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PAavLE M. MILICIC (*)

The angle modulus of the deformation of a normed space (**)

Let (X, | .|) be a real normed space, S(X) the unit sphere in X and B(X) the
unit ball in X.
The functionals

v ey = lim ety ),

_ N

= 7(r_(9c,y)+r+(x, ) (x,yeX),

g(x, y):

always exist on X% The functional g has the following properties:

) gla, ) =[2lf  (xeX),

) glax, By) = afg(x, y) (x,yeX;a, feR),
®) g, @ +y) = [alf + gz, ) (v, yeX),
) l9Ce, ) | <llallllyll (@, yeX),

(see [4]).

If X is smooth, then g is linear in the second argument, and in this case [y, x] :
= g(x, y) defines a semi-inner product in the sense of Lumer. If X is an inner pro-
duct space (i.p. space) sense then g(x, i) is the usual inner product of x and .

(*) Faculty of Mathematics, University of Belgrade, YU, 11000, Yugoslavia.
(**) Received December 12, 1999. AMS classification 46 B 20, 46 C 15, 51 K 05.
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Definition 1 [6]. A normed space X in which the equality

G e+l = e =yl =8 (g, ) + lylP oy, @) (@, yeX),

holds is a quasi-inner product space (q.i.p. space).

If X is an i.p. space then (5) reduces to the parallelogram equality.

The space of sequences [* is q.i.p. space [6].

In accordance with (4), the angle between vector x and vector y can be defined
in the following way.

Definition 2 [5]. For x, yeX\{0}, the number

9(x, y) + 9y, x)

(6) < (x, y) := arccos
2/l

)

is called the g-angle between x and y.
In what follows we shall write cos («, i) instead of cos < («, ¥).
Now we quote three known definitions.

Definition 3. The wmodulus of convexity of X 1is the function
0:[0,2]—1[0, 1] defined by

5 y(e) i= inf[l - % H

x, ye BX), |z —y| = e} .
One can show that this modulus can be defined equivalently as

oxte) =i 1= 2L |

2,y SO, [z — gl =e},

(see [2], for example).

Definition 4 [1]. The modulus of smoothness of X is the function
0x:[0,2]1—1[0, 1] defined by

ox(e) = sup‘l—H“Ty H

x, yeSX), ||z -yl < s}.

Definition 5 [1]. The modulus of deformation of X is the function
dyx:[0, 2] —1[0, 1] defined by

dx(e) == px(e) — 0 x(e).
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For any Banach space X the following estimate is true:

Ox(e) = QX(S),

52
< — —_
(7 Ox(e) =1 \/1 7
® 1—\/1—8_2< (&)< =
g 9=
) 0 <dy(e) < =,
2
(see [1]).

Some additional properties of functional g are quoted below.

Lemma 1. For x, y e S(X) we have

(10) 1-|o—ylsg@,y <lle+y|-1,
11 1-|le—yl<cos(x,y) <|e+yl-1,
x+ 1—cos(x, y) x—
-] 5t < <232,
2 2 2
(13) gety,x+y)=glxt+y,x)+glx+y,y.

Proof. Using (3) and (4) we deduce that
gle, x+y) =1+gx, y) <[z =yl.

Hence (10) is true. Inequality (10) implies (11) and (12). On the other hand, by (3)
we obtain g(x +y, x) =glx +y,c+y—y) =glx+y,x+y)—glx+y,y). Hen-
ce (13) is true.

It is easily seen that in an ip. space, for x, y € S(X) we have

(14) Locos y) o x;y H2

2

In accordance with (12) and (14) we define new moduli of convexity, smoothness
and deformation of X.
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Definition 6. The function d%:[0, 2] —[0, 1] defined by

1_
Ox(e) := inf[M ‘x

’ ?/ES(X), ”90 - y” = 8],

will be called the angle modulus of convexity of space X.
Definition 7. The function ¢%:[0,2]—1[0, 1] defined by

1—cos(x, ¥)

S [ yeseo. -l <e).

ox(e) 1= sup[
is called the angle modulus of smoothness of space X.
Definition 8 The function dy:[0,2]—[0, 1] defined by

dy(e) :=p0x(e) —ok(e),

is called the angle modulus of deformation of space X.

Now, we note some elementary properties of the moduli 6% and ¢%.

[4]

Theorem 1. (a) If X is arbitrary, then O x(e) < 0%(e) and Ok is nondecreas-

g on [0,2].
(o) If X is an i.p. space, then Ok(e) =¢e?/4.
(e) If X is a complete q.i.p. space then O%(e) < e%/4.
(d) X s uniformly convex (UC) if and only if Ox(e) >0.

Proof. (a) follows from (12) and from the implication

15) e <ex= {(,p|le—yl=ze}o{@ |le-yl=e:} (¢, yeBX)).

(b) follows from (14).
(c) Assume that there is £ >0 such that o %(e) > %/4.
Then, for x, y e S(X)

2
(16) sup cos(x,y) <1-— £ .
e-yl=e 2

By Definition 1 and Definition 2, for x, y € S(X) we have

r+y
2

e

H4 =cos(x, y) + H 5

|
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Therefore, from (15) and (16) we have

el g2 el e?
Ox(e)=1— su 4\/005(90, )+—>1—4\/1——+—=1—\/
X Wi o T 2 16 4

which is impossible (see (7)).

(d) It is known that X is UC if and only if 6 x(¢) > 0 for each ¢ > 0. So if X is
UC, then 6%(¢e) >0 for each £>0 (see (a)).

Suppose now that 6 %(¢) >0 for each >0, i.e.

—
I

. {1—cos(x,y)
inf{] ———°°

> x, yeS(X); ||9c—y||>e}>0,

for each &> 0. Therefore

(18) sup {cos (x, y) ||z —yl|= e} <1.
Since cos (x, y) =1/2(g(x, y) + g(y, «)) and sup g(x,y)= sup gy, x), the
inequality HJL‘ - yH EXS HT - Zl” =e
(19) sup g(w,y) <1 (x, yeSX)),
lz—yl=e

follows from (18).
Let u=(x+y)/le+yl and [Ju—a| =max{[lu—2f, |[u—y[}. Then [x—y|=e
implies || — || = ¢/2. On the other hand we have

x+y H— 2 —g(u, ac+y) 1—g(u, ac) 1—-g(u,y) 1-g(u, 90)

I_H 2 2 2 g 2

So, for x, y e S(X), we have

r+y

1—” H/—(l— sup g(u, x)).

eyl >e

Hence, from (19), for each & > 0, there exists 0 >0 such that [« — | = ¢ implies
1—|l(x+y)/2|=0 ie. X is UC.

Theorem 2. (a) If X is arbitrary, then o x(e) <ox(e) <¢&/2 and ok is in-
creasing on [0,2].

() If X is an i.p. space, then o%x(e) =¢e2/4 (e€[0, 2]).

(e) If X is a q.i.p. space, then o%(e) = e%/4.
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Proof. (a) Follows from (12) and from the implication (15). (b) Follows from
(14). (c) Since ¢ x(0) =0 and o ¥(2) = 1, suppose that there exists € e (0, 2) such
that ok(e) < &%/4, i.e.

2
(20) inf {cos (x, y) | lo —y| <e} >1— %
Therefore, for x, y e S(X), from (20) and (17) we have
2

21) 1- % < inf cos (¢, ¥) < cos (x, ¥)

lz—wll<e

+ 4 — 4
1= =151

By inequalities ¢ =[x — || =2 — |z + ¥l we have 1 —¢2 <|/(x +%)/2||<1 and
|55 =155
2 2

H Hence, from (21) we derive

x+y H)4,
2

NN LT N

for || —y||<e.
Since the real function t+— f(t) =t*— (1 —t)* is increasing on [1 —¢/2, 1], it
follows

4 4
min f(t)=f(1—8/2)=(1— g) -

tel[l—¢/2,1]

Because of that we have

4
(1—%)—8_21—% ie.  ee—22<0 (£€(0,2)),

which is impossible.

Lemma 2. Let X is a q.i.p. space, x, y e S(X) and €€ [0, 2]. The following
wmplications hold

4

e\t e
23 a r—y|<e=[(1-—=| — — <cos(x,y),
@) e y

4
24) b) Hx—y”?e:cos(m,y)sl—:—G,
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Proof. (a) Letx,yeS(X) and ||x—y||<e. Then 2=|x+y+ax—yl|<|x+y|+e,
which implies [|(x + %)/2|| = 1 — &/2. It follows from (17) that (23) holds. (b) Apply
(A7) to get (24).

Theorem 3. Let X is a q.i.p. space. Then

4
25) aX(s)=1—4\/1—253((e)+ i—6

Proof. It follows from (17) that

+y !
Ox(e)= inf |1 —4\/cos(ac, y) + H vry H =1 —4\/ sup cos(x, y) + £
o=yl =¢ 2 lo—yl=e 16

| T T
=1-4/ sup cos(x,y)+ — =1—-%4]1-20%(e) + —.
p (x, y) T x(¢) 16

le—yl=e

So,

4
(26) ax(s)>1—4\/1—2agf(e)+ i—ﬁ

On the other hand

Ox(e)=1— sup 4\/cos(9c, y) + ” x;y H4

le—yl=e

4

4
<1- sup 4\/cos(x,y)+ i_G =1—4\/1—26§((£)+ i_ﬁ

l[=yl=e

Hence,

4
@7 5X(6)S1—4\/1—26§((£)+ i—G

Using (26) and (27) we obtain (25).
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Corollary 1. A q.i.p. space X is an i.p. if and only if

84

Ox(e) = T

2
Proof. If 04(e) = % then from (25) we get

2
€
6X(8):1_\/1_Zy

i.e. X is an ip. space ([3]). To complete the proof we use (b) of Theorem 1.

Corollary 2. For a q.u.p. space it holds

et g2

28 — <ov(e) s — e€[0, 2].
(28) P x(&) 1 el ]
Proof. According to (24) we get
54
sup cos(x,y)<1—- —.
lo—yl=e 16
This implies that
4

e
ox(e) = —.
x(&) ™

To complete the proof we use (¢) of Theorem 1.
Clearly, for 1 <& <2 the inequality

1
(P —3e24de) < &
4 2

holds. This inequality is important in the sequel.

Theorem 4. For a q.u.p. space X one holds the estimate

ok(e) <
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Proof. For ¢e[1, 2] from (23) we get

1 1
ng(e):g(l— inf cos(m,y))$z(33—3£2+4s).

o —sll<e
Theorem 5. For a q.i.p. space X the following estimate is true

84
1_4 1_8+E 0<e<l
ox(e) <

1
Z(eg—3e2+4s) 1<e<2.
Proof. Using (12) we conclude that || — y|| < & implies cos (x, ) =1 — ¢ and
|l — 9| =1-cos(x, ) =0. Then it follows that

Ty
2

1—cos(x, y) )4

cos (x, y) + H 5

H4 = cos(x, y) + (

1-t\*
The function t+—f(t) =t + (T) is increasing on [1 — ¢, 1]. Then

4
£

i tH)=f(1—-¢g)=1—¢e+ —.
ten[l(},nl]f() N 2 ¢ 16

So, for 0 <e<1 and ||z —y| <&, we have

4

cos(ac,y)+H x;y H421—3+ i_(;'
Hence
(1-ox(e)'= ‘xjr;fsg x;y H4= ||xh;fs8(cosm’ y) + H % ”4) =>1—¢+ '16—;,

ie., for e€[0, 1], we have

<1—-%4Q/1—e+ —.
ox(e) T
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Inequality o x(¢) <o%(e) and Theorem 4 imply that Theorem 5 is true.

Theorem 6. (a) For arbitrary X we have

d;’((e):l[ sup cos(x,y)— inf cos(x,y)].

o=yl =e lo=li<e

(b) If X is an v.p. space, then dy(e) =0.
(e) If X is a q.i.p. space, then

dy(e) <

Proof. Using the Definition 6 and Definition 7 we conclude that (a) is true.
(b) follows from Theorem 1 and Theorem 2. From Theorem 4 and (28), the state-
ment (¢) is true for ee[0, 1]. If ee[1, 2], from Lemma 2 we have

e\t &t et
inf cos(x,y)?(l— —) - — and sup cos(x,y)<1— —.
lo—yl<e 2 16 le—yl=e 16

Then by (a) we conclude that

1 e\*
dy(e) < —|1—-|1——=] |.
£ 2[ ( 2)]
From inequality
1 e\! I3
—|1-(1-=] [< = 0, 2],
(2] vem
we have, for a q.i.p. space X, that

€
dy(e) < E .
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Abstract

Using so called g-angle defined by (6) we introduce new notions of the modulus of a

normed space X (the angle modulus of the convexity of X, the angle modulus of smooth-
ness of X and the angle modulus of deformation of X). Some estimates of these moduli are
described for so called a quasi-inner product spaces.



