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P. NA T A L I N I and P. E. RI C C I (*)

Computation of Newton sum rules for polynomial solutions

of O.D.E. with polynomial coefficients (**)

1 - Introduction

Consider polynomial eigenfunctions PN (x) of a linear differential operator of
order m:

!
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m

gi (x) f (i) (x)40 ,(1.1)

where the coefficients gi (x) are polynomials of degree ci :

gi (x)4 !
j40

ci

aj
(i) x j .

We will assume that PN (x)4const . »
l41

N

(x2xl ), where all xl are different, so that

zeros of PN (x) are all simple, and we will write in the following:

PN (x)4x N2uN , 1 x N211uN , 2 x N221R1 (21)N uN , N(1.2)

or

PN (x)4x N2u1 x N211u2 x N221R1 (21)N uN .(1.2)8

If ciGi (i40, 1 , R , m) the differential operator (1.1) is called of hypergeome-
tric type. When m42, and ciG i (i40, 1 , R , m), polynomial solutions of (1.1)
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are very classical since they are connected with classical orthogonal polynomials,
and have been deeply studied by A. F. Nikiforov - V. B. Uvarov in [1].

The case when m44 was first considered by H. L. Krall [2], [3] in the thirties,
but more recently in many papers by A. M. Krall [4], L. L. Littlejohn [5], [6] and
others [7], [8], [9], [10]. New classes of orthogonal polynomials can be found in
this way, such as the Heine polynomials (see T. S. Chihara [11]), and some gene-
ralizations of the classical polynomials obtained by adding Dirac measures in the
support of the corresponding absolutely continuous Borel measure (see R. Alva-
rez Nodarse - F. Marcellan [12]).

To any polynomial PN (x) it is possible to associate a normalized discrete den-
sity distribution r N (x) defined by

r N (x)4
1

N
!

l40

N

d(x2xl ) (d4Dirac delta)

whose moments around the origin are given by

m h4
1

N
yh4

1

N
!

i41

N

xi
h .

Computation of the yh (Newton sum rules) has been considered by K. M. Case
[13] for the hypergeometric case ciG i ((i40, 1 , R , m), and by E. Buendia - J.
S. Dehesa - F. J. Gálvez in [14] in the general case.

A computation of the Case method was given by P. E. Ricci [15] and P. Natalini [16]
for the hypergeometric case. We used the generalized Lucas polynomials of the second
kind in order to represent the Case sum rules.

In this paper, starting from the above mentioned paper [14], we first extend our
method to this general case. Then, considering the recursive formula representing the
coefficients of PN(x) in terms of the coefficients of the differential operator (1.1), intro-
duced in [14], formula 13, we simply use the generalized Lucas polynomials of first kind
in order to compute numerically the Newton sum rules.

2 - The generalized Case method

We recall first the definition of the generalized Lucas polynomials of second
kind. They are defined as the solution of the bilateral linear homogeneous recur-
rence relation

F n4u1 F n212u2 F n221R1 (21)r ur F n2r , (n�Z)

corresponding to the initial conditions

F 2140, F 040, F 140, R , F r2241 .
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This solution is called the fundamental solution of the above mentioned recurren-
ce relation since all solutions of it can be expressed in terms of this particular sol-
ution (see e.g. [17], [18]).

E. Buendia, J. S. Dehesa, F. J. Gálvez [14] by generalizing the Case paper [13]
proved the following recursive relation for the yh Newton sum rules:
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j40
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assuming, by definition:

Jr
(i)40 for 0GrG i22 ,

and

Jr
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r

»
k41
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(xl1
2xlk

)
.(2.2)

The Jr
(i) are so called Case sum rules (see [13]), and in the last formula, !

c (l1 , R , li )

(1 , R , N)

means that the sum runs over all ls (s41, R , N) provided that (icj, liclj.
The Case sum rules Jr

(i) can be expressed in terms of the Newton sum rules yt

with tGr2 i11 by means of the following representation theorem:

P r o p o s i t i o n . For any N�N (NF2), r�N0 :4NN]0(, i�N , and s.t. 2G i
GN , then

Jr
(i)4 (i21) ! !

k40

N2 i

(21)kgN2k

i
h uk F N1r2 i2k21 (u1 , u2 , R , uN ) ,(2.3)

where F h (u1 , u2 , R , uN ) denote the generalized Lucas polynomials of second
kind in N variables.

The proof is exactly the same as in the above mentioned paper [15], [16], since for-
mula (2.3) gives a representation of the function Jr

(i) , which is a symmetric func-
tion of the zeros of PN (x), in terms of the coefficients of PN (x). The possibility to
obtain such a formula is a consequence of a well known Gauss’ theorem on sym-
metric functions (see e.g. [19], [20], p. 210), and obviously, this formula is inde-
pendent of the differential equation satisfied by PN (x). Note that if the polyno-
mials PN (x) satisfies an hypergeometric type differential equation (i.e. if ciG i , (i
40, 1 , R , m), then the representation formula (2.1) simplifies into:
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(1) ys11 , (sF0)(2.4)
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and every Js1 j
(i) can be computed in terms of the yt (tGs) so that starting

from

y04 !
i41

N

xi
04N ,

the recurrence relation (2.4) permits the computation of all Newton sum ru-
les.

In the general case, since in the right hand side of (2.1) the more general
combination

2a0
(1) ys212a1

(1) ys2R2ac1
(1) ys1c121

occurs, then for computing all Newton sum rules it is necessary to construct sepa-
rately the first values

y04N , y1 , R , yc121 .

But this is not sufficient, since a similar indeterminacy problem arises in the left
hand side, in which quantities Jr

(i) appear, involving yt with tGr2 i11, so that
Ji1 l

(i) is expressed in terms of the yt , where tG i1 l2 i114 l11Gs1ci2 i21
114s1ci2 i .

Then, in order that recurrence (2.1) works, it is sufficient to know yt for tGs
1q (sF0), where

q»4max ]ci2 i ; i40, 1 , 2 , R , m( ,(2.5)

i.e. to know

y04N , y1 , y2 , R , yq .(2.6)

In the above mentioned paper [14] the Authors give expressions for the initial
conditions (2.6) of the recurrence relation (2.1) in terms of the coefficients of the
polynomial PN (x), by using the Newton-Girard formulas:

(2.7)
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More precisely, initial conditions (2.6) are found by using (2.7) and the follo-
wing explicit recurrent expressions for the coefficients of PN (x) in terms of the
coefficients of the differential equation (1.1):

us42
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k41

s

(21)k us2k !
i40

m (N2s1k) !

(N2s1k2 i) !
ai1q2k

(i)

!
i40

m (N2s) !

(N2s2 i) !
ai1q

(i)

,(2.8)

where u0 »41. The Authors also note that eqs. (2.7), (2.8) give also possibility to
compute recursively the Newton sum rules yt , but due to high non linearity of
(2.7), they use only this method in order to compute initial condition (2.6), and
subsequently, they use recurrence relation (2.1).

Concluding this section we can say that even in this more general case (with
respect to the hypergeometric case considered in [15], [16]), representation for-
mula (2.3), Newton-Girard formulas (2.7), and initial condition obtained by
using (2.8) completely solve the problem of computing by recursion Newton sum
rules, where as in [14], the problem is solved only in particular (but relevant)
cases.

3 - Computation of Newton sum rules by using generalized Lucas polynomials of

the first kind

We recall here the definition of the generalized Lucas polynomials of the first
kind:

(3.1)

.
`
/
`
´

C N21 (u1, u2,R, uN)4u1

C N (u1, u2,R, uN)4u1
222u2

C N11 (u1, u2,R, uN)4u1
323u1 u213u3

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

C 2N22(u1,u2,R,uN)4u1C 2N232u2C 2N241R1(21)N22uN21C N21

1(21)N21NuN

and for hD2N22:

C h (u1 , u2 , R , uN )

4u1 C h212u2 C h221R1 (21)N22 uN21 C h2N111 (21)N21 uN C h2N .
(3.2)

Then, according to the above mentioned definition, the generalized Lucas po-



74 P. NATALINI and P. E. RICCI [6]

lynomial of the first kind C h (u1 , u2 , R , uN ) gives the sum of the (h2N12)-th
powers of the roots of PN (x), i.e. the Newton sum rule yh2N12 .

Then it is possible to formalize connection between coefficients of differential
equation (1.1) and Newton sum rules of zeros of PN (x), via the Newton-Girard
formulas (2.7), and avoiding the generalized Case method, by using the follow-
ing

P r o p o s i t i o n . Consider a polynomial PN (x), given by (1.2), which satisfies
differential equation with polynomial coefficients (1.1). Then, coefficients of
PN (x) are recursively linked to the coefficients of (1.1) by formula (2.8), and for
the Newton sum rules the following representation formula holds true:

yh4 !
k41

N

xk
h4C h1N22 (u1 , u2 , R , uN ) .(3.3)

This formula, provided that initial conditions (3.1) are computed, permits re-
cursive computation of moments via (3.2).

R e m a r k . Note that the starting set of the Lucas polynomials of first kind is
obtained by inverting by the Newton-Girard formulas (2.7). In formulas (3.1) the
coefficients u1 , u2 , R , uN are considered as independent variables. This assum-
ption is important since by the physical point of view it is interesting to test the
variation of moments in terms of the variation of coefficients.

4 - Numerical examples

We present here a numerical example in which computation of moments for
some generalized classical polynomials (obtained by adding Dirac measures to the
classical measures) considered in [12] is given by using the last formula which
uses representation formula (3.3) i.e. the generalized Lucas polynomials of the fir-
st kind.

Generalized Hermite polynomials H2N
A (x)

m 2 i1140 (N , A

A41 N49 N412 N415 N418
m 2 8.4637109 11.4714258 14.4763419 17.4797658
m 4 139.6449379 258.1025935 412.5723070 603.0491760
m 6 2.809.1547280 7.128.2790331 14.489.1565804 25.701.8602029
m 8 62.006.3541057 217.187.9087867 563.137.3668598 1.214.790.5356837
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A42 N49 N412 N415 N418
m 2 8.4560984 11.4660998 14.4723257 17.4765866
m 4 139.5210206 257.9840863 412.4589377 602.9403909
m 6 2.806.0889184 7.124.2801457 14.484.3112674 25.696.2299883
m 8 61.924.1366998 217.040.6653181 562.910.5387821 1.214.470.5089642

A43 N49 N412 N415 N418
m 2 8.4527979 11.4638539 14.4706655 17.4752925
m 4 139.4676167 257.9343205 412.4122004 602.8962088
m 6 2.804.7675299 7.122.6007871 14.482.3124078 25.693.9425318
m 8 61.888.7046914 216.978.8340725 562.816.8837283 1.214.340.4213211
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A b s t r a c t

Generalized Lucas polynomials of second and first kind are used in order to compute
the Newton sum rules of polynomial solutions of all ordinary differential equations with
polynomial coefficients.

* * *


