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1 - Introduction

In integrated pest control, mathematical models are often used for tactical de-
cision making, for example, whether to apply a pest control method on a popula-
tion defined in time and space. A second class of models are those developed for
strategic decision making such as the evaluation of control strategies or planning
and priority setting in research programmes. These models make predictions in
an analytical and qualitative way. There are infact two secondary branches emer-
ging from the analytical limb of the modelling tree (Getz and Gutierrez 1982). The
first of these branches contains those models designed to explore various popula-
tion processes such as density-dependent interactions in prey-predator and host-
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parasite systems (Beddington et al. 1975, May 1973), the interaction of competing
species and the many questions in epidemiology (Anderson and May 1991). The
second of these branches contains those models designed to directly address ma-
nagement type questions such as optimal pesticide application schedules (Regev et
al. 1983), optimal harvesting strategies (Regev and Rieder 1989, Regev et al.
1998). In our work we address both issues in relation to the management of vec-
tor-borne disease. The purpose of this paper is to develop an analytical model for
strategic decision making and to show possible areas of application. We rely on a
case study of a three-host tick (e.g. Rhipicephalus appendiculatus and Am-
blyomma variegatum) and the interactions with its hosts. It is a three-host tick
because it attaches onto a host three times in its lifetime. First as a larva, then as
a nymph and finally as an adult (Kettle 1990). The majority of hard ticks (Ixodi-
dae) have this life cycle and are referred to as three-host ticks. The model is deve-
loped for this group first, because it can easily be adjusted for one- or two-host
ticks and secondly, because these are the most abundant and widely distributed
and economically important species of cattle disease vectors throughout east, cen-
tral and southern Africa (Mukhebi and Perry, 1995). Biological details including
the ecology and life cycle of the tick and applications of the model are discussed in
detail in Mwambi et al. (2000). In sect. 2 the model is derived as a continuous time
compartmental model. In sect. 3 a compact form of the characteristic polynomial
of the system is obtained. In sect. 4 the interaction between wild hosts, cattle and
the tick vector is introduced. Conditions on persistence and existence of the vec-
tor and its hosts are derived and analysed. Finally in sect. 5 we give concluding
remarks where we discuss the implication of the model to a real field situation
and to management strategies.

2 - The compartmental model

The population is structured according to n successive stages. Let the variable
x1 , R , xn denote the number of individuals in stages 1 to n. Let pi , i41, R ,
n21, be the rate of transition from stage i to stage i11. Let fn be the fecundity
rate of the adult female stage. In each stage there is a net mortality rate m i ,
i41, R , n . This includes losses due to natural mortality and losses due to tran-
sport by hosts into and out of the area of study. We first assume that the pi are
constant, later we let these quantities depend on host abundance and availability.
The model is a cyclic chain model of n linear differential equations with constant
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coefficients such that,
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where ai4pi1m i , i41, 2 , R , n21. More compactly system (2.2) can be writ-
ten as

x
.
4Ax(2.3)

where A is the n3n matrix in Eq. (2.2) and x4 (x1 , R , xn )T . For a small inter-
val of time d a discretized version of Eq. (2.3) is given by

xt114 (I1dA) xt4Lxt(2.4)

where L4I1dA is a discrete type Leslie matrix recently reviewed by Di Cola et
al. (1998, 1999). The relationship between equations (2.3) and (2.4) has been di-
scussed in detail in Mwambi (1997) in the context of the current study.
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The matrix A4 (aij ) is of a type called essentially nonnegative and irreducible.
Thus to this matrix the Perron-Frobenius theorem can be applied. The spectral
bound of the matrix is a simple real root of its characteristic polynomial and all
other eigenvalues have strictly smaller real parts. Corresponding to the spectral
bound there is a positive eigenvector. There are no positive eigenvectors to any
other eigenvalues. The spectral bound governs the stability of the zero solution of
the differential equation. If the spectral bound is positive, the population will grow
exponentially, and if it is negative it will decay.

3 - The characteristic polynomial

In general the characteristic polynomial can be obtained by expanding the de-
terminant NA2lIN . In the case of the matrix A in Eq. (2.3) the characteristic po-
lynomial is best obtained from the corresponding linear system rather than by
expanding determinants. Thus to obtain the polynomial from Ax4lx , we have to
eliminate the xi8 s from the system of equations given below

lx14 fn xn2p1 x12m 1 x1

lx24p1 x12p2 x22m 2 x2

. . . . . .

lxi4pi21 xi212pi xi2m i xi(3.1)

. . . . . .

lxn214pn22 xn222pn21 xn212m n21 xn21

lxn4pn21 xn212m n xn .

Starting from the last equation of system (3.1) and recursively eliminating the xi8 s
from the system we finally get a compact form of the characteristic polynomial as

P(l)4 »
i41

n

(pi1m i1l)2 fn »
i41

n21

pi(3.2)

with pn40 because n is the last stage in the life cycle.
Now consider any nonnegative matrix (aij ). Then the Perron Frobenius theo-

rem (classical version) applies. In particular one can look at matrices of the Leslie
type. Also one can consider the class of stochastic matrices and the class of sto-
chastic companion matrices. These type of matrices have a characteristic polyno-
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mial of the type similar to a Cauchy polynomial. The eigenvalues lie in the disc
]l : NlNGs0( and l4s0 is an eigenvalue. For a Cauchy polynomial s041 and
except 1, no positive number can be a root of the polynomial.

In the present case of matrices related to the continuous time evolution we ha-
ve quite similar properties that have to be discussed. Two results about the
system are stated without proof. The proofs are presented elsewhere in the ap-
pendix of Mwambi et al. (2000).

The first result states that the tick population will grow with exponent s0 ,
which is the spectral bound of matrix A , if

fnDm n »
i41

n21 g11 m i

pi
h(3.3)

and s0 is the unique zero of the characteristic polynomial in the interval (2m , Q)
where m is a positive real number.

In biological terms inequality (3.3) says that the tick population persists if the
fecundity rate exceeds the product on the right hand side. This product measures
the mortalities against the average sojourn times in the corresponding compar-
tments. The second result states that the spectral bound s0 is a decreasing fun-
ction of the mortalities; m i , i41, R , n and it is an increasing function of the
transition rates pi if s0D2m i for all i.

Thus, for an increasing tick population, increasing any pi leads to an increase
of s0 . In biological terms, accelerating the development process increases the rate
of exponential growth. The eigenvector of the matrix A corresponding to the ei-
genvalue s0 describes the ‘persistent’ stage distribution at exponential growth (or
decay). From Eq. (3.1) we find, by normalizing the adults to xn41,

xi4 »
j4 i11

n

(pj1m j1s0 ) N »
j4 i

n21

pj .(3.4)

The persistent stage distribution is the stage distribution attained when the
system reaches stability. Its distribution determines the future population structu-
re and its growth rate is governed by the spectral bound s0 of the matrix A in
Eq. (2.2).

4 - Vector-host interaction model

Model (2.1) does not incorporate any factors that would limit population gro-
wth, in particular host abundance and availability. We introduce a variable y to
describe the number of available natural animals and a quantity z that counts the
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domestic animals (mainly cattle) serving as hosts for the ticks. We assume the
quantity z is not a dynamic variable but a parameter, for the simple reason that
cattle density will be controlled by actions not within the framework of the model.
Hence h4y1z is the total of available hosts. In our model the effect of reduced
host densities implies a reduction of the transition rates. In other words there is a
critical host density below which the vector population goes to extinction.

One could imagine that hosts avoid heavily tick infested areas. This would
mean that if tick abundance goes up then host density goes down, in specific gra-
zing areas. Thus we get a situation similar to a predator prey model. The host
equation is therefore given by

y
.
4r2dy2cT xy(4.1)

where r is the inflow of the hosts into a given grazing area. The parameter d is
the host mortality which is assumed to be constant and it does not depend on tick
density and disease prevalence. The constant (row) vector cT4 (c1 , R , cn ) mea-
sures the effect on the host population by the different stages of the vector popu-
lation present in the area. We assume ciF0 with ciD0 if i is a questing stage.
The vector x has the same meaning as before.

To develop a theoretical basis for the instantaneous host searching model we
follow Gutierrez (1996). Let the variables Xi and ha respectively denote the initial
number of questing ticks in stage i and the number of hosts attacked during an
infinitesimally small period of time dt . The parameter b denotes the physiological
demand rate for hosts per tick during the small time period dt and the variable h
the number of hosts. The variable A denotes a typical grazing area or in other-
words a possible search area for ticks. We assume the functional response
model

¯ha

¯h
4 f (Xi , ha )4Xi A(Xi b2ha ) .(4.2)

The model indicates that ¯ha /¯h declines as ha approaches Xi b (the tick vector is
satiated). The area of search A , however should decrease as XiKQ because of
increased competition for hosts. Thus

dA

dXi

42b
A

Xi



163DEVELOPMENT OF A STAGE-STRUCTURED ANALYTICAL POPULATION MODEL...[7]

where b is the coefficient of competition. Integrating the above equation yields

A4sXi
2b(4.3)

with search coefficient s , which means that as XiKQ then AK0. Substituting
(4.3) into (4.2) we get

¯ha

¯h
4sXi

12b (Xi b2ha ) .

Then by separation of variables we solve for the proportion qi (h)4ha /(Xi b)
which gives the proportion of attaching ticks as

0Gqi (h)4 (12e
2g a

b
h Xi

12b h
)G1

where s4a/b . The case of b42 gives the case of intraspecific competition for ho-
sts by questing ticks therefore

qi (h)4 (12e
2g a

b
h h

Xi )4 (12e 2qi h )

where qi4a/(bXi ). By expanding e 2qi h and assuming that Xi is large, we get qi (h)
4qi h . A similar model has been used by Di Cola and collaborators (Buffoni et al.,
1995, 1997).

Host preference by ticks is not modelled at this stage. We denote the transi-
tion rates for the different stages in a unified form as pi1qi h . The new system of
differential equations is now given by

x
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The system of equations (4.5) can be expressed in matrix notation as follows.
First define the matrices
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We further define three diagonal matrices P , Q , and M given by

P4 (pi d ij ) , Q4 (qi d ij ) , M4 (m i d ij ) .(4.8)

Thus in matrix notation the system of equations (4.5) may be written as

x
.
4Fx1D(P1 (y1z) Q)x2Mx

y
.
4r2dy2cT xy .

(4.9)

Putting

A4F1DP2M , B4DQ ,(4.10)

this system assumes the form

x
.
4 (A1 (y1z) B) x

y
.
4r2dy2cT xy .

(4.11)

A two dimensional caricuture when x is just one compartment and consequently
A, B, C are constants is discussed in Mwambi et al. (2000). We go straight to the
analysis of system (4.11) or the full model. Here one finds similar phenomena as
in the caricuture but in addition we are able to find expressions for the stage
distribution of ticks as a function of the host density h .
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T h e o r e m 4.1. There exists a threshold host density h0 such that the tick
population can persist on host population hDh0 and cannot persist on host po-
pulation of density hEh0 .

P r o o f . At a stationary state (x, y) the following two equations must
hold

04 (A1 (y1z) B) x

04r2dy2cT xy .
(4.19)

For fixed y1z , the first equation is a homogeneous linear system for the vector
x . Thus a necessary condition for the existence of nonzero x is that the determi-
nant of the matrix A1 (y1z)B must vanish, that is

det (A1 (y1z) B)40(4.20)

which can be expanded to give the linear system

04 fn xn2 (p11hq1 ) x12m 1 x1

04 (p11hq1 ) x12 (p21hq2 ) x22m 2 x2

. . . . . .

04 (pj211hqj21 ) xj212 (pj1hqj ) xj2m j xj(4.21)

. . . . . .

04 (pn221hqn22 ) xn222 (pn211hqn21 ) xn212m n21 xn21

04 (pn211hqn21 ) xn212m n xn .

This system compares with system (3.1) with l40 and pi replaced by pi1hqi .
Then from Eq. (3.2) one sees that the quantity h must be a zero of the
polynomial

PA(h)4 »
i41

n

(pi1hqi1m i )2 fn »
i41

n21

(pi1hqi ) .(4.22)

This polynomial can also be written in the form

PA(h)4m n »
i�E

(pi1m i ) »
i�E

(hqi1m i )2h m fn »
i�E

pi »
i�E

qi(4.23)

where E% ]1, 2 , R , n( is the set of questing states and m the number of these
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states. Now we define the quantity

R0 (h)4
fn

m n

»
i�E

pi

pi1m i

»
i�E

hqi

hqi1m i

,(4.24)

which is the average number of ticks produced by one adult female tick in its life
time. This number R0 (h) is the basic reproduction number of the tick population
on a host population of density h . We see that

R0 (Q)4
fn

m n

»
i�E

pi

pi1m i

.(4.25)

If R0 (Q)D1 then the tick population can persist on sufficiently dense host popu-
lations. The critical host density is h0 , where h0 is the unique positive root of the
equation R0 (h)41. Thus the tick population can persist on host populations with
density hDh0 and cannot persist on host populations with hEh0 which completes
the proof. Now at any nontrivial equilibrium we would have R(h)41, thus h4h0 .
Then solving system (4.21) recursively for xi gives the non-normalized tick distri-
bution according to stage as

xi4xn »
j4 i11

n

(pj1h0 qj1m j ) N »
j4 i

n21

(pj1h0 qj ) , i41, R , n21 .(4.26)

Furthermore the three populations of wildlife, cattle and ticks must satisfy

r2dy2cT xy40 and y1z4h0 .(4.27)

Case I: When zDh0 then the equation y1z4h0 cannot be satisfied with
yD0. In this case we have R0 (z)D1. Thus, at the given level of domestic ani-
mals, the tick population can survive on cattle alone, the tick population grows
exponentially, and the wild animals disappear. Factically, cattle breeding at this
density (with the given transition rates) is impossible.

Case II: When zEh0 then at equilibrium y4 y, where

y4h02z .

The tick population xA, at equilibrium is the solution to the equation

r2dy4cT xA .

Hence there are again two cases.
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Case IIa): yDr/d or rEdy.
In this case

y4h02zDr/d .

Then (z1r/d)Eh0 and the tick population cannot survive on the joint wild and
domestic animals.

Case IIb): yEr/d or rDdy.
In this case

y4h02zEr/d .

Then z1r/dDh0 . Thus, due to the assumed possibility that wild animals avoid
heavily tick infested areas, an equilibrium density of wild animals y establishes it-
self. The cattle density is z , the density of wildlife animals is y4h02z and the to-
tal population size of ticks is determined from

cT x4
r2dy

y
.(4.28)

The right hand side of Eq. (4.28) is positive, since r/dDh02z4 y. A parameter
plane for the full model is obtained by partitioning the (z , r) plane into three re-
gions according to the three cases I, IIa and IIb.

5 - Concluding remarks

The analysis of the model shows that for the tick population to thrive, host
abundance and distribution is crucial. The analysis shows that at low cattle densi-
ty the threshold levels of wildlife becomes important for the tick population to be
maintained while at high cattle densities this contribution is insignificant. The mo-
dels developed thus far can be used to evaluate control measures acting on fecun-
dity, mortality and developmental times. Moreover it has helped us to identify fu-
ture research direction such as modelling host mortality and disease dynamics in-
cluding spatial variation in the risk of infection (O’Callaghan et al. 1999). The pa-
per demonstrates the capacity of an analytical model for guiding research activi-
ties including the evaluation of control options. Further, analytical models are an
efficient tool to synthesize existing information and a basis for the development of
models with wider areas of applications.
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A b s t r a c t

Mathematical models are an important tool for understanding disease systems in ge-
neral and as aids for designing control and management strategies both for vectors and
vector-borne diseases. In this paper a model is derived for the interaction of the brown
ear tick (Rhipicephalus appendiculatus) with its hosts. First a general model consisting
of a system of differential equations with constant coefficients on a stage structured tick
population with unlimited host density is presented. The model is then improved by in-
corporating host abundance and availability by means of a demand-driven, ratio-depen-
dent functional response model. The improved model adequately represents the dynamics
of a stage structured vector population under conditions of varying host density. The
model efficiently synthesizes existing information allowing for a qualitative evaluation of
several management strategies and the identification of gaps in the actual understanding
of the system. The model is expected to guide future research work in the area.

* * *


