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Uniform polynomial approximation to solutions

of the Cauchy problem for O.D.E. (**)

1 - Introduction

A wide literature is dedicated to the methods of numerical integration for in-
itial value problems (shortly IVP) relative to ordinary differential equations.

The solution is obtained on a grid at a constant step or, in the case of adaptive
methods, at a variable step. We deal, in every case, with methods that approxima-
te the solution by a sequence of points belonging to the domain where the diffe-
rential equation satisfies the Lipschitz condition.

Much less extension has the work dedicated to the uniform approximation of
the solution in a suitable neighborhood of the initial point.

The prototype of these methods is that of Chaplygin and some variants of it,
that can be found in classical books of I. S. Berezin and N. P. Zhidkov [2] and S.
G. Mikhlin and K. L. Smolitskiy [4]. In both, after having approximated the sol-
ution of the IVP by a sequence of linear problems, it is excluded the possibility of
the analytical computation of a certain sequence of functions uniformly approa-
ching the solution itself, since the solutions of the linear problems can not be
expressed in terms of elementary functions.

Subsequently it has been recognized by many authors (see e.g. [6]) that Cha-
plygin’s method essentially coincides, under the Functional Analysis point of view,
for a suitable choice of the involved spaces, with Newton’s method.
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The motivation for which the analytical methods have been almost never con-
sidered by the authors who have been devoted to the integration of the IVP is
mainly due to the fact that initially the computers, generally programmed in For-
tran, allowed only the numerical treatment of the data.

The appearing of new programs of Computer Algebra, such as MAPLE C ,
MATHEMATICA C [7], etc., has ensured the analytical resolution of many pro-
blems and seems, also in this field, to permit, by a suitable adaptation of the te-
chniques described in the above books [2], [4], the uniform approximation of the
solution of an IVP.

A paper by O. Aramă [1] considered a technique of computation of the solution
of an IVP using the translation of the problem to a Volterra integral equation,
whose solution, by Peano-Picard’s method, is approximated making use of Ber-
nstein polynomials.

In a recent paper [5] the same idea has been exploited to obtain a sequence of
polynomials uniformly approximating the solution in an interval, using Chaplygi-
n’s method, which guarantees a rate of convergence much more rapid than Peano-
Picard’s method.

In this note the approximation of the solution of an IVP by Bernstein polyno-
mials is applied to a technique of computation, exposed in [2], which relaxes the
hypotheses necessary for the application of Chaplygin’s method.

Methods of quasi linearization with quadratic rate of convergence, essentially
different from those considered in this article, can be found in a book by V. La-
kshmikantham and A. S. Vatsala [3].

2 - Chaplygin’s method

In this section we briefly recall the main ideas connected with Chaplygin’s
method and give information about rate of convergence, proved by N. N.
Luzin.

Consider the Cauchy problem

y 84 f (x , y) ; y(x0 )4y0(2.1)

where f (x , y) satisfies the Lipschitz condition in A 83B , (A 8 »4]x : Nx2x0N
Ga 8(; B»4]y : Ny2y0NGb():

Nf (x , y2 )2 f (x , y1 )NGKNy22y1 N , (x�A 8 , yi�B , (i41, 2) )

(K independent of x), and suppose we have unique solution y4y(x) defined in A
’A 8 , (A»4]x : Nx2x0 NGa(), such that y(x)�B .
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Denoting by S»4 max
A 83B

Nf (x , y)N , then a»4min (a 8 , b/S).

T h e o r e m 2.1 (Chaplygin). Let U(x , y), V(x , y) be Lipschitz functions such
that, in A3B :

U(x , y)G f (x , y)GV(x , y)(2.2)

then the solutions u(x), v(x) of the Cauchy problems

y 84U(x , y) ; u(x0 )4y0

y 84V(x , y) ; v(x0 )4y0

satisfy

u(x)Gy(x)Gv(x) ,(2.3)

and if at least one of inequalities (2.2) strictly holds in a point x1Fx0 , then the
corresponding inequality in (2.3) strictly holds (xFx1 .

Suppose now that the function f (x , y) verifies the hypothesis:

¯ 2 f/¯ 2 yE0 in A3B .(2.4)

Then, (x�A , the surface z4 f (x , y) is concave in D , so that considering
functions:

U0 (x , y) »4M0 (x)y1N0 (x) ; V0 (x , y) »4MA0 (x) y1NA0 (x) ,

where

M0 (x) »4
f (x , y01b)2 f (x , y02b)

2b
,

N0 (x) »4 f (x , y02b)2
f (x , y01b)2 f (x , y02b)

2b
(y02b)

and

MA0 (x) »4 fy (x , y02b) ,

NA0 (x) »4 f (x , y02b)2 fy (x , y02b)(y02b)

conditions (2.3) hold true.
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Then it is possible to construct sequences: ]un (x)(nF0 ; ]vn (x)(nF0 , defined by
solving respectively Cauchy problem for linear equations:

un84Mn (x) un1Nn (x) ; un (x0 )4y0

vn84MAn (x) vn1NAn (x) ; vn (x0 )4y0

where, for nF1:

Mn (x) »4
f (x , vn21 )2 f (x , un21 )

vn212un21

Nn (x) »4 f (x , un21 )2
f (x , vn21 )2 f (x , un21 )

vn212un21

un21

and

MAn (x) »4 fy (x , un21 )

NAn (x) »4 f (x , un21 )2 fy (x , un21 ) un21 .

This corresponds to applying the initial method to a sequence of sets Bn (x) »
4]un21 (x)GyGvn21 (x)( which are contained in B , (x� [x0 , x01a].

The sequences ]un (x)(nF0 ; ]vn (x)(nF0 converge to the exact solution y(x) of
the original Cauchy problem (2.1). Luzin’s Theorem expresses the rate of conver-
gence in A of the above mentioned process, which is very rapid, being expressed
by the inequality

vn (x)2un (x)E
C

22n ,(2.5)

where C is a constant independent of n and x .
Similar results hold if the partial derivative in (2.4) is strictly positive in

A3B . In this case the corresponding surface is convex, and all the machinery
holds true, simply reversing the inequalities in the preceding formulas.

As it is well known, the Cauchy problem for linear equation:

y 84m(x)y1n(x) ; y(x0 )4y0(2.6)
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is given by the explicit formula:

y(x)4e
�

x0

x
m(j) djy �

x0

x

n(j) e
2�

x0

j
m(t) dt

dj1y0z ,(2.7)

however, even in very simple cases (see e.g. [4], pp. 10-12), the primitive appea-
ring in the above formula is not expressible in terms of elementary functions. Ne-
vertheless, in [5], we showed how to construct the lower (and upper) polynomial
approximations of the solution of problem (2.6), i.e. those satisfying Chaplygin’s
conditions (2.3). Consequently, applying Chaplygin’s algorithm, in [5], we obtai-
ned, step by step, polynomial sequences uniformly approximating, in a right nei-
ghborhood of the initial point x0 , the solution of the original problem (2.1).

3 - A method for approximating solutions of O.D.E.

We show now another method for finding upper and lower approximations
un (x) and vn (x), starting from u0 (x) and v0 (x) for which u08 (x)2 f (x , u0 ), f (x , v0 )
2v08 (x) are not positive functions in A× »4 [x0 , x01a] and such that u0 (x0 )
4v0 (x0 )4y0; this method does NOT require the sign of ¯ 2 f/¯ 2 y to be constant
(see eq. (2.4)). Let K be the Lipschitz constant, one introduces sequences
]un (x)(nF0 ; ]vn (x)(nF0 defined by

un (x)4un21 (x)1�
x0

x

e 2K(x2 t) [ f (t , un21 (t) )2u 8n21 (t) ] dt ,

vn (x)4vn21 (x)2�
x0

x

e 2K(x2 t) [v 8n21 (t)2 f (t , vn21 (t) ) ] dt .

T h e o r e m 3.1. (nF1,

un21 (x)Gun (x)GRGy(x)GRGvn (x)Gvn21 (x) .

T h e o r e m 3.2. The sequences ]un (x)(; ]vn (x)( uniformly approach y(x) in
A× as nKQ .

However the rate of convergence is less than the rate given by Luzin’s
Theorem.
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Consider now the sequence ]vn (x)(nF0 defined by

vn (x)4vn21 (x)2�
x0

x

e 2K(x2 t) hn21 (t) dt ,

where hn21 (t) »4v 8n21 (t)2 f (t , vn21 (t) ).
Our purpose in Section 4 is to construct a sequence of polynomials ]qn (x)(nF0

uniformly approximating the sequence ]vn (x)(nF0 (the approximation will depend
on f and A×, but not on x). The case of finding a sequence of polynomials
]pn (x)(nF0 uniformly approximating the sequence ]un (x)(nF0 can be obtained in
a similar way.

Let M»4max
A×3B

f (x , y), v(x)4Mx1 (y02Mx0 ) is the solution of the Cauchy
problem

v 84M ; v(x0 )4y0 .

Choose v0 (x) »4v(x).

4 - Uniform polynomial approximations

Define q0 (x) »4v0 (x)4Mx1 (y02Mx0 ). Compute h0*(x) »4q08 (x)
2 f (x , q0 (x) ). Approximate the function h0*(x), in A×, by a Bernstein polynomial

q0*(x). Approximate the function �
x0

x

e 2K(x2 t) q *0 (t) dt by a Bernstein polynomial

qA0 (x). Compute q1 (x) »4q0 (x)2qA0 (x).
Perform (nD1 the steps

i) Compute hn21* (x) »4qn218 (x)2 f (x , qn21 (x) ).
ii) Approximate the function hn21* (x), in A×, by a Bernstein polynomial

qn21* (x).
iii) Approximate the function �

x0

x

e 2K(x2 t) q *n21 (t) dt by a Bernstein polynomial
qAn21 (x).

iv) Compute qn (x) »4qn21 (x)2qAn21 (x).

Theorem 4.1 (Uniform approximation). Nqn (x)2y(x)N4o(1) as nKQ in A×.

P r o o f . We observe that Nq1 (x)2v1 (x)NEe uniformly in A×.
Let Nqn21 (x)2vn21 (x)NEe uniformly in A× as an inductive hypothesis.

NqAn21 (x)2�
x0

x

e 2K(x2 t) qn21* (t) dtNEe(4.1)
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holds by construction.

Nhn21* (x)2hn21 (x)NEe(4.2)

holds.
Indeed, one can prove it by using the Lipschitz condition, the approximation

property of derivatives preserved by Bernstein polynomials and an inductive pro-
cedure which shows that Nqn218 (x)2vn218 (x)NEe .

Moreover one can easily see that

�
x0

x

e 2K(x2 t) dtE
1

K
,(4.3)

and

Nq *n21 (x)2hn21* (x)NEe(4.4)

is true by construction.
We have

Nqn (x)2y(x)NGNqn (x)2vn (x)N1Ny(x)2vn (x)N ,

therefore, by Theorem (3.2), it is enough to show that Nqn (x)2vn (x)N4o(1) as
nKQ .

Adding and subtracting �
x0

x

e 2K(x2 t) q *n21 (t) dt and �
x0

x

e 2K(x2 t) h *n21 (t) dt in the
right hand side of

Nvn (x)2qn (x)N4Nvn21 (x)2�
x0

x

e 2K(x2 t) hn21 (t) dt2 (qn21 (x)2qAn21 (x) ) N,

thanks to inequalities (4.1)-(4.2)-(4.3)-(4.4), the proof is complete. r

R e m a r k 4.2. The rate of convergence of the method we have proposed in
this article is less than the original method that can be found in [2]. However it
is possible to show that, increasing in a suitable way the maximum degree mn of
the Bernstein polynomials involved in the approximation of qn4: qn

(mn ) , we can
obtain a rate of convergence of an arbitrary fixed order a (in particular more
than quadratic).

Recalling the rate of approximation of continuous functions by means of
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Bernstein polynomials, we can write:

NNvn2yN2Nqn
(mn )2yNN4 O g 1

kmn

h .

Then, assuming mn4n 2a , we get

NNvn2yN2Nqn
(mn )2yNN4 O (n 2a ) .

Working in the same way for lower polynomial approximations, and applying
the above described algorithm, we are sure that the sequences of polynomial ap-
proximations ]pn (x)(; ]qn (x)( uniformly approach y(x) in A× as nKQ .

5 - Monotone polynomial approximations

We show that, under suitable conditions, we are able to construct monotone
sequences.

T h e o r e m 5.1 (Monotonicity). There exists a sequence ]qn (x)( such that in
[x0 , x01a]

y(x)GRGqn (x)Gqn21 (x)GRGq0 (x) .

P r o o f . We observe that, since h0 (x)F0, the functions q0*(x) and, conse-
quently, qA0 (x) are forced to be positive. Therefore q1 (x)Gq0 (x).

Now, suppose that in [x0 , x01a]

10 ) q0*(x)Gh0*(x),

20 ) qA80 (x)G2K�
x0

x

e 2K(x2 t) q *0 (t) dt1q *0 (x).

We explicitly note that that condition 20 ) implies, by Theorem 2.1, that

qA0 (x)G�
x0

x

e 2K(x2 t) q *0 (t) dt.

We show, exploiting the above conditions and the lipshitzianity of f , that
q 81 (x)2 f (x , q1 (x) )F0.

q 81 (x)2 f (x , q1 (x) )4q 81 (x)2 f (x , q0 (x) )1 f (x , q0 (x) )2 f (x , q1 (x) )4

4q 80 (x)2qA80 (x)2 f (x , q0 (x) )1 f (x , q0 (x) )2 f (x , q1 (x) )4

4h *0 2qA80 (x)1 f (x , q0 (x) )2 f (x , q1 (x) )
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Fh *0 1K�
x0

x

e 2K(x2 t) q *0 (t) dt2q *0 (x)1 f (x , q0 (x) )2 f (x , q1 (x) )

FK�
x0

x

e 2K(x2 t) q *0 (t) dt1 f (x , q0 (x) )2 f (x , q1 (x) )

FKqA0 (x)1 f (x , q0 (x) )2 f (x , q1 (x) )4

4K(q0 (x)2q1 (x) )1 ( f (x , q0 (x) )2 f (x , q1 (x) ) )F0 .

Therefore, by Theorem 2.1, y(x)Gq1 (x).
Inductively, if in [x0 , x01a] the inequality q 8n (x)2 f (x , qn (x) )F0 holds, strai-

ghtforwardly we derive qn11 (x)Gqn (x). Moreover, if

1n ) qn*(x)Ghn*(x),

2n ) qA8n (x)G2K�
x0

x

e 2K(x2 t) q *n (t) dt1q *n (x),

it is easy to show that y(x)Gqn11 (x).
We stress that by adding suitable B-splines, it is always possible to construct

an uniformly approximating sequence for which the above conditions
hold. r

The machinery is almost the same for lower polynomial approximations.
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A b s t r a c t

We show an analytical method, based on Chaplygin’s differential inequalities theo-
rem, for the construction of sequences of polynomials uniformly approaching the solution
of the Cauchy problem for ordinary differential equations in the real line y 84 f (x , y);
y(x0 )4y0 , in a suitable neighborhood of the initial point x0 .

* * *


