,

where Li and Ui are lower and upper triangular Toeplitz matrices, respectively.
More precisely, the following result holds [11].
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T h e o r e m 6. Let us assume that the (m1n)3 (m1n) matrix A has 2-di-
splacement rank l , that is,

F2 (A)4A2ZAZ T4 !
i41

l

xi yi
T .

Then, we have that

A4 !
i41

l

L(xi ) U(yi ) ,

where L(x) denotes the lower triangular Toeplitz matrix whose first column is x
and U(y)4L(y)T .

The powers of a Frobenius matrix also inherit a special displacement structure
[1], [37].

T h e o r e m 7. Let p(z)4 !
i40

n1m

pi z i , be a polynomial in z of degree n1m .

For any integer k , let us denote by q (k) (z) and r (k) (z), respectively, the quotient
and the remainder in the Euclidean division of z k by p(z), that is,

z k4q (k) (z)p(z)1r (k) (z) ,(28)

where the degree l(k) of r (k) (z)4 !
i40

l(k)

ri
(k) z i is smaller than the degree of p(z). For

the k-th power (C(p(z) ) )k of the Frobenius matrix C(p(z) ) of order n1m associa-
ted with p(z) we have

(C(p(z) ) )k4r (k) (C(p(z) ) )4J(U(p×) )21 J]L(p×) U(r(k) )2L(r×(k) ) U(p)((29)

where p4[p0 ,R, pn1m21]T, r(k)4[r0
(k) ,R, rl(k)

(k) , 0,R, 0]T, p×4[pn1m ,R, p1]T,
and r×(k)4 [0 , R , 0 , rl(k)

(k) , R , r1
(k) ]T .

Next two results show that each matrix (D0
(s) )21 , sF0, has 1-displacement

rank bounded from above by 2, that is, the rank of F1 ( (D0
(s) )21 ) is at most 2. Let

us start by considering the inverse of the initial matrix D0
(0) . Recall that, from

Theorem 7 it follows that

C(z n1m a(z) )4J(U0
(0) )21 Ba , C(z n1m c(z) )4J(L0

(0) )21 Bc ,

for suitable symmetric matrices Ba and Bc .

T h e o r e m 8. We have that

F1 ( (D0
(0) )21 )4e1 e1

T2 (JC(z n1m a(z) ) J)n1m e1 e1
T (JC(z n1m c(z) )T J)n1m .
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P r o o f . By using the previous representation of the involved Frobenius ma-
trices, we find that

F1 ( (D0
(0) )21 )4 (U0

(0) )21 (I2C(z n1m a(z) )T C(z n1m c(z) ) )(L0
(0) )21 .

By replacing (27) into this formula, one finally gets that

F1 ( (D0
(0) )21 )4 (U0

(0) )21 (I2 (Z2ZJaen1m
T )(Z T2en1m cT JZ T ) )(L0

(0) )21

4 (U0
(0) )21 (e1 e1

T2ZJacT JZ T )(L0
(0) )214e1 e1

T2 (U0
(0) )21 U21

(0) e1 e1
T L1

(0) (L0
(0) )21

4e1 e1
T2G21

(0) e1 e1
T F1

(0) . r

T h e o r e m 9. For any sF0, we find that

F1 ( (D0
(s) )21 )4e1 e1

T2 (JC(z n1m a(z) ) J)2s (n1m) e1 e1
T (JC(z n1m c(z) )T J)2s (n1m) .

P r o o f . The proof is by induction on s . The case s40 is established by Theo-
rem 8. For sD0, ls2142s21 (n1m), observe that

F1 ( (D0
(s) )21 )4

F1 ( (D0
(s21) )21 )1 (JC(z n1m a(z) ) J)ls21 F1 ( (D0

(s21) )21 )(JC(z n1m c(z) )T J)ls214

e1 e1
T2 (JC(z n1m a(z) ) J)ls21 e1 e1

T (JC(z n1m c(z) )T J)ls211

(JC(z n1m a(z) ) J)ls21 e1 e1
T (JC(z n1m c(z) )T J)ls211

2(JC(z n1m a(z) ) J)ls e1 e1
T (JC(z n1m c(z) )T J)ls4

e1 e1
T2 (JC(z n1m a(z) ) J)ls e1 e1

T (JC(z n1m c(z) )T J)ls . r

As an immediate consequence of this result we find that the displacement rank
of the matrices (D0

(s) )21 , sF0, w.r.t. the displacement operator F2 can also be
bounded from above by a small constant integer.

C o r o l l a r y 10. For any sF0, there are uniquely determined n1m-vectors
r(s) and t(s) such that

F2 ( (D0
(s) )21 )4e1 r(s)T

1t(s) e1
T2 (JC(z n1m a(z) ) J)ls e1 e1

T (JC(z n1m c(z) )T J)ls ,

where ls42s (n1m) and the first entry of r(s) is zero.
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P r o o f . The proof immediately follows by replacing (27) into the displace-
ment equation provided by Theorem 9. The uniqueness of r(s) and t(s) is evident in
the light of Theorem 6. In fact, it says that we can represent (D0

(s) )21 as

L(t(s) )1U(r(s) )2L( (JC(z n1m a(z) ) J)ls e1 ) U(JC(z n1m c(z) ) J)ls e1 ) .(30)

Therefore, t(s) is the first column of

(D0
(s) )211L( (JC(z n1m a(z) ) J)ls e1 ) U(JC(z n1m c(z) ) J)ls e1 ) ,

whereas r(s)T
is obtained by its first row by replacing the entry in position 1 with

zero. r

In this way the problem of approximating the central coefficients
h2n2m11 , R , hn1m21 of the Laurent series of the reciprocal of a(z) c(z 21 ) is re-
duced to that one of computing the sequences ]r(s)( and ]t(s)( that are quadrati-
cally convergent towards the vector [0 , h21 , R , h2n2m11 ]T and the vector
[h0 , h1 , R , hn1m21 ]T , respectively. By combining Theorem 7 with the inverse re-
presentation formula (30), we find that the iterative evaluation of the entries of
these sequences can be accomplished at the cost of O( (n1m) log (n1m) ) ari-
thmetic operations thus leading at a superfast algorithm for the computation of
the sought coefficients within an arbitrarily small precision e . The resulting pro-
cedure EvaluateCCRLS is given below, where the acronym CCRLS stands for
central coefficients of the reciprocal of a Laurent series. Here ra

(k) (z) and rc
(k) (z)

denote the remainder of the Euclidean division of z k by pa (z)4z n1m a(z) and by
pc (z)4z n1m c(z), respectively. Moreover, powers of Frobenius matrices are al-
ways represented by means of (29) as a sum of products of triangular Toeplitz
matrices.

Procedure EvaluateCCRLS

input: The coefficients of a(z) and c(z) and the value of the stop parameter s .

l Solve the linear systems

D0
(0) tA(0)4e1 , D0

(0)T
rA(0)4e1 .

l Set

ra
(n1m) (z)42(a1 z n1m211R1an z m ) ,

rc
(n1m) (z)42(c1 z n1m211R1cm z n ) .
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l Evaluate the entries of the vectors

f4 (fi )4 (JC(z n1m a(z) ) J)n1m e1 , g4 (gi )4 (JC(z n1m c(z) ) J)n1m e1 .

l Compute

t(0)4 tA(0)1g0 f , r(0)4 rA(0)1 f0 g ,

where the first entry of r(0) is replaced by 0.
l For i41, 2 , R , s , do:

1. Find the first column tA(i) and the first row rA(i)T
of (D0

(i) )21 by means of
(24), where (D0

(i21) )21 is expressed as in (30).
2. Determine the coefficients of the remainders

ra
( (n1m)2i ) (z)4 (ra

( (n1m)2i21 ) (z) )2 ( mod pa (z) ) ,

and

rc
( (n1m)2i ) (z)4 (rc

( (n1m) 2i21 ) (z) )2 ( mod pc (z) ) .

3. Evaluate the entries of the vectors

f4 (fi )4 (JC(z n1m a(z) ) J)(n1m)2i
e1

and

g4 ( gi )4 (JC(z n1m c(z) ) J)(n1m) 2i
e1 .

4. Compute

t(i)4 tA(i)1g0 f , r(i)4 rA(i)1 f0 g ,

where the first entry of r(i) is replaced by 0.
l endfor

As the matrix D0
(0) is the product of two triangular Toeplitz matrices whose

entries are explicitly given in terms of the coefficients of a(z) and of c(z), it is
easily found that the initialization phase can be performed at the cost of
O( (n1m) log (n1m) ) arithmetic operations by means of the Sieveking-Kung al-
gorithm [9]. Similarly, steps 1 and 3 require nothing but a small number of multi-
plications of a triangular Toeplitz matrix by a vector. This operation essentially
amounts to a polynomial multiplication and, therefore, it can be carried out at the
cost of O( (n1m) log (n1m) ) arithmetic operations by using FFTs. Concerning
the step 2, observe that these Euclidean divisions can also be performed in a
stable way by means of convolutions [16] at the cost of O( (n1m) log (n1m) )
arithmetic operations. In conclusion, Procedure EvaluateCCRLS can be imple-
mented at the overall cost of O(s(n1m) log (n1m) ) arithmetic operations. Hen-
ce, in view of the quadratic convergence of the sequences ]r(s)( and ]t(s)(, we find
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that, for a fixed precision e , approximations r(s) and t(s) such that

Vt(s)2Xe1 VQGe , Vr(s)T
2e1

T (X2h0 e1 e1
T )VQGe ,

can be determined in O(log (loge21 )1N log (log s21 )N) steps at the total cost of
O( (n1m) log (n1m)(log (log e21 )1N log (log s21 )N) ) arithmetic operations,
where s denotes the separation ratio as defined in Theorem 4.

5 - Numerical experiments

We have produced a preliminary implementation of Procedure SolveSRLS by
using Mathematica TM and, then, we have tested it by performing numerical expe-
riments on a computer with 16 decimal digits of precision.

Our program approximates the coefficient matrix X(0) of (11) by the matrix
(D0

(s) )21 obtained after s-th steps of (24), where s is such that

V(D0
(s) )212 (D0

(s21) )21
VQGe ,

and e denotes here the machine precision. The inverse of D0
(0) is computed by fin-

ding firstly the first column and the first row of (L0
(0) )21 and (U0

(0) )21 by means
of the customary back and forward substitution processes. Then, the inverse ma-
trices (U0

(0) )21 and (L0
(0) )21 are formed and their multiplication is carried out

by using the standard matrix-by-matrix algorithm. Once (D0
(0) )21 is available, the

iterative process (24) is started. The computation of (D0
(i) )21 from (D0

(i21) )21 ,
1G iGs , is performed in a straightforward way by using the classical algorithms
for operations between general matrices. The total cost of our implementation is
therefore O( (n1m)3 s) arithmetic operations.

However, at the present time our main interest is on the study of the numeri-
cal stability properties of our approach. In respect of this point of view, we argue
that our plain version of SolveSRLS should mimic closely the experimental per-
formance of a more sophisticated version of SolveSRLS complemented with a fa-
st implementation of Procedure EvaluateCCRLS using both FFTs and the di-
splacement rank theory. In fact, the Sieveking-Kung algorithm used in the initiali-
zation phase of EvaluateCCRLS results to be backward stable when it is applied
for the solution of a triangular Toeplitz system whose coefficient matrix is well
conditioned [10]. This is the case of the linear systems defined by the matrices
L0

(0) and U0
(0) whose inverses are exponentially decaying by virtue of the Cauchy

estimates [30] for the coefficients of the Taylor series of 1 /c(z 21 ) and 1 /a(z 21 ).
Regarding at the other steps of EvaluateCCRLS, the essential difference bet-
ween the two versions consists of performing Toeplitz-by-vector multiplications
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Ty , T4 (ti2 j ), by means of the usual method instead of using fast techniques ba-
sed on FFTs. Again, we may observe that these two algorithms generally have a
quite comparable numerical behavior. More specifically, it can be shown that the
vector fls (Ty) computed by the standard matrix-by-vector algorithm satisfies

VTy2 fls (Ty)V2G (n1m)2
VTV2 VyV2 e1O(e 2 ) .

Moreover, a similar relation holds for the vector flf (Ty) obtained at the cost of
O( (n1m) log (n1m) ) arithmetic operations by determining the first n1m com-
ponents of the convolution product of the two 2(n1m)2vectors:

tT4 [t0 , R , tn1m21 , 0 , t2n2m11 , R , t21 ] , yAT4 [yT , 0T ] .

Indeed we have [10]

VTy2 flf (Ty)V2G16(n1m) kn1m log2 (n1m)VTV2 VyV2 e1O(e 2 ) .

In our numerical experiments, we generated stable polynomials a(z) and c(z)
of degree n , n432, 64 , 128 , 256 , 512 by using the Kakeya-Eneström theorem
[30]. It says that all the zeros of the polynomial p(z) of degree n ,

p(z)411p1 z 211p2 z 221R1pn z 2n ,

lie inside the unit circle whenever its coefficients pi , 1G iGn , satisfy

1Dp1Dp2DRDpn .

For each pair (a(z), c(z) ), we considered the solution of the associated linear
system (1) of order 2n with b4en1en11 . Firstly, this system was solved to high
precision (32 decimal digits of precision) by means of the Mathematica TM function
LinearSolve which makes use of a suitable version of the Gaussian elimination al-
gorithm with partial pivoting. Then, the so computed solution xG was assumed to
be the exact solution of (1) and we measured the final relative error by

err4
VxG2xVQ
VxG VQ

,

where x denotes the corresponding solution produced by our procedure. As test
suite we considered the following set of polynomials.
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1. Balanced case: a(z)4 !
i40

n

ai z 21 , c(z)4 !
i40

n

ci z 21 , where a04c041 and,
for i42, R , n , we set

ai4
ai21

11 (0.1 Random [ ] )u
, ci4

ci21

11 (0.1 Random [ ] )u
.

The intrinsic function Random [ ] returns a uniformly distributed random number
in the interval (0 , 1 ). For integer values of the parameter u , the coefficients of
both a(z) and c(z) are quite close and, as u increases, their zeros approach the
unit circumference by slowing down the convergence of the iterative process (24).

2. Unbalanced case: a(z)4 !
i40

n

ai z 21 , c(z)4 !
i40

n

ci z 21 , where a04c041
and, for i42, R , n/2 , we set

ai4
ai21

11 (0.1 Random [ ] )u
, ci4

ci21

11 (0.1 Random [ ] )u
.

The values of the remaining coefficients are determined according to the follo-
wing rules:

an/2114
an/2

100u
, cn/2114

cn/2

100u
,

and, for n/212G iGn ,

ai4
ai21

11 (0.1 Random [ ] )u
, ci4

ci21

11 (0.1 Random [ ] )u
.

Differently from the previous set, in this case the distribution of the coefficients of
a(z) and c(z) is quite unbalanced and this fact should affect the conditioning of the
associated resultant linear system.

For any considered set of test polynomials, we generated 100 pairs (a(z), c(z) )
and we evaluated the arithmetic means erra and ra of the estimated relative er-
rors and of the computed residuals, respectively. Tables 1, 2, 3, 4, 5, 6, 7 and 8 re-
port the degree n , the value of the parameter u , the average value sa of the stop
parameter s , the maximum errmax and the minimum errmin of the estimated relati-
ve errors, the average relative error erra and the average residual ra . Tables 5, 6,
7 and 8 also report the average value conda of the spectral condition number of
the considered coefficient matrices [Tn [c]NTn [a×] ]. Our numerical experience con-
firms that an unbalanced distribution of the coefficients of a(z) and c(z) can usual-
ly lead to ill-conditioning problems. However, in each of the performed experi-
ments, our method is shown to be as accurate as Gaussian elimination with partial
pivoting.
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TABLE 1. – Balanced case for u41.

n sa errmin errmax erra ra

32 5 3.5e-16 1.2e-15 6.6e-16 7.2e-15
64 4 3.1e-16 1.2e-15 7.8e-16 8.8e-15

128 4 2.9e-16 1.3e-15 7.0e-16 9.4e-15
256 3 3.3e-16 2.7e-15 1.2e-15 1.7e-14
512 2 7.6e-16 4.8e-15 2.8e-15 2.8e-14

TABLE 2. – Balanced case for u42.

n sa errmin errmax erra ra

32 9 5.1e-16 5.8e-14 1.6e-15 5.8e-14
64 8 7.0e-16 2.1e-15 1.4e-15 1.3e-13

128 7 0.8e-15 3.6e-15 2.0e-15 1.4e-13
256 6 1.3e-15 4.9e-15 2.6e-15 3.2e-13
512 5 9.0e-16 5.9e-15 2.7e-15 3.5-13

TABLE 3. – Balanced case for u43.

n sa errmin errmax erra ra

32 13 4.5e-15 4.1e-14 1.2e-14 1.7e-12
64 11 4.2e-15 9.5e-15 5.6e-15 1.4e-12

128 11 3.6e-15 7.0e-15 5.1e-15 2.3e-12
256 10 2.7e-15 7.6e-15 4.2e-15 3.1e-12
512 8 3.6e-15 7.3e-15 5.4e-15 4.3e-12

TABLE 4. – Balanced case for u44.

n sa errmin errmax erra ra

32 18 3.6e-14 1.8e-13 1.2e-13 1.7e-11
64 16 2.2e-14 2.0e-13 8.3e-14 2.3e-11

128 14 2.5e-14 7.8e-14 4.4e-14 2.2e-11
256 13 1.1e-14 3.0e-14 1.7e-14 4.9e-11
512 11 1.9e-14 2.7e-13 8.6e-13 6.6e-11



287A NUMERICAL APPROACH TO THE SOLUTION...[29]

TABLE 5. – Unbalanced case for u41.

n conda sa errmin errmax erra ra

32 1.1e2 5 4.6e-16 1.6e-15 8.0e-15 8.2e-15
64 1.4e2 5 5.6e-16 2.1e-15 1.1e-15 9.8e-15

128 1.5e2 4 4.2e-16 1.4e-15 7.7e-16 9.9e-15
256 1.6e2 3 7.6e-16 3.3e-15 1.7e-15 2.1e-14
512 2.1e2 3 8.1e-16 3.6e-15 2.0e-15 2.8e-14

TABLE 6. – Unbalanced case for u42.

n conda sa errmin errmax erra ra

32 2.5e3 11 2.5e-15 1.1e-14 5.7e-15 1.2e-13
64 3.2e3 9 3.2e-15 8.0e-15 6.0e-15 1.9e-13

128 4.1e3 7 5.5e-15 1.7e-14 1.1e-14 4.4e-13
256 5.0e3 5 6.0e-15 5.6e-14 1.6e-14 5.1e-13
512 7.1e3 4 7.8e-15 9.1e-14 4.1e-14 8.6e-13

TABLE 7. – Unbalanced case for u43.

n conda sa errmin errmax erra ra

32 2.0e4 12 6.1e-15 4.2e-14 9.9e-15 8.7e-13
64 4.8e4 12 8.1e-15 6.7e-14 3.2e-14 1.2e-12

128 7.6e4 11 9.6e-15 1.5e-12 8.7e-14 6.6e-12
256 7.8e4 11 4.2e-14 2.1e-12 1.6e-13 9.3e-12
512 8.0e4 9 4.4e-14 3.1e-11 8.2e-13 4.0e-11

TABLE 8. – Unbalanced case for u44.

n conda sa errmin errmax erra ra

32 7.4e5 19 4.4e-14 3.2e-12 7.9e-13 8.7e-11
64 7.9e5 17 6.7e-14 7.0e-12 8.7e-13 1.9e-10

128 8.1e5 16 9.1e-14 2.1e-11 1.3e-12 2.8e-10
256 8.8e5 16 1.1e-13 2.8e-11 4.6e-12 8.9e-10
512 1.1e6 13 8.7e-13 7.1e-11 5.5e-11 1.5e-9
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6 - Conclusions and further extensions

A novel numerical approach to the efficient solution of stable resultant linear
systems has been presented. It is based upon the close connections between the
matrix problem, its polynomial formulation and the problem of factoring polynomials
with respect to the unit circle in the complex plane (spectral factorization problem).
The experimental results of a preliminary implementation of the proposed solution
algorithm are also reported by showing its effectiveness and robustness.

Many theoretical and experimental issues are however still open.
Firstly, an extensive numerical experience with a Fortran 90 implementation

of Procedure EvaluateCCRLS, complemented with fast routines based on FFTs,
is required to confirm its stability properties in the case where it is applied in a
superfast way. Presently, this is an ongoing work.

Secondly, the exploitation of other diverse ways of solving the bi-infinite block
tridiagonal system (15) would be very interesting. Observe that the tridiagonal form
is a special case of the the more general Hessenberg structure and, recently, many
efficient sequential and parallel algorithms for the solution of block Hessenberg
linear systems have been developed (see [41], [27] and [25]). An analysis of the
properties of such algorithms in the present context might be useful to devise
alternative procedures for the solution of stable resultant linear systems.

Thirdly, in this paper we have shown that spectral factorization methods can
lead to superfast algorithms for the numerical treatment of a certain class of
structured linear systems. A continuous analogue of the spectral factorization
problem is the problem of factoring polynomials with respect to the imaginary
axis in the complex plane (Hurwitz factorization problem) which plays a key role
in the synthesis of continuous quadratically optimal controllers [32]. The study of
similar results and relations between Hurwitz factorization methods [24] and the
solution of structured linear systems should be welcome.

Finally, Theorem 5 provides a description of a Gohberg-Semencul type formula
for the inverse of a nonsingular Toeplitz matrix in terms of the coefficients of the
factors obtained by the spectral factorization of its symbol. The idea of relating
suitable representations of the inverse of a Toeplitz matrix with the polynomials
found by means of the solution of a factorization problem involving its symbol is not
new. According to Iohvidov’s book [31], it was, apparently, ascertained for the first
time by G. Baxter and I. Hirschman [2]. Some years later, A. A. Semencul [39] also
made use of similar developments to prove an inversion formula and, this result was
fundamental in the corresponding section of the book of I.C. Gohberg and I. A.
Fel’dman [28]. Unlike of these theoretical contributions, we believe that the
possibility of extending the derivation of Theorem 5 to the more general case where
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no restriction is imposed on the spectrum of the considered polynomials should also
be investigated for computational purposes. In fact, we guess that approximate
factorizations of a polynomial could be use in order to construct approximate
representations of the inverse of a Toeplitz matrix with several applications to the
preconditioning theory.
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[38] A. SCHÖNHAGE, Asymptotically fast algorithms for the numerical multiplication
and division of polynomials with complex coefficients, in J. Calmet, ed., Proc.
EUROCAM 1982, vol. 144 Lecture Notes in Comput. Sci., Springer, Berlin 1982.

[39] A. A. SEMENCUL, Inversion of finite Toeplitz matrices and their continual
analoga, chapter Appendix II in: Projection methods in the solution of
Wiener-Hopf equations, by I. C. Gohberg and I. A. Fel’dman, R. I. O. Akad.
Nauk. MSSR (1967). in Russian.

[40] J. R. SENDRA and J. LLOVET, GCD of polynomials and Hankel matrices, J.
Symbolic Comp. 13 (1992), 25-39.

[41] G. W. STEWART, On the solution of block Hessenberg systems, Numer. Linear
Algebra Appl. 2 (1995), 287-296.

[42] G. RODRIGUEZ, T. N. T. GOODMAN, C. A. MICCHELLI and S. SEATZU, Spectral
factorization of Laurent polynomials, Adv. Comput. Math. 7 (1997),
429-454.

[43] G. T. WILSON, Factorization of the covariance generating function of a pure
moving-average process, SIAM J. Num. Anal. 6 (1969), 1-7.

A b s t r a c t

Devising efficient methods for the solution of resultant linear systems is a relevant is-
sue in many diverse fields like computer algebra, control theory, signal processing and
data modeling. Over the years, several fast and superfast algorithms have been proposed
that are based either on purely numerical techniques or on mixed numeric-symbolic pro-
cedures. In this paper we present a new solution scheme falling in the former class that
works under some auxiliary conditions on the separation of the spectrum of the polyno-
mials associated with the initial coefficient matrix. Such assumptions are usually sati-
sfied in the considered applications of control and signal theory and their exploitation al-
lows us to reduce the original matrix problem to the equivalent one of finding the recipro-
cal of a Laurent polynomial. To carry out this computation we develop both finite and
iterative processes employing a blend of ideas from structured numerical linear algebra,
computational complex analysis and linear operator theory. The effectiveness and the ro-
bustness of the resulting composite solution methods is then confirmed by means of nu-
merical experiments that are finally reported and discussed.

* * *


