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1 - Introduction

Mesoscopic approaches in population dynamics are becoming more and more
popular since the pioneering work of Jäger and Segel [1]. The distribution of an
attribute among a population is studied versus time by a probabilistic model yiel-
ding a set of nonlinear integro-differential equations. Validity and technical de-
tails of the procedure are much the same as for the Boltzmann equation of rare-
fied gas dynamics [2]. Such a model has been later extended to describe the com-
petition between tumor and immune system, which requires consideration of addi-
tional destructive and proliferative encounters [3]. In this immunological frame,
the attribute to be dealt with is the activity of each cell, to be understood as its ca-
pability in performing the task which is typical of its species. The resulting space
homogeneous problem turns out to be particularly appropriate in the early stage
of tumor growth, in which tumor cells are not yet condensed in a spatial structure,
and interactions occur at a cellular level. This is an important stage since most ea-
sily tumor may be depleted by the action of the immune system. Validation of the
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mesoscopic model requires comparison with experiments at a macroscopic level,
involving observable quantities which are suitable moments, with respect to the
activity variable u� [21, 1 ], of the unknown distribution functions fi . Several pa-
pers have been published along this research line, dealing with various aspects of
the problem, including well posedness in the proper mathematical setting: we
mention, without pretending to be exhaustive, Refs. [4]-[8] and the bibliography
quoted there.

In particular, in recent works [9]-[10], the presence of cytokine signals, possi-
bly enhancing the immune defense system, has been taken into account. We will
focus on that problem too, and refer the interested readers to the latter papers
for all biological details. It suffices to recall here that recepting particular signals
can modify the usual behavior of a cell, and, specifically, cytokine signals may in-
crease the activity of the immune system, strengthening their capability of defea-
ting tumor, and affecting the result of the overall competition without destroying
or generating any cell. Also, it should be mentioned that this model introduces
new important features with respect to previous work. More precisely, the immu-
ne system is allowed itself to undergo proliferation, with its growth controlled by
the host environment, and an external source (from the bone marrow) is introdu-
ced for it.

Our equations, consistently inspired by the model above, are presented and di-
scussed in the following two sections, for different specializations of parameters
and probability densities characterizing the interactions. Analytical manipulations
are carried out as far as possible, and in some cases reduction to a finite dimen-
sional dynamical system can be achieved. A sample of the extensive numerical si-
mulations that we have performed is finally presented in section 4, aimed at sho-
wing the main possible evolution trends and occurrence of bifurcations for va-
rying parameters. Numerical values are selected randomly in order to investigate
the different trends associated to different domains in the parameters space, and
are not related to actual experimental data. Along with bifurcations relevant to
transition from tumor explosion to tumor depletion, observed peculiar features of
the model include existence of stable stationary solutions with non zero tumor po-
pulation, and oscillating relaxations to equilibrium.

2 - The kinetic model of evolution

Following [9], consider two populations of cells (index 1 for tumor, index 2 for
immune system) interacting between themselves and with a third background
species constituting the host environment. Cells are endowed with an internal sta-
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te, described by the real variable u , and active (passive) cells are characterized by
a positive (negative) value of u . In particular, positive values of u correspond for
tumor cells to aggressivity, whereas negative values to dormant states; for immu-
ne cells positive values of u correspond to defense capability, whereas negative
values to inhibition and even cooperation with tumor. The distribution functions
obey the set of integro-differential equations
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where nijD1 is the average number of i cells emerging from the considered (i , j)
collision. Macroscopic observables are moments of the distribution functions. In
particular, we will need the zero-th and first order partial and total moments
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expressing partial and total population densities or activity densities for each spe-
cies, with Ei

6GNi
6 (upper or lower sign).

According to the model proposed in [9], and taking into account all the several
immunological requirements expounded there, collision frequencies and probability
distributions will be specialized as follows. The only non vanishing collision fre-
quencies are taken to be h 124h 214constant, d124d214constant, d134constant,
and d23 (v , w)4d 23 wH(w), with the corresponding proliferative collision frequen-
cies given respectively by

p12 (v , w)4d12 [12H(v) H(w) ] ,
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g 12

d12

vwH(v) ,

p21 (v , w)4d12 ,
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for (1, 2) encounters, by

p13 (v , w)4d13 , n13 (v , w)411
g 13

d13

vwH(v) H(w) ,(2.5)

for (1, 3) interactions, and finally by p23 (v , w)40 for encounters between immune
system and host environment.

In this way, proliferation and destruction of both tumor and immune cells are
consistently modeled from an immunological point of view. The only conservative
encounters in the process occur then between tumor and immune system. All other
conservative interactions are negligible in the phase space balance. The symbols
g 12 , g 21 , g 13 and d 23 , together with h 12 , d12 and d13 , are positive con-
stants, and the Heaviside functions H account for those selective immunological ef-
fects which take place only for certain values of the state variable. Moreover, along
with

W ij (v , w ; u)4nij (v , w) d(u2v) (i , j)4 (1 , 2 ), (2 , 1 ), (1 , 3 ) ,(2.6)

where d is the Dirac delta function (the clonal expansion considered in [9]), we shall
analyze the further option

W ij (v , w ; u)4
1

2
nij (v , w) (i , j)4 (1 , 2 ), (2 , 1 ), (1 , 3 ) ,(2.7)

which corresponds to equipartition in activity of cells born by proliferation.
Furthermore we shall assume

c ij (v , w ; u)4d [u2mij (v , w) ] (i , j)4 (1 , 2 ), (2 , 1 ),(2.8)



147KINETIC MODELS FOR CYTOKINE-MEDIATED...[5]

namely zero-variance distributions with mean values
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where all b coefficients range in the interval [0,1]. The latter coefficients describe
the variation of activity in a cell of either tumor or immune system as a result of the
conservative encounter, and model thus the effects of cytokines. Again, the physical
facts underlying (2.9) and (2.10) are reported on in detail in [9]. Finally, sources
read as

S1 (u , t)40 , S2 (u , t)4g 2 H(u) ,(2.11)

with g 2 positive constant.
Local existence and uniqueness of solution of the initial value problem associa-

ted to (2.1) has been widely discussed in previous work (see also the review [11]),
and is guaranteed in the positive cone of the summable functions under fairly weak
smoothness conditions that are certainly in order here, so that this issue will not be
considered further.

3 - The set of integro-differential equations

Under option (2.7), the kinetic equations take the explicit form
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where N3 and E3
1 are given constant. A part from the integral term, the right hand

sides and the square brackets on the left hand sides are completely determined in
terms of the eight moments Ni

6 and Ei
6 (actually, only of six out of them). Indeed,

it is easily realized that, in the absence of conservative encounters (h 1240), the set
(3.1) can be formally solved for the fi as a pair of uncoupled linear first order ordi-
nary differential equations in term of the moments, whose knowledge would then
determine explicitly in closed form also the distribution functions. On the other
hand these moments are the most meaningful quantities for practical applications,
and therefore their determination is then a crucial point by itself. To this end, it is
remarkable that a closed set of exact moment equations can be deduced from (3.1)
by suitable integrations, not only, as it is clear, in the case h 1240, but also for h 12

c0, provided b 12
24b 2140, since then the zero-th and first order moments of the

integral terms can be cast in closed forms involving only the moments (2.3). Inte-
grating over either u� (0 , 1 ) or u� (21, 0 ) after multiplication by either 1 or u ,
and performing the simple u-integrations involving the delta function, leads in fact,
after some algebra, to
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We are left thus with a 7-dimensional dynamical system, generated by the seven
coupled nonlinear differential equations involving N1

1 , N1
2 , N2

1 , N2
2 , E1

1 , E2
1 and

E2
2 . The eighth moment E1

2 decouples and may be evaluated «a posteriori». The
same would be in order for E2

1 when h 1240, reducing the dimensionality to six.
Notice that the conservative interaction affects only the equation for E1

1 . More
precisely, cytokines have a damping effect on the average state of the active part of
the tumor population, through the positive factor b 12

1 .
Previous manipulations are wiped out in the case of general b 12

2 , b 21D0. The
double integral involving the delta function can be handled for instance as indicated
in [9] in terms of single integrals on level lines, but can not lead to a closed set of
moment equations. The same is true, even for h 1240, when resorting to the other
option (2.6), in which case the relevant kinetic equations read as
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Further analytical investigation, especially of the dynamical system (3.2), is left as
future work. Numerical treatment of (3.1), (3.2), and (3.3) is the subject of the next
Section. A result however can be easily achieved by inspection, namely the existen-
ce of a stationary solution f1 (u)40, f2 (u)4g 2 H(u) /(d 23 E3

1 ), the same for both
models. This is the ideal working point for the considered organism, where tumor is
absent and immune system has reached its equilibrium, with all cells active, under
the action of the external source and the control by the host environment.

4 - Some numerical examples

In order to illustrate several typical dynamical behaviors that have been found
in extensive computations, we present below a sample of figures, necessarily re-
stricted, but still qualitatively significant. Calculations have been performed on a
workstation by using MATLAB 4.2 Numerical Library. For the integro-differential
equations (3.1) and (3.3) the double integrals have been evaluated following the re-
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Fig. 1 - Time evolution of partial densities towards the fixed point (0,0,2,0,0,0).

cipes introduced in [9], which reduce them to one-dimensional line integrals, trea-
ted by the composite trapezoidal rule.

In all figures shown here initial conditions have been chosen of the type

.
/
´

f1 (u , 0 )4110.2 sin (pu)

f2 (u , 0 )4k (120.3 sin (pu) )
(4.1)

with varying k .
Fig. 1 is relevant to the option (2.7) with h 1240, which means no conservative

interactions, so that all macroscopic quantities of interest follow from the solution
of a set of six first order ordinary differential equations, deduced from (3.2). The
immunological parameters take the numerical values d124d134d 2340.2, g 12

40.79, g 2140.01, g 1341, g 240.2, N342, and E3
141/2 , with k4100 in (4.1).

The analytically determined equilibrium corresponds to the point (0 , 0 , 2 , 0 , 0 , 0 )
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Fig. 2 - Phase diagrams for d 2340. 13 (left column) and d 2340.14 (right column).

in the six-dimensional phase space. We do observe convergence to that fixed point,
but after strong oscillations of increasing amplitude, that would suggest initially di-
vergence to infinity of the phase trajectory. The time behavior of the partial densi-
ties Ni

6 is plotted in the figure; the same trend is in order for the activity densities
Ei

6 .
The previous fixed point is not necessarily unique for the considered problem,

as shown in Fig. 2, where we use d 23 as varying parameter. Now g 1240.7, k41,
whereas all other parameters are kept as before. For d 2340.13 the «analytical»
equilibrium (0 , 0 , 40 /13 , 0 , 0 , 0 ) actually attracts our initial point, with a regular
monotonic asymptotic behavior. It is sufficient to increase d 23 to 0.14 and a bifurca-
tion occurs: the same initial point gets out of that basin of attraction and is captured
instead by a different equilibrium point, into which the phase trajectory eventually
spirals (damped oscillations) after an initial transient. This is described in the figu-
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re by the (N1 , N2 ) and (N2 , E2 ) projections of the six dimensional phase diagram:
the left and right columns refer to d 2340.13 and d 2340.14 respectively. Numeri-
cal experiments indicate that both fixed points are stable, and attract suitable re-
gions of the phase space. The coordinates of the second one can be found numeri-
cally, and there results N1D0, so that it represents a stationary state in which the
organism coexists with non-vanishing tumor density. Eigenvalues of the Jacobian
matrix there have negative real part, with at least a non-real pair.

There is of course a much worse bifurcation when the initial point gets out of the
basin of attraction of a fixed point and tumor grows in time without any bound. If
we set k41, let g 12 vary, and keep the other parameters as for Fig. 1, such a bifur-
cation occurs at about g 1240.79, in the sense that the solution converges to the
ideal fixed point (0 , 0 , 2 , 0 , 0 , 0 ) for g 12E0.79, whereas the phase trajectory
escapes to infinity for g 12D0.79. Contrary to previous models [8], the immune
system grows together with the tumor in case of divergence, often even faster, as
already found in [9]. It is worth investigating if and how the situation can be resto-
red by the effects of the conservative interactions, which are mediated by cytoki-
nes. For this purpose, we start from a diverging situation with fixed g 12D0.79, and,
with h 1240.3, b 12

24b 2140, we determine the solution for b 12
1 increasing from 0 to

1 . In this computation the phase space to be considered becomes seven-dimensio-
nal, since also the moment E2

1 enters the set of coupled ordinary differential equa-
tions. It is clear that the solution diverges for small values of b 12

1 , but one can ob-
serve that a threshold appears, above which the phase trajectory is captured again
by the fixed point, now given by (0 , 0 , 2 , 0 , 0 , 1 , 0 ). If we plot these bifurcation
values of b 12

1 versus the parameter g 12 we get the following table

g 12 0.81 0.85 0.89 0.93 0.97 1.01 1.05 1.09

b 12
1 0.04 0.17 0.31 0.44 0.57 0.71 0.84 0.97

Of course, bearing the meaning of the two parameters in mind, the larger the tumor
proliferation parameter g 12 , the higher the threshold for cytokine effectiveness b 12

1

which is needed in order to save the organism. However this positive feature gets
saturated after a while, and not all situations can be restored: for g 12D1. 09 tumor
and immune system grow indefinitely even in the presence of the strongest cytoki-
ne action.

A bifurcation corresponding to transition from tumor divergence to tumor de-
pletion is analyzed also in Figs. 3 and 4, still relevant to the option (2.7), but with all
immunological parameters different from zero, so that the full set of integro-diffe-
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Fig. 3 - Tumor and immune system evolution for model (2.7) when b 2140.65.

rential equations (3.1) has actually to be solved (infinite dimensional problem). For
the numerical solution of this system we have implemented time and space discreti-
zation schemes proposed in [9]. Here we have taken g 2140.79, h 1240.3, and b 12

1

4b 12
240.9, with k40 in (4.1). The latter option allows to analyze initial absence of

immune system, which is not qualitatively different from other initial conditions in
this model, due to presence of an external source and of proliferation. All other pa-
rameters are the same as for Fig. 1, and b 21 is used as control parameter. Fig. 3
shows the distribution functions f1 and f2 versus state u and time t for b 2140.65, in
which case, after an initial growth, tumor is defeated and the organism relaxes to
the optimal working state, represented by the equilibrium f140, f242H(u).
It is sufficient to increase b 21 to 0 . 66 and the evolution changes dramatically to the
one described in Fig. 4, where at a given point the organism seems to have overco-
me the crisis and to be recovering like before, but then another violent increase
starts, which leads to divergence.

Fig. 4 - Tumor and immune system evolution for model (2.7) when b 2140.66.



155KINETIC MODELS FOR CYTOKINE-MEDIATED...[13]

Fig. 5 - Tumor and immune system evolution for model (2.6) when b 2140.54.

Finally, Figs. 5 and 6 are relevant to the option (2.6), with exactly the same input
parameters and initial conditions as for Figs. 3 and 4, and show the corresponding bi-
furcation taking place with respect to the parameter b 21 . The ideal equilibrium is again
the same, and it is reached asymptotically for any b 21G0.54, whereas divergence is ob-
served whenever b 21F0.55. The distribution functions are plotted in Figs. 5 and 6
just when the two equal signs are in order, respectively.

We may observe that the model (2.7) turns out to be more healing-oriented than
(2.6), since b 21 is a measure of the loss of activity for the immune system, as clear from
(2.10). For this particular case, the bifurcation leading to recovery occurs in the interval
(0.65, 0.66) for the former model, whereas one has to decrease further b 21 down to the
interval (0.54, 0.55) in order to get the same effect with the latter.

Fig. 6 - tumor and immune system evolution for model (2.6) when b 2140.55.



156 M. GROPPI, E. ROSSI and G. SPIGA [14]

References
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A b s t r a c t

We consider the set of nonlinear integro-differential equations governing the competi-
tion between tumor cells and immune system at a kinetic level. According to a recently pro-
posed model, effects of cytokines on the evolution problem are analyzed by both analytical
and numerical techniques. The model allows several different dynamical trends and bifur-
cation phenomena for varying immunological parameters. A sample of illustrative results
are presented and briefly discussed.
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