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Kinetic formulation of linear stability

for steady detonation waves (**)

1 - Introduction

Aim of the present paper is to re-address the stability formulation of a detona-
tion wave within a discrete kinetic framework, and, at the same time, show the ca-
pability of a kinetic model to study the linear stability, according to the classical
treatment known in literature.

In a previous work [1], a mathematical procedure has been proposed in order
to solve detonation problems by means of kinetic models for chemically reacting
gases. Steady detonation waves in one-space dimension have been characterized
for gases with a two-way reaction of bimolecular [1] or autocatalytic type [2]. Mo-
reover, the sonic properties of the flow in thermodynamical equilibrium conditions
have been studied, evaluating the frozen and equilibrium sound speeds [2]. The
numerical values of steady wave solution have then been provided in paper [3], for
the said chemical reactions.

It should be underlined that papers [1] and [2] have shown that the treatment
of the detonation problem at a microscopic level, adopting the above mentioned ki-
netic models, provides many results which are in agreement with the ones of clas-
sical detonation theory, when they are transformed to the macroscopic scale, as
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pointed out in paper [3]. Furthermore, the microscopic analysis of the detonation
wave problem allows a better description and detail of the chemical reactions
which are fundamental to the detonation phenomenology.

As widely documented in experimental works, the detonation waves can indu-
ce non planar instabilities and turbulent reaction zones [4]. On the other hand, the
detonation stability and the evolution of the instabilities are not easily described
up to now; what concerns their exact and numerical treatment is essentially due
to Erpenbeck [5], and later on to Lee & Stewart [6]. For all these reasons, it
seems promising to deal with linear detonation stability from the point of view of
discrete velocity models which exhibit a sufficiently simple mathematical structure
[7], capable to perform the calculations discussed in the sequel.

In this paper, first of all, a class of discrete kinetic models for detonating ga-
ses with a quite general reversible chemical reaction is characterized, and the re-
sponses of the steady detonation solution to small rear boundary perturbations
are then investigated at a microscopic scale.

Within such class of models, the stability equations are derived for detonation
with a finite length reaction zone. At this end, a normal mode approach has been
applied to the non linear reactive Euler equations of the model, according to the
procedure outlined by Fickett [8], while the determinacy of the stability equations
has been assured according to the analysis proposed by Lee & Stewart [6]. Their
method for the calculation of linear detonation stability, which is simpler than the
Erpenbeck’s one [5] based on Laplace transforms, has here been adapted to the
kinetic approach.

The contents of the present paper are arranged in six sections.
In section 2, the relevant mathematical aspects of a discrete model which can

be adopted to describe the reactive flow are summarized, whereas the procedure
necessary to recover detonation wave solutions is briefly outlined in section 3.

Starting from section 4, the stability problem is dealt with. In particular, the
governing equations and related Rankine-Hugoniot conditions are transformed to
the wave coordinate and then linearized through a normal mode expansion about
the steady solution. After a further transformation to the steady reaction coordi-
nate, the stability equations and suitable initial data are deduced in non closed
form.

In section 5, an acoustic analysis is performed at the end of the reaction zone,
and a radiation condition is imposed [6], in order to derive the dispersion relation
of the normal modes. The stability equations with related initial data are then
given in a closed form and their determinacy assured.

At last, in section 6, the stability problem is formulated for the general class of
kinetic models of section 2, and a criterion for linear detonation stability is stated.
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Concluding this section, it may be pertinent to underline that several math-
ematical aspects of the analysis carried on in this work are essentially based on
the results obtained in a paper quoted [9].

2 - A class of discrete kinetic models for reacting gases

In this section, the main features of a class of discrete models for reacting ga-
ses are presented in a general form. Particular attention is devoted to the charac-
terization of the collision invariant spaces and to both Maxwellian and thermo-
dynamical equilibrium states, which are crucial to define the detonation wave
solution.

Consider a gas mixture of r1s species A1 , R , Ar , B1 , R , Bs , r , s�N , and
let M denote the gas species, i.e., M4A1 , R , Ar , B1 , R , Bs . Each gas species is
identified by its molecular mass mM and bond energy e M . Assume that the parti-
cles of each gas species M move in the space with velocities belonging to a pre-
scribed finite set of p selected velocities ]vi

M : i41, R , p(, vi
M being the velocity

of particles of M-species moving along the i-direction of the chosen geometry of
the model. Elastic collisions preserve mass, momentum and kinetic energy, and
result in a change of velocities only. Besides elastic collisions, the gas particles
can interact according to the reversible chemical reaction

A11R1Ar 4B11R1Bs .(1)

Inelastic collisions preserve mass, momentum and total energy (kinetic and bond),
and result in a rearrangement of masses and energies.

Let Ni
M (x , t), x�R3 , t�R1 , denote the distribution function of particles with

velocity vi
M . The microscopic state of the gas is given by the knowledge of the

p(r1s) functions Ni
M , namely, the vector function N ,

N4 (N1
A1 , R , Np

A1 , R , N1
Ar , R , Np

Ar , N1
B1 , R , Np

B1 , R , N1
Bs , R , Np

Bs ) .

In order to study one-dimensional detonation stability, the kinetic equations and
the governing equations of the model will be written in one space dimension. The
distribution functions will then be denoted by Ni

M (x , t), x�R , t�R1 .

Kinetic equations

It is known that the time-space evolution of Ni
M (x , t) result from gains and

losses of particles with velocity vi
M during elastic scattering and from sources and

sinks due to inelastic interactions. The behaviour of the functions Ni
M is specified

by the kinetic equations of the model, which constitute an hyperbolic set of semi-
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linear partial differential equations of type

g ¯

¯t
1vi

M ¯

¯x
h Ni

M4Qi
M (N)1R i

M (N) .(2)

In Eq. (2), vi
M is the component of vi

M along the x-direction, and Qi
M (N), R i

M (N)
represent the nonlinear one-dimensional collision terms associated to elastic scat-
tering and inelastic interactions, respectively. The analytical form of Qi

M (N) and
R i

M (N) depends on the geometry of the chosen model, whereas their definition
through the balance between gain and loss terms, as well as source and sink ter-
ms, is already known in the literature (see [7], [9]). With the vector fun-
ctions

Q4]Qi
M(i41, R , p

M4A1 , R , Ar , B1 , R , Bs ,

R4]R i
M(i41, R , p

M4A1 , R , Ar , B1 , R , Bs ,

the kinetic equations (2) can be written in matrix form

¯N

¯t
1A N4Q(N)1R(N) ,(3)

where A is a square matrix of order p(r1s) with non-zero elements Aii

4vi
M ¯

¯x
.

Macroscopic variables

In discrete kinetic theory, the macroscopic description of the gas is achieved
by definition of suitable mean quantities [7]. For the models here considered, such
quantities can be expressed by

aY , Nb4!
M
!

i41

p

Y i
M Ni

M ,(4)

where Y , defined by

Y4 (Y 1
A1 , R , Y p

A1 , R , Y 1
Ar , R , Y p

Ar , Y 1
B1 , R , Y p

B1 , R , Y 1
Bs , R , Y p

Bs ) ,

is a vector function whose p(r1s) components depend on the selected velocities,
and aQ , Qb represents the inner product in Rp(r1s) .

In particular, the mass density of M-species r M , total mass density r , momen-
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tum Q along the x-direction, kinetic energy T and total energy E have the
form

r M4

Q4

T4

E4

mM !
i41

p

Ni
M , r4!

M
r M ,

!
M

mM !
i41

p

Ni
M vi

M ,

!
M
!

i41

p 1

2
mM Nvi

MN2 Ni
M ,

4!
M
!

i41

p g 1

2
mM Nvi

MN21e Mh Ni
M ,

(5)

as it turns out from definition (4), when one of the following five expressions for Y

is considered, respectively:

Y4]Y i
M 8 (i41, R , p

M 84A1 , R , Ar , B1 , R , Bs ,(i)

where Y i
M 84mM if M 84M and Y i

M 840 if M 8cM , i41, R , p;

Y4]Y i
M(i41, R , p

M4A1 , R , Ar , B1 , R , Bs ,(ii)

where Y i
M4mM , i41, R , p;

Y4]mM vi
M(i41, R , p

M4A1 , R , Ar , B1 , R , Bs ;(iii)

Y4 m 1

2
mM Nvi

MN2n
i41, R , p

M4A1 , R , Ar , B1 , R , Bs

;(iv)

Y4 m 1

2
mM Nvi

MN21e Mn
i41, R , p

M4A1 , R , Ar , B1 , R , Bs

.(v)

Rate equation

The chemical composition of the gas is specified by the progress variable of
the model, l , defined as the number density of a given gas species, which results
to be a product of the forward reaction. Without loss of generality, l is here given
by the number density of B1-species, that is

l(x , t)4 !
i41

p

Ni
B1 (x , t) , x�R , tF0 ,(6)
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or, equivalently, in macroscopic form,

l(x , t)4
r B1

mB1

(x , t) ,(7)

where r B1
4mB1

!
i41

p

Ni
B1 is the mass density of B1 .

According to its meaning, the progress variable l increases from 0 , when the
B1-species is absent, to the value l e when the reaction reaches the chemical equili-
brium. The behaviour of l is justified by the fact that the gas tends towards the
chemical equilibrium in a non reversible way. Such gas evolution is assured by the
existence of an H- functional which exhibits a monotone non increasing behaviour
in time.

If one takes into account definition (6) of l and kinetic equations (2) for the B1-
species, the time-space evolution of l is described by

dl

dt
4 !

i41

p

(Qi
B1 (N)1R i

B1 (N) ) ,(8)

where d/dt is the Lagrangian derivative. Equation (8) is the rate equation of the
model.

Due to the explicit expressions of the collision terms Qi
M (N) and R(N)i

M , Eq.
(8) can be rearranged in the usual form in chemical kinetics [9], that is

dl

dt
4rf2rb ,(9)

where rf4rf (r A1
, R , r Ar

; n f ), rb4rb (mB1
l , r B2

, R , r Bs
; n b ) denote the for-

ward and backward reaction rates depending on the mass densities of the related
reactants, and on constant reactive collision frequencies n f , n b . The vanishing of
the right hand-side of Eq. (9) determines the chemical equilibrium condition of the
model

rf (r A1
, R , r Ar

; n f )4rb (mB1
l , r B2

, R , r Bs
; n b )

corresponding to equal rates of production of species A1 , R , Ar and B1 , R , Bs .
Its microscopic formulation, recalling expression (5) of r M , is

rf (N1
A1 , R , Np

Ar ; n f )4rb (N1
B1 , R , Np

Bs ; n b ) .(10)

Collision invariants

According to the theory developped in [9], two types of collision invariants can
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be defined for the class of models previously introduced: the mechanical collision
invariants associated to elastic scattering only, necessary to define the Maxwel-
lian equilibrium state, and the mechanical-reactive collision invariants associated
to both elastic and inelastic collisions, necessary to deduce the conservation equa-
tions of the model. For sake of clarity, some preliminaries will be recalled.

D e f i n i t i o n 1. Y is a mechanical collision invariant iff

aY , Q(N)b40 .(11)

The set of all mechanical collision invariants is denoted by F. r

D e f i n i t i o n 2. Y is a mechanical-reactive collision invariant iff

aY , Q(N)b40 , aY , R(N)b40 .(12)

The set of all mechanical-reactive collision invariants is denoted by M. r

For each Y� F, the corresponding macroscopic variable aY , Nb is preserved
during elastic collisions, whereas for each Y� M, the corresponding macroscopic
variable EY , ND is preserved during both elastic collisions and chemical inte-
ractions. Therefore, the elements Y� M determine the conservation equations of
the model.

On the other hand, the elements Y� F define the Maxwellian state of mechani-
cal equilibrium, as it will be clear when the thermodynamical equilibrium state
will be dealt with.

P r o p o s i t i o n 1. The sets F and M are linear subspaces of Rp(r1s) with
M % F. The dimensions q of F and qR of M are such that

1GqREqGp(r1s) ,

and

qR4q21 . r

This proposition is proven in paper [9].

Basis of M and F

Let the set BM ,

BM4]Y (1) , R , Y (q21)( ,



178 M. PANDOLFI BIANCHI and A. J. SOARES [8]

denote a basis of M and Y (q) be a vector function in F which is not in M. Thanks
to Proposition 1, it is possible to consider the set BF ,

BF4]Y (1) , R , Y (q21) , Y (q)( , BM% BF ,(13)

as a basis of F.
According to definition (4), Y (q) determines a macroscopic variable which is

preserved during elastic collisions only. In particular, one can choose

Y (q)4][Y (q) ]i
M(i41, R , p

M4A1 , R , Ar , B1 , R , Bs ,(14)

where [Y (q) ]i
B141 and [Y (q) ]i

M40 for McB1 . The corresponding macroscopic
variable is

aY (q) , Nb4 !
i41

p

Ni
B1 ,

which identifies the progress variable l introduced in Eq. (6).

Conservation equations

The following equations

o ¯N

¯t
, Y (k)p1 aA N , Y (k) b40 , Y (k)� BM , k41, R , q21 ,(15)

constitute a set of independent conservation equations, obtained from Eq. (3) and
conditions (12). Each of them corresponds to the conservation of the macroscopic
variable aN , Y (k) b as, in particular, total mass density, momentum, and total
energy.

The macroscopic evolution of the gas is characterized by means of the conser-
vation equations (15) plus the rate equation (9), which can be rewritten as

o ¯N

¯t
, Y (q)p1 aA N , Y (q)b4rf (N1

A1 , R , Np
Ar ; n f )2rb (N1

B1 , R , Np
Bs ; n b ) .(16)

The q equations (15), (16) do not form, in general, a closed set, since p(r1s) un-
known distribution functions Ni

M are involved. However, such a set becomes clo-
sed when the unknowns are referred to a particular state of the gas, the Maxwel-
lian state, characterized by q parameters only, as it will be clarified below.

Thermodynamical equilibrium

The complete thermodynamical equilibrium state of a reacting gas implies bo-
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th mechanical and chemical equilibrium. The mechanical equilibrium is reached
much faster than the chemical one because the relaxation time of elastic interac-
tions is small when compared with the relaxation time of the chemical reaction
[10]. For this reason, the mechanical equilibrium is regarded as a form of partial
equilibrium, called Maxwellian, from which the gas can only evolve to a state of
complete thermodynamical equilibrium.

The Maxwellian and thermodynamical equilibrium states of the gas are cha-
racterized through the H-theorem which provides microscopic conditions for the
distribution functions N×i

M of Maxwellian equilibrium and NAi
M of thermodynamical

equilibrium, as defined below.
The H-theorem, related to a gas mixture undergoing chemical reversible reac-

tion of type (1), has been formulated and proven in Ref. [9].

Maxwellian state

Introduce the vector function logN�Rp(r1s) , given by

log N4 (log N1
A1 , R , log Np

Ar , log N1
B1 , R , log Np

Bs ) .

The Maxwellian state is such that

N4N× iff log N� F ,(17)

or, equivalently,

Ni
M4N×i

M iff log Ni
M4 !

j41

q

dj [Y ( j) ]i
M , i41, R , p ,

since F is spanned by BF (see Eq. (13)). Coefficients dj4dj (x , t), j41, R , q , are
the so called Maxwellian parameters of the model and [Y ( j) ]i

M , i41, R , p , M
4A1 , R , Ar , B1 , R , Bs , are the components of Y ( j) .

Hence, the Maxwellian state of the gas is characterized by

N×i
M4exp g!

j41

q

dj [Y ( j) ]i
Mh .(18)

All macroscopic variables of such state can then be determined in terms of the
Maxwellian parameters. For mathematical convenience, d1 , R , dq are replaced by
z14exp d1 , R , zq4exp dq . In the sequel, z1 (x , t), R , zq (x , t) will be referred to
as the Maxwellian parameters of the model. Moreover, zq is conventionally set
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equal to zero when B1-species is absent. Expressions (18) become

N×i
M4 »

j41

q

(zj )[Y ( j) ]i
M

,(18a)

and, in particular, the progress variable l in the Maxwellian state is given
by

l4 !
i41

p

»
j41

q

(zj )[Y ( j) ]i
B1 .(19)

Inserting expressions (14) into Eq. (19), one gets

l4zq !
i41

p

»
j41

q21

(zj )[Y ( j) ]i
B1 .(20)

Observe that the vanishing of the progress variable l implies zq40.

Thermodynamical equilibrium state

A state of complete thermodynamical equilibrium is such that

N4NA iff log N� M ,

or, equivalently,

Ni
M4NAi

M iff Ni
M4N×i

M and rf (N×1
A1 , R , N×p

Ar ; n f )4rb (N×1
B1 , R , N×p

Bs ; n b ) .(21)

In terms of the Maxwellian parameters, taking into account expressions (18a), the
microscopic chemical equilibrium condition can be rewritten as

rf (z1 , R , zq ; n f )4rb (z1 , R , zq ; n b ) .(22)

Reactive Euler equations

The reactive Euler equations of the model are the q21 conservation equa-
tions (15) plus the rate equation (16), referred to the Maxwellian state. Accordin-
gly, insert expressions (18a), (20) into Eqs. (15), (16), and rearrange the time and
space derivatives in terms of the Maxwellian parameters z1 , R , zq . The resulting
equations, referred to the laboratory frame (x l , t) assume the matrix form

B(z)
¯z

¯t
1A(z)

¯z

¯x l
4c(z) ,(23)
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where z4 [z1 Rzq ]T denotes the state vector of the model, z4z(x l , t), the q-squa-
re matrices B and A are known first order homogenous functions of z , since the
model has been reduced to one-space dimension, as already said at the beginning
of the present section, and the vector c has components

c14R4cq2140 , cq4rf (z1 , R , zq ; n f )2rb (z1 , R , zq ; n b ) .

The expicit form of B , A and c depends on the chosen kinetic model. Note that
system (23) results to be hyperbolic, as it has been proven in Ref. [9].

3 - Detonation wave solutions

The one-dimensional steady detonation with a two-way chemical reaction is
well described by the so called ZND model, due to Zeldovich, von Neumann and
Doering, extended to reversible reactions (see Ref. [8]). The structure of the deto-
nation wave is represented in Fig. 1: the lead element is a non-reactive shock wa-
ve propagating with constant velocity, followed by a finite reaction zone, connec-
ting the von Newmann state N to the final equilibrium state S; all intermediate
states of partial reaction are represented by R , and the initial state, ahead of the
wave, by I; xB refers to the rear boundary, xS , xR and x0 to the final, intermediate
and initial states, respectively, and D is the constant shock wave velocity. A di-
screte kinetic approach to the steady detonation problem, based on ZND descrip-
tion, may be realized within the class of discrete models proposed in section 2.

The governing equations of the reactive flow, referred to the laboratory frame,
are given by the matrix equation (23). In order to get the steady detonation sol-
utions, Eq. (23) is first transformed to the steady frame attached to the shock
wave.

Introduce the transformation x *4x l2D l t , t4 t so that

¯

¯t
42D l ¯

¯x *
1

¯

¯t
,

¯

¯x l
4

¯

¯x *
.

Recalling that in the steady frame
¯

¯t
40 and the partial derivative with respect

to x l becomes ordinary with respect to x *, the (q-1) conservation equations, co-
ming from Eq. (23), assume the form

[D l K(z)1L(z) ]
dz

dx *
40 .(24)

In Eq. (24) the state vector is now z4z(x *), K(z) and L(z) are (q21)3q matri-
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ces obtained from 2B(z) and A(z), respectively, extracting the first (q21) rows.
Thus the matrices K and L are also first order homogenous functions of z .

Across the shock wave, the unknown z is related by the q21 Rankine-Hugo-
niot conditions which express the conservation of suitable macroscopic quantities
between the states immediately ahead and behind the shock. These jump condi-
tions are deduced from the conservation equations (24), by integration between
the initial state I , ahead of the wave, and an arbitrary von Newmann state N , in-
termediate state R , or final state S , behind. Their matrix form, with the detona-
tion velocity D l as parameter, is

[D l K(z)1L(z) ] z4 D l w0 ,(25)

where w0 is a (q21)-component vector depending on the z-value, z0 , at the initial
state I and detonation velocity D l , i. e.

w04K(z0 ) z01
1

D l
L(z0 ) z0 .

The Rankine-Hugoniot conditions (25) are fundamental to the description of the
steady detonation solution, once a pertinent model of section 2 has been selected.
In fact, the knowledge of the microscopic steady solution of Eq. (25), say z*, im-
plies that all states N , R , S can be computed for every admissible detonation vel-
ocity D l . The Hugoniot diagram can then be plotted, exhibiting different Rayleigh
lines through the initial state I, and different detonation Hugoniot curves of no
reaction, partial reaction and equilibrium states.

The following flow can then be characterized, for assigned rear boundary con-
dition, and the wave thickness computed, as well, for assigned initial condition at
the von Neumann state.

In particular, the structure of the steady detonation wave solutions has been
determined for bimolecular [2] and autocatalytic [3] reactions, as already mentio-
ned in the introduction.

4 - Linear detonation stability problem

The detonation stability is classically studied assuming that a small rear boun-
dary perturbation, instantaneously assigned, induces a distortion on the steady
planar shock wave, whereas subsequent rear oscillations do not affect the shock
wave [6]. The reactive Euler equations (23) and related shock conditions (25) are
linearized through a normal mode expansion about the steady detonation solution.
The linearized equations define the evolution of the responses of the system to the
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above mentioned perturbations. The resulting stability problem is formulated in
the wave coordinate and afterwards in the more convenient steady reaction
coordinate.

4.1 - Formulation in the wave coordinate

The state variables will be first referred to the wave coordinate, which measu-
res the distance from the perturbed shock. Let c(t) denote the position of the
perturbed shock wave,

c(t)4 D l t1c l (t) ,(26)

where D l is the constant velocity of the unperturbed shock relative to the labora-
tory frame, and c l (t) the distortion on the position of the shock wave. The pertur-
bed shock velocity is then

D(t)4 D l1
dc l

dt
(t) .(27)

Let x denote the wave coordinate in the frame attached to the perturbed shock
wave; the new coordinates are

x4x l2c(t) , t4 t ,(28)

and the space and time derivatives become ¯/¯x and ¯/¯t2 (D l1dc l /dt) ¯/¯x , re-
spectively. Therefore, Eqs. (23), (25) transform to

B(z)
¯z

¯t
1 kA(z)2 gD l1

dc l

dt
h B(z)l ¯z

¯x
4c(z) ,(29)

and

kgD l1
dc l

dt
(t)h K(z)1L(z)l z4 gD l1

dc l

dt
(t)h w0 ,(30)

where B , A , c K , L are here written in the wave coordinate (28).
Equations (29)-(30) will be now linearized through a normal mode expansion

about the known steady solution z*(x). According to paper [11], assume that all
perturbations of the state vector components have an exponential time dependen-
ce, so that approximate solutions are sought in the form

z(x , t)4z*(x)1exp (at) z(x) , c l (t)4cexp (at) , a , c�C2]0( ,(31)
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where the sign of the real part of a determines the stability behaviour of the stea-
dy solution.

Hereinafter the starred quantities denote the steady character of the known
solution, while the bar refers to the disturbance. From expansions (31) it
follows

¯z

¯t
4

¯z

¯x
4

dc l

dt
4

a exp (at) z

dz*

dx
1exp (at)

dz

dx

ac exp (at) ,

(32)

where
dz*

dx
is a known steady vector function. Taking into account the normal

modes (31) and neglecting the nonlinear terms with respect to z, the coefficient
matrices B , A , c , K , L of Eqs. (29)-(30) can be expanded in the form

B(z)4B *(z*)1exp (at) B1 (z*) zrT

A(z)4A *(z*)1exp (at) A1 (z*) zrT(33)

c(z)4c*(z*)1exp (at) C1 (z*) z

K(z)4K *(z*)1exp (at) K1 (z*) zrT

L(z)4L *(z*)1exp (at) L1 (z*) zrT ,
(34)

where the starred matrices simply denote the corresponding ones evaluated in
the steady state, B1 , A1 , C1 , K1 , L1 are again constant matrices resulting from
the linearization process and rT is a constant q-row vector suitable to adjust the
dimension of the perturbation terms in the above matrix expansions. Note that rT

depends on the chosen model.
Moreover, in expressions (33) B1 , A1 and C1 are q-square matrices, whereas in

expressions (34) K1 and L1 are (q21)3q matrices.

Linear stability equations in the wave coordinate

Inserting expansions (31)-(33) in Eqs. (29), the linearized Euler equations are
deduced as

(A *2D l B *)
dz

dx
1 krT dz*

dx
(A12D l B1 )1aB *2C1l z2acB *

dz*

dx
40 .(35)
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Equations (35), which give the space evolution of the disturbances z(x) behind the
shock, are the linear stability equations in the wave coordinate.

Initial conditions in the wave coordinate

Inserting expansions (31), (34) in Eqs. (30), the linearized Rankine-Hugoniot
conditions are deduced in the form

[D l K *1L *1rT z*(D l K11L1 ) ] z4ac(2K * z*1w0 ) .(36)

The perturbed Rankine-Hugoniot conditions (36) relate the value of the distur-
bances z in the reaction zone to their zero value at the initial state. These jump re-
lations, when specifically referred to the von Neumann state, namely

zVN (t)4z*VN1exp (at) zVN ,

provide q21 initial conditions for the q differential equations (35), i.e.

[D l K *VN1L *VN1rT z*VN (D l K11L1 )VN ] zVN4ac(2K *VN z*VN1w0 ) .(36a)

The further initial condition to be joined to Eq. (35) , as justified in Remark 1, re-
sults to be

(zq )VN40 .(36b)

Thus, the q initial conditions (36a, b) at the von Neumann state can be rewritten in
compact form

PzVN4ach ,(37)

with P4P(z*VN ) a q-square matrix and h4h(z*VN , w0 ) a q-component vector, as
detailed in Remark 2.

In conclusion, the linear stability problem is formulated, in the wave coordina-
te, in terms of the complex disturbance z and growth rate a , by means of the in-
itial value problem (35), (37).

On the other hand, it is convenient to transform such a problem to the steady
reaction coordinate, since the steady states in the reaction zone are characterized
for each value of the progress variable l. This is the object of the next
subsection.

R e m a r k 1. Remember that at the von Neumann state the chemical reaction
has not yet started so that the progress variable l there is still zero

l(zVN )40 .
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Therefore expression (20), referred to the von Neumann state, gives

(zq )VN40 ,

and, in terms of the normal mode expansion (31),

(z *q )VN1exp (at)(zq )VN40 .

Since (z *q )VN40, Eq. (36b) immediatly follows. r

R e m a r k 2. In Eq. (37), P is formed by the (q21)3q matrix [D l K *VN1L *VN

1rT z*VN (D l K11L1 )VN ] augmented by the row [0R01], while h is formed by the
(q21)-component vector 2K *VN z*VN1w0 augmented by the element 0. r

4.2 - Formulation in the steady reaction coordinate

For a single chemical reaction of type (1), the progress variable l� [0 , l e ] is
monotonically increasing with respect to the distance from the shock front in the
reaction zone. For this reason, it is possible to avoid the explicit x-dependence, re-
placing the wave coordinate x by the steady reaction coordinate s ,

s4l*(x) , s� [0 , l e*] .(38)

The space derivative becomes

d

dx
4

r *

vB1
*

d

ds
,(39)

where v
B1
* is the velocity of B1-particles and r *4r *f (z1 , R , zq ; n f )

2r *b (z1 , R , zq ; n b ) the reaction rate referred to the steady state. For mathemat-
ical convenience, the perturbation z will be normalized with respect to its value at
the von Neumann state.

Normalization

Let d denote the q-component vector

d4 [1R10]T ,
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and S4S(zVN ) the q-diagonal matrix

S4

C
`
`
`
`
`
D

S11

0

0

0

0

0

S22

0

0

0

0

0

S33

0

0

R

R

R

R

R

R

0

0

0

Sq21q21

0

0

0

0

0

1

E
`
`
`
`
`
F

such that

Sd4P 21 h ,

or, equivalently,

Sd4
1

ac
zVN ,

since, from Eq. (37), h4
1

ac
PzVN . The particular structure of S and d turns out

from Eq. (36b). Observe that S is non singular as it follows from the assumption
that all perturbations of the state vector z have an exponential time dependence.

The perturbation z normalized with respect to the von Neumann state can be
expressed by the q-component vector g given by

g4
1

c
S 21 z .(40)

Note that the normalization (40) permits to avoid the dependence on c in the li-
nearized Euler equations (35). The value of g at the von Neumann state is
simply

gVN4ad .(41)

Linear stability equations in the steady reaction coordinate

The linearized Euler equations (35), with the reaction coordinate (38) and nor-
malization (40), become

dg

ds
1 [aF *(z*; D l )1G *(z*; D l ) ] g1ay*(z*; D l )40 ,(42)
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where the coefficient matrices depend now on the reaction coordinate s , and are
given by

F *4
vB1

*

r *
S 21 (A *2D l B *)21 B * S

G *4
vB1

*

r *
S 21 (A *2D l B *)21y r *

vB1

rT dz*

ds
(A12D l B1 )2C1z S

y*42S 21 (A *2D l B *)21 B *
dz*

ds
.

Initial conditions in the steady reaction coordinate

Referring the initial conditions (37) to the reaction coordinate (38) and norma-
lization (40), one gets

g(0)4ad ,(43)

since s40 at the von Neumann state. Equations (43) are the initial conditions for
Eqs. (42) in the reaction coordinate.

To conclude this section, let underline, once more, that the linear stability pro-
blem is formulated in the steady reaction coordinate s by means of the initial
value problem (42)-(43), in terms of the complex disturbance g and growth rate a.

5 - Determinacy of the stability problem

The initial-value problem (42)-(43) provides the s-evolution of the disturbances
g in the reaction zone, when the perturbation parameter a is assigned. Since a
cannot be known a priori, this problem is, in general, not closed. Its determinacy
is assured by an algebraic condition which constitutes the dispersion relation of
the normal mode expansions (31).

As already mentioned at the begining of section 4, such a constraint is derived
assuming that the disturbances g are not affected by subsequent rear perturba-
tions, travelling towards the shock wave. This assumption is translated into a ra-
diation condition through an acoustic analysis at the end of the reaction zone, as
proposed by Lee & Stewart [6].

5.1 - Acoustics at the end of the reaction zone

The acoustic analysis is performed at the end of the reaction zone, where the
gas flow is nearly in thermodynamical equilibrium conditions. Hence the reactive
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Euler equations (23) are linearized using the approximation

z(x , t)4z*e 1zac (x , t) ,(44)

where z*e is the equilibrium steady solution to the Rankine-Hugoniot conditions
(25) referred to the final state F, and zac a small acoustic perturbation.

Acoustic equations

Insert expansion (44) in Eq. (23) and neglect the non linear terms with respect
to zac. The coefficient matrices B , A , c can be then expanded in the form

B(z)4B *e (z*e )1B1 (z*e ) zac rT

A(z)4A *e (z*e )1A1 (z*e ) zac rT(45)

c(z)4c*e (z*e )1C1 (z*e ) zac ,

where, as already mentioned, B1 , A1 , C1 are q-square matrices and rT4 [1R1] is
a q-row vector; moreover c*e (z*e )40 since z*e is the thermodynamical equilibrium
steady solution. The reactive Euler equations (23) can be written as a set of par-
tial linear differential equations with constant coefficients

¯zac

¯t
1E *e

¯zac

¯x
1C *e zac40 ,(46)

where

E *e 4 (B *e )21 A *e , C *e 42 (B *e )21 C1 (z*e ) .(47)

The system (46), as shown in [9], results to be hyperbolic, thus it can be transfor-
med into the canonical form, see the book [12], diagonalizing the matrix E *e throu-
gh a similarity transformation R 21 E *e R , where R is the matrix whose columns
are the eigenvectors of E *e . The resulting equations are

¯vac

¯t
1H *e

¯vac

¯x
1J *e vac40 ,(48)

where

vac4R 21 zac , H *e 4R 21 E *e R , J *e 4R 21 C *e R .

Equations (48) are the acoustic equations of the model.
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Acoustic waves

Acoustic waves are achieved by means of a well known procedure, which is he-
re applied. Normal mode solutions to (48) are searched in the form

vac (x , t)4v(k) exp [ikx2g(k) t] ,(49)

where i4k21, v(k) is a constant vector, the parameter k is assumed to be real
and g(k) has to be chosen in a fashion that (49) satisfies Eq. (48). Non trivial sol-
utions of (48) correspond to the following condition of q-degree with respect to
g(k)

det (ikH *e 2g(k) I1J *e )40 ,(50)

which constitutes the dispersion relation of the normal modes (49). The q roots of
Eq. (50), g 1 (k), R , g q (k), lead to the q elementary solutions to Eq. (48),
vac

j (x , t ; k), namely

vac
j (x , t ; k)4vj (k) exp [ikx2g j (k) t] , j41, R , q .(51)

Observe that each coefficient vector vj (k) is determined in a fashion that the vec-
tor function (51) satisfies Eq. (48).

A more convenient form of vac
j is

(52) vac
j (x, t; k)4vj (k) exp [i(kx2Im g j (k) t)] exp (2Re g j (k) t) , j41,R, q ,

which permits to identify the wave number k , frequency Im g j (k), phase
kx2Im g j (k) t and phase velocity [ Im g j (k) ] /k.

Thus, a formal solution to Eq. (48), vac (x , t), is obtained by Fourier superposi-
tion of the dispersive wave solutions

vac (x , t ; k)4 !
j41

q

vac
j (x , t ; k) , k�R .(53)

Radiation condition

The afore-mentioned radiation condition means that no acoustic waves emana-
te from the rear boundary to interfere with the perturbed solution. In other wor-
ds, the dispersive acoustic wave does not depend on the forward waves travelling
towards the shock. Denote the forward phase velocity by [Im g 1 ] /k and the corre-
sponding wave by vac

1 ; the above requirement sets

vac
1 (x , t ; k)40 , k�R .(54)
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The wave solution vac (x , t ; k), given by expression (53) with condition (54), is
then represented, at most, by q21 linearly independent elementary solutions
vac

2 (x , t ; k), R , vac
q (x , t ; k), defined by Eqs. (51). The same happens when one

considers the Fourier superposition vac (x , t); therefore, the set

]vac (x , t), vac
2 (x , t ; k)R , vac

q (x , t ; k)(

is linearly dependent. Accordingly the matrix, whose columns are the vectors of
the above written set, is singular, namely

det [vac (x , t) vac
2 (x , t ; k) R vac

q (x , t ; k) ]40 ,(55)

which constitutes an homogeneous algebraic constraint corresponding to the ra-
diation condition.

5.2 - Dispersion relation for the stability equations

The above results, and in particular Eq. (55), will be now converted into the
terminology of the stability problem. At this end, express the acoustic perturba-
tion wave vac (x , t) in terms of the growth rate a and disturbance z, through the
equality

vac (x , t)4exp (at) z(x) .(56)

Moreover, express the acoustic wave number k in terms of a , identifying a normal
mode, say vac

2 (x , t ; k), as

v2 (k) exp [ikx2g 2 (k) t]4v2 (k) exp (ikx) exp (at) .

It easily follows

a42 g 2 (k) .(57)

The algebraic constraint (55), with positions (56), (57) and normalization (40)
of z, can be now converted into the stability nomenclature; the following manipu-
lations on the columns of the matrix which figures in Eq. (55) will be perfor-
med:

l substitute the first column by exp (at) z(x);

l replace the wave coordinate x by the steady reaction coordinate s , by
means of (38);
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l replace z by the normalized disturbance g , using Eq. (40), i.e.

z4cSg ;

l express k as a function of a in all columns but the first one, by means of
(57).

After that, condition (55) turns out to be equivalent to an algebraic equation
which hereinafter will be indicated by

L (a , g)40 .(58)

Observe that Eq. (58) holds at the equilibrium final state at the end of the reac-
tion zone, where s4l*e .

Equation (58) is the required dispersion relation associated to the normal mode
expansions (31), needed to close the stability initial value problem (42)-(43).

6 - Conclusion

The linear stability problem of the steady detonation is stated in a closed form,
in terms of the complex disturbance g and growth rate a , by means of a set of or-
dinary differential equations with non constant coefficients

dg

ds
1aF * g1G * g1ay*40 , s� (0 , l*e ) ,

with initial data assigned at the von Neumann state

g4ad , for s40 ,

and dispersion relation

L (a , g)40 , for s4l*e .

Therefore, since g and a are complex, the problem consists of 2q differential
equations subjected to 2q shock conditions at s40 plus two conditions at the equili-
brium s4l*e . Such last conditions must be regarded as the ones which allow to eva-
luate the complex number a.

The knowledge of a finally gives the responses of the steady detonation to the ap-
plied rear perturbations. In fact, the asymptotic behaviour of the perturbed detona-
tion solution is determined by Re a , since the disturbances are given by
cexp (at) Sg , as it immediately follows from Eqs. (31), (40).
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The following criterion, based on the well known Lyapunov criterion, can so be
enunciated.

If the real part of a is negative, then the disturbances asymptotically decay
in time and the steady solution is stable; otherwise the steady detonation sol-
ution is unstable.

The linear stability problem, as above formulated, formally recovers the classi-
cal one treated in literature by Lee & Stewart [6]; the unknown vector g here de-
fines the disturbance of the microscopic state of the detonating gas.

In conclusion, the present paper should be regarded as a completion of the ap-
proach to steady detonation by means of discrete kinetic theory. It constitutes the
analytical background for the numerical treatment of one-dimensional linear deto-
nation stability, once the appropriate discrete model, describing the steady deto-
nation wave structure, has been chosen. In other words, the detonation stability
can actually be discussed in the framework of the extended kinetic theory, ap-
plying the general procedure here proposed, which constitutes the mathematical
tool necessary to future applications. In fact, starting from the steady detonation
solutions, numerically provided in papers [2] and [3], one can adapt, step by step,
all the rather cumbersome items of sections 4 and 5 to a particular kinetic model.
Thus, the stability behaviour of a detonating gas mixture with either bimolecular
or autocatalytic reaction, needs to be studied, separately, in a forthcoming work.

Figure 1 - ZND model-detonation with one reversible reaction.
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A b s t r a c t

Within discrete kinetic theory extended to chemically reacting gases, the linear stabi-
lity problem is formulated for one-dimensional steady detonation waves with finite reac-
tion zone. The stability equations are deduced in a general form with reference to a class
of discrete kinetic models for several gases and one reversible chemical reaction. An acou-
stic analysis is performed at the thermodynamical equilibrium and a radiation condi-
tion is assumed in order to deduce the dispersion relation needed to make the stability
equations solvable.
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