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S. AL I and R. NI V A S (*)

On submanifolds immersed in a manifold

with quarter symmetric connection (**)

1 - Preliminaries

Let M n11 be an (n11)-dimensional differentiable manifold of class C Q and
M n be the hypersurface immersed in M n11 by a differentiable immersion i : M n

KM n11. The differential di of the immersion i will be denoted by B so that the
vector-field X in the tangent space of M n corresponds to a vector field BX in that
of M n11. Suppose that the enveloping manifold M n11 is a Riemannian manifold
with metric tensor gA. Then the hypersurface M n is also a Riemannian manifold
with induced metric tensor g defined by

g(FX , Y)4 gA(BFX , BY) ,

X and Y being arbitrary vector fields in M n and F is a tensor of type (1,1). If the
Riemannian manifolds M n11 and M n are both orientable, we can choose a unique
vector field N defined along M n such that

gA(BFX , N)40

and

gA(N , N)f1 ,
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for arbitrary vector field X in M n . We call this vector field the unit normal vector
field to the hypersurface M n .

We now suppose that the Riemannian manifold M n11 admits a quarter sym-
metric metric connection given by [3]

Ã
XAYA4˜

.A
XAYA1pA(YA) FA(XA)2gA(FA(XA), YA) PA,(1.1)

for arbitrary vector fields XA and YA tangents to M n11, where ˜
.A

denotes the Levi-
Civita connection with respect to Riemannian metric gA, pA is a 1-form FA is a tensor
of type (1,1) and PA, the vector field defined by

gA(PA, XA)4pA(XA)

for an arbitrary vector field XA of M n11 . Also

gA(FA(XA), YA)4 gA(XA, FA(YA) ) .

Let us put

PA4BP1lN ,(1.2)

where P is a vector field and l a function on M n.
We have the following theorem:

T h e o r e m 1.1. The connection induced on the hypersurface of a Rieman-
nian manifold with a quarter symmetric metric connection with respect to the
unit normal is also quarter symmetric.

P r o o f . Let ˜
.
, the connection induced on the hypersurface from ˜

.A
with re-

spect to the unit normal N. Then we have

˜
.A

BX BY4B(˜
.

X Y)1h(X , Y) N(1.3)

for arbitrary vector fields X and Y on M n. Also h is the second fundamental ten-
sor of the hypersurface M n. Similarly, let ˜ be connection induced on the hyper-
surface from Ã with respect to the unit normal N. We have

Ã
BX BY4B(˜X Y)1m(X , Y) N(1.4)

for arbitrary vector fields X and Y of M n , m being a tensor field of type (0,2) on
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the hypersurface M n . From (1.1) we obtain

Ã
BX BY4˜

.A
BX BY1pA(BY) FA(BX)2gA(FA(BX), BY) PA .

Using (1.3) and (1.4), the above equation takes the form

(1.5) B(˜X Y)1m(X , Y) N4B(˜
.

X Y)1h(X , Y) N1p(Y) BFX2gA(BFX , BY) PA ,

where

pA(BX)4p(X)

and

FA(BX)4BFX .

Substituting (1.2) into (1.5), and using gA(BFX , BY)4g(FX , Y), we get

B(˜X Y)1m(X , Y) N4B(˜
.

X Y)1h(X , Y)N1p(Y) BFX

2g(FX , Y)(BP1lN) .

Comparison of tangential and normal vector fields yields

˜X Y4˜
.

X Y1p(Y) F(X)2g(FX , Y) P(1.6)

and

m(X , Y)4h(X , Y)2lg(FX , Y) .(1.7)

Thus,

˜X Y2˜Y X2 [X , Y]4p(Y) F(X)2p(X) F(Y) .(1.8)

Hence the connection ˜ induced on M n is quarter symmetric one [3].

2 - Totally geodesic and totally umbilical hypersurfaces

We define ˜
.

B and ˜B respectively by

(˜
.

B)(X , Y)4 (˜
.

X B)(Y)4˜
.A

BX BY2B(˜
.

X Y)

and

(˜B)(X , Y)4 (˜X B)(Y)4Ã
BX BY2B(˜X Y) ,
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X and Y being arbitrary vector fields on M n. Then (1.3) and (1.4) take the
form

(˜
.

X B) Y4h(X , Y) N

and

(˜X B) Y4m(X , Y) N .

These are the equations of Gauss with respect to the induced connection ˜
.

and ˜

respectively.
Let X1 , X2 , RXn be n orthonormal vector fields in M n . Then the fun-

ction

1

n
!
i41

n

h(Xi , Xi )

is the mean curvature of M n with respect to Riemannian connection ˜
.

and

1

n
!
i41

n

m(Xi , Xi )

is called the mean curvature of M n with respect to the quarter symmetric connec-
tion ˜ .

From this we have the following definitions:

D e f i n i t i o n 2.1. If h vanishes, we call M n as totally geodesic hypersurface
of M n11 with respect to the Riemannian connection ˜

.
.

D e f i n i t i o n 2.2. The hypersurface M n is called totally umbilical with re-
spect to connection ˜

.
if h is proportional to the metric tensor g.

We call M n is totally geodesic and totally umbilical with respect to quarter
symmetric connection ˜ according as the function m vanishes and proportional to
the metric tensor g respectively.

Now we have following theorems:

T h e o r e m 2.1. In order that the mean curvature of M n with respect to ˜
.

coincides with that of M n with respect to ˜, it is necessary and sufficient that the
vector field PA is tangent to M n11 .

P r o o f . In view of (1.7), we have

m(Xi , Xi )4h(Xi , Xi )2lg(FXi , Xi ) .
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Summing up for i41, 2 , R , n and dividing by n , we obtain

1

n
!
i41

n

m(Xi , Xi )4
1

n
!
i41

n

h(Xi , Xi )

if and only if, l40. Hence from (1.2), we have

PA4BP .

Thus the vector field PA is in tangent space of M n11 .

T h e o r e m 2.2. The hypersurface M n will be totally umbilical with respect
to the Riemannian connetion ˜

.
, if and only if it is totally umbilical with respect

to quarter symmetric connection ˜.

P r o o f . The proof follows easily from (1.7).

3 - Gauss, Weingarten and Codazzi equations

In this section we shall obtain Weingarten equations with respect to the quar-
ter symmetric metric connection Ã. For the Riemannian connection ˜

.A
, these equa-

tions are given by

˜
.A

BX N42BHX(3.1)

for any vector field X in M n , where H is a tensor field of type (1,1) of of M n defi-
ned by

g(HX , Y)4h(X , Y) .(3.2)

In view of the equation (1.1), we have

Ã
BX N4˜

.A
BX N1lBFX .(3.3)

Since pA(N)4 gA(PA, N)4l and gA(BFX , N)40.
Thus, from (3.1) and (3.3), we get

Ã
BX N42B(H2lF) X(3.4)

which is the equation of Weingarten with respect to the quarter symmetric metric
connection.
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Let M4H2lF . Then from (3.4), we get

Ã
BX N42BMX ,(3.5)

for any vector field X in M n . Let us denote the curvature tensor of M n11 with re-
spect to ˜

.A
by KA and that of M n with respect to ˜

.
by K. Thus

KA(XA, YA) ZA4˜
.A

XA˜
.A

YA ZA2˜
.A

YA˜
.A

XAZA2˜
.A

[XA, YA] Z
A

and

K(X , Y)Z4˜X ˜Y Z2˜Y ˜X Z2˜[X , Y] Z .

Then the equation of Gauss is given by

K(X , Y , Z , U)4KA(BX , BY , BZ , BU)1h(X , U) h(Y , Z)2h(Y , U) h(X , Z) ,

where

KA(XA, YA, ZA, UA)4 gA(KA(XA, YA) ZA, UA)

and the similar expression for K(X , Y , Z , U) for M n .
The equation of Codazzi is given by

(˜
.

X h)(Y , Z)2 (˜
.

Y h)(X , Z)4KA(BX , BY , BZ , N) .

We shall find the equations of Gauss and Codazzi with respect to the quarter sym-
metric connection. The curvature tensor with respect to the quarter symmetric
metric connection Ã of M n11 is, by the definition

RA(XA, YA) ZA4 Ã
XA
Ã

YA ZA2Ã
YA
Ã

XAZA2Ã
[XA, YA] Z

A .(3.6)

Putting XA4BX , YA4BY and ZA4BZ , we have

RA(BX , BY) BZ4Ã
BX

Ã
BY BZ2Ã

BY
Ã

BX ZA2Ã
[BX , BY] BZ .

By virtue of (1.4), (3.5) and (1.8), we get

RA(BX , BY) BZ4B]R(X , Y) Z1m(X , Z) MY2m(Y , Z) MX(

1](˜X m)(Y , Z)2 (˜Y m)(X , Z)1m(p(Y) FX2p(X) FY , Z)( N ,
(3.7)
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where

R(X , Y)Z4˜X ˜Y Z2˜Y ˜X Z2˜[X , Y] Z

is the curvature tensor of the quarter symmetric connection ˜ .
Putting

RA(XA, YA, ZA, UA)4g(RA(XA, YA) ZA, UA)

and

R(X , Y , Z , U)4g(R(X , Y) Z , U) .

Then from (3.7), we can easily show

(3.8) RA(BX, BY, BZ, BU)4R(X, Y, Z, U)2m(X, U) m(Y, Z)1m(Y, U) m(X, Z)

and

RA(BX , BY , BZ , N)4 (˜X m)(Y , Z)2 (˜Y m)(X , Z)

1m(p(Y) F(X)2p(X) F(Y), Z) .
(3.9)

Equations (3.8) and (3.9) are the equations of Gauss and those of Codazzi with
respect to the quarter symmetric connection.

4 - Submanifolds of codimensions 2

Let M n11 be an (n11)-dimensional differentiable manifold of differentiability
class C Q and M n21, an (n21)-dimensional manifold immersed differentiability
in M n11 by the immersion t : M n21KM n11 . We denote the differential dt of the
immersion t by B , so that the vector field X in the tangent space of M n21 corre-
sponds to a vector field BX in that of M n11 . Suppose that M n11 is a Riemannian
manifold with metric tensor gA. Then the submanifold M n21 is also Riemannian
with metric tensor g such that gA(BFX , BY)4g (FX , Y) for arbitrary vector fields
X , Y in M n21 [5].

If the Riemannian manifolds M n21 and M n11 are both orientable, we can
choose mutually orthogonal unit normals N

1
and N

2
defined along M n21 such

that

gA(BFX , N
1

)4 gA(BFX , N
2

)4 gA(N
1

, N
2

)40
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and

gA(N
1

, N
1

)4 gA(N
2

, N
2

)41

for arbitrary vector field X in M n21 [4].
We now suppose that the enveloping manifold M n11 admits a quarter symme-

tric metric connection given by [3]

Ã
XAYA4˜

.A
XAYA1pA(YA) FAXA2gA(FAXA, YA) PA ,

for arbitrary vector fields XA, YA in M n11 where ˜
.A

denotes the Levi-Civita connec-
tion with respect to the Riemannian metric gA, pA is a 1-form, FA is a tensor of type
(1,1) such that gA(FAXA, YA)4 gA(XA, FAYA), and PA the vector field defined by gA(PA, XA)
4pA(XA), for arbitrary vector field XA of M n11 .

Let us now put

PA4BP1lN
1
1mN

2
,(4.1)

P being a vector field in the tangent space of M n21 and l , m functions of
M n21 .

We have the following theorem:

T h e o r e m 4.1. The connection induced on the submanifold M n21 of codi-
mension 2 of the Riemannian manifold M n11 with quarter symmetric metric
connection is also quarter symmetric.

P r o o f . Let ˜
.

be the connection induced on the submanifold M n21 from the
connection ˜

.A
on the enveloping manifold M n11 , with respect to unit normals N

1
and N

2
. Then we have [4]

˜
.A

BX BY4B(˜
.

X Y)1h(X , Y) N
1
1k(X , Y) N

2
(4.2)

for arbitrary vector fields X , Y of M n21 , where h and k are second fundamental
tensors of M n21 . Similarly, if ˜ be connection induced on M n21 from the quarter
symmetric metric connection Ã on M n11 , we have

Ã
BX BY4B(˜X Y)1m(X , Y) N

1
1n(X , Y) N

2
,(4.3)

m and n being tensor fields of type (0 , 2 ) of the submanifold M n21 . We also ha-
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ve, in view of (1.1)

Ã
BX BY4˜

.A
BX BY1pA(BY) FA(BX)2gA(FA(BX), BY) PA .

In view of (4.1), (4.2) and (4.3), we have

B(˜X Y)1m(X , Y) N
1
1n(X , Y) N

2

4B(˜
.

X Y)1h(X , Y) N
1
1k(X , Y) N

2

1p(Y) BFX2g(FX , Y)(BP1lN
1
1lN

2
)

(4.4)

where pA(BX)4p(X) and FA(BX)4BFX .
Comparing tangential and normal vector fields to M n21 , we get

˜X Y4˜
.

X Y1p(Y) FX2g(FX , Y) P ,(4.5)

where l and m are chosen such that

( a ) m(X , Y)4h(X , Y)2lg(FX , Y) and

( b ) n(X , Y)4k(X , Y)2mg(FX , Y) .
(4.6)

Thus,

˜X Y2˜Y X2 [X , Y]4p(Y) FX2p(X) FY .(4.7)

Hence the connection ˜ induced on M n21 is quarter symmetric [3].

5 - Totally geodesic and totally umbilical submanifolds

Let X1 , X2 , R , Xn21 be (n21) orthonormal vector fields on the submanifold
M n21 . Then the function

1

2(n21)
!

i41

n21

]h(Xi , Xi )1k(Xi , Xi )(

is the mean curvature of M n21 with respect to the Riemannian connection ˜
.

and

1

2(n21)
!

i41

n21

]m(Xi , Xi )1n(Xi , Xi )(

is the mean curvature of M n21 with respect to ˜ [5].
Now we have the following definitions:
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D e f i n i t i o n 5.1. If h and k vanish separately the submanifold M n21 is called
totally geodesic with respect to the Riemannian connection ˜

.
.

D e f i n i t i o n 5.2. The submanifold M n21 is called totally umbilical with re-
spect to the connection ˜

.
if h and k are proportional to the metric tensor g .

We call M n21 is totally geodesic and totally umbilical with respect to the quar-
ter symmetric connection ˜ according as the functions m and n vanish separately
and are proportional as metric tensor g respectively.

We now prove the following theorem:

T h e o r e m 5.1. In order that the mean curvature of M n21 with respect to
connection ˜

.
may coincide with that of M n21 with respect to the connection ˜ , it

is necessary and sufficient that PA is in the tangent space of M n11 .

P r o o f . In view of (4.6), we have

m(Xi , Xi )1n(Xi , Xi )4h(Xi , Xi )1k(Xi , Xi )2 (l1m) g(FXi , Xi ) .

Summing up for i41, 2 , R , (n21) and dividing by 2(n21), we get

1

2(n21)
!

i41

n21

]m(Xi , Xi )1n(Xi , Xi(4
1

2(n21)
!

i41

n21

]h(Xi , Xi )1k(Xi , Xi(

if and only if,

l4m40 .

Hence from (4.1), it follows that PA4BP . Thus the vector field PA is in the tan-
gent space of M n11 .

T h e o r e m 5.2. The submanifold M n21 is totally umbilical with respect to
the Riemannian connection ˜

.
if and only if it is totally umbilical with respect to

the quarter symmetric connection ˜ .

P r o o f . The proof follows easily from equations (4.6(a) and (b)).
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6 - Curvature tensor and Weingarten equations

For the Riemannian connection ˜
.
, the Weingarten equations are given by [4]

( a ) ˜
.A

BX N
1
42BHX11(X) N

2
and

( b ) ˜
.A

BX N
2
42BKX11(X) N

1

(6.1)

where H and K are tensor fields of type (1,1) such that

( a ) g(HX , Y)4h(X , Y) and

( b ) g(KX , Y)4k(X , Y) .
(6.2)

Also, making use of (1.1) and (6.2) (a), we get

Ã
BX N

1
42BHX11(X) N

2
1pA(N

1
) BFX2gA(BFX , N

1
) PA .

Since

pA(N
1

)4 gA(PA, N
1

)4l

and

gA(BFX , N
1

)40 .

We have

Ã
BX N

1
42B(H2lF) X11(X) N

2
.(6.3)

Similary, from (1.1) and (6.2) (b), we get

Ã
BX N

2
42B(K2mF) X21(X) N

1
.(6.4)

Putting

H2lF4M1

and

K2mF4M2 .
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We get

( a ) Ã
BX N

1
42BM1 X11(X) N

2
and

( b ) Ã
BX N

2
42BM2 X21(X) N

1

(6.5)

(6.5) (a), (b) are equations of Weingarten with respect to the quarter symmetric
metric connection Ã.

The Riemannian curvature tensor for quarter symmetric metric connection
can be obtained as follows.

Let RA(XA, YA) ZA be the Riemannian curvature tensor of the enveloping manifold
M n11 with respect to quarter symmetric metric connection Ã.

Then

RA(XA, YA) ZA4 Ã
XA
Ã

YA ZA2Ã
YA
Ã

XAZA2Ã
[XA, YA] Z

A .

Replacing XA by BX , YA by BY and ZA by BZ , wet get

RA(BX , BY) BZ4Ã
BX

Ã
BY BZ2Ã

BY
Ã

BX BZ2Ã
[BXBY] BZ .

Using (4.3), we have

RA(BX , BY) BZ4Ã
BX]B(˜Y Z)1m(Y , Z) N

1
1n(Y , Z) N

2
(

2Ã
BY]B(˜X Z)1m(X , Z) N

1
1n(X , Z) N

2
(

2]B(˜[X , Y] Z)1m( [X , Y], Z) N
1
1n( [X , Y], Z) N

2
( .

Again by virtue of (4.3), (6.5) (a) and (b) and the condition (4.7), we get

RA(BX , BY) BZ4BR(X , Y) Z1m(p(Y) F(X)2p(X) F(Y), Z) N
1

1n(p(Y) F(X)2p(X) F(Y), Z) N
2

1](˜X m)(Y , Z)2 (˜Y m)(X , Z)( N
1

1](˜X n)(Y , Z)2 (˜Y n)(X , Z)( N
2

1B]m(X , Z) M1 Y2m(Y , Z) M1 X1n(X , Z) M2 Y
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2n(Y , Z) M2 X(11(X)]m(Y , Z) N
2
2n(Y , Z) N

1
(

21(Y)]m(X , Z) N
2
2n(X , Z) N

1
( ,

where R(X , Y) Z being the Riemannian curvature tensor of the submanifold with
respect to the quarter symmetric connection ˜ .
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S u m m a r y

Semi symmetric metric connections have been studied by Imai [2]. Submanifolds of a
Riemaniann manifold with semi-symmetric metric connection have been studied by Ram
Nivas [5] and others. Professors Mishra and Pandey [3] defined the notion of quarter
symmetric connection in a differentiable manifold. The aim of the present paper is to stu-
dy hypersurfaces and submanifolds of a manifold admitting quarter symmetric connec-
tions. Some interesting results have been established on such manifolds.
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