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Uniformly distributed sequences

and rings of complex numbers (**)

1 - Introduction

In this paper we want to study the distribution properties of special sequences
related to the factorization of elements in rings of complex numbers. Our work is
inspired by E. Hlawka’s article [H1990], where the author investigated sequences
in connection with Gaussian integers. We will extend these results to rings with
divisibility theory.

As usual N, Z, Q, R and C denote the positive integers, the ring of integers,
the field of rational, of real and of complex numbers, respectively. Let {x, })_,
={x, ..., xy} be a finite sequence of points x, in the s-dimensional unit cube
[0, 1)*. Then its discrepancy is defined by

1
Dy({x, }N_1) = sup N {n<N:x,el}—A)]|,
I

where the supremum is extended over all subintervals I = [a,, b;) X ... X [a,, b)
c[0, 1)* of s-dimensional Lebesgue measure A(J). An infinite sequence {x, },—; in
[0, 1)* is called uniformly distributed if Nh_r)noc Dy(w y) =0, where w 5 denotes the
initial string {ax;, ..., ®x} of the sequence {w,}. The most classical example of a
uniformly distributed sequence is given by the multiples «, =na(mod 1) of a
point a=(ay, ..., a,)€[0,1)’, where 1, aq, ..., a, are linearly independent
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over Q and where (mod 1) means the componentwise taken fractional part. For an
introduction to the theory of uniformly distributed sequences we refer to the mo-
nographs of L. Kuipers and H. Niederreiter [KN1974] and E. Hlawka [H1979];
for more recent developments in this theory and various applications see
[DT1997].

In section 2 of the present paper we establish quantitative refinements and
extensions to rings with divisibility theory (in the sense of Borevic-Shafarevic
[BS1966]). In the final section 3 applications to diophantine approximation on the
unit circle and to the construction of uniformly distributed points on the sphere
are presented.

2 - Sequences in [0, 1)’ and rings with divisibility theory

In the following we consider a ring R c C with divisibility theory and canonical
homomorphismus 3 : R — G, where G is the semigroup with unique factorization.
For more details see the book of Borevic-Shafarevic [BS1966]. By (x, y) we will
denote as usual the greatest common divisor in G and by @ the complex conjugate
of a. Our first simple result is the following:

Theorem 1. Let ay, ..., a,eR be such that a;eR, j=1, ..., s, and let
(Y(aj), wlag) =1 for jZk and (yp(aj), p@,)) =1 for arbitrary j, k.
Put for j=1,...,s

a ; .
J = o279, (pje[(), 1).
laj |

@

Then the numbers 1, @, ..., ¢, are linearly independent over 7.

Proof. Suppose

hl(p1+"'+h8(p8+hs+1:0’ h/JEZ

Then
2mihy @+ ... + 2mih, @+ 2tihg 1 =0,

thus by (1) we obtain
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Therefore

Iy

a ... hy — = —hg

A ay ... o5,
and applying the homomorphism 1 to the last equality we obtain #; = ... = h, = 0.
Hence also %,,,=0, which proves linear independence. ™=

From now on let us assume that R is a discrete ring, i.e. |a| =0 >0, for ar-
bitrary a # 0. For more examples we refer to [BS1966] or [N1990]. We will use
the following notation: a;= |a;|,7=1, ...,s, A;=a,...a,, where a; denote
numbers in R as defined in (1). Furthermore we suppose that |a,;|>1,
j=1,...,s.

Theorem 2. Let ¢ = (¢, ..., @) be a point in [0, 1)°, where ¢ ; is given
as in (1) and consider the finite sequence wy= {2kp(mod 1), k=1..., N} of
points i [0, 1)°.

Then the discrepancy Dy = Dy(w y) of the sequence w y satisfies

1
DN:O( ).
log N

Proof. We start from the Erdos-Turdn-Koksma inequality (see
[DT1997])

1
@ DysC(+, S R Wy] ),
M o<[ulsm
where |kl = max{|h;|;j=1, ..., s} and R(h) = [T max(1, |hi|), M=1 and
: A .

1 g: dmik <h, ¢ >
Wy(h) = — mik<h, ¢ >
n(h) Nk:le

(h, @) denoting the standard scalar product. Using Theorem 1 we obtain

2
N|e4m'(h,q)> -1 |

hl hs.
i aq s |
e (L) (2
a; ]

|Wy(h) | <

)

and

Q

;  a,feR,

Ql

=|
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where |B| =a/"!...al"!. Thus
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[4]

|e4m'(h,,(p>_1|: 2_1‘: a_ﬂ‘gi,
B B 18]
which yields
2 2ainl .. a"|
W, < 2PL_ 2
No No
From R(h) =1 and (2) we obtain
DN$05 i—{—i a/lhllln_a/slhsl N
M  No <M
Now it holds
s M s M+l _1q
3) > ol el <25 [] Zg/jh./'zzsl_[]—_
lInll < M J=1 k=0 " =1 a;—1
Let us take a constant K = K(a,, ..., a,) such that
. —_ .7M
G7% <k,
ij— 1
Thus we obtain from (3)
S afl . a)ml <2 K AN,
[In] < M
and so we have
1 2
4) DysC,| — + —2°K°A}"|.
M No
log N
Put now M = L. Inequality (4) yields
2 log A,
2 log A, 2 1
DNsCS(—Og : 4 —ZSKSNW) =0( )
log N oN log N

which completes the proof. =
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In the following we will sketch a continuous analagon. Let w(t) denote a conti-

nuous curve on the s-dimensional torus R*/Z°=[0, 1)’. The corresponding
discrepancy

Dyr(w(t)) = Sgp

1 T
;Oj 1,((8) dt — A(I)

is defined as the maximal deviation of the mean values with respect to time and
with respect to space; 1; denotes the characteristic function of the s-dimensional
interval I. For more details on continuous discrepancy we refer to [DT1997].

Theorem 3. Let us consider the function
w(t) =2tp (mod1) tel0, T1,

where ¢ 1s chosen as i Theorem 2. Then we have

1
D = — .
r(w()) =0 ( log T )

Proof. In this case we use the continuous version of Erdos-Turian-Koksma’s
inequality, see [DT1997], page 279. Put
7
W (h) —— e4m’t<h, (p)dt ,
r . Of

thus

2
Wrh)| € ——.
WS o o]

For each ¢t we have |t| = |e*™ —1|, and so

2
Wph) | < — o =

2
Z alml [
T|62ﬂi<ha¢>_1| TCLI A .

Following the proof of Theorem 2 we obtain the result. =
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3 - Applications

In the following let A(N, J) denote the number of positive integers k < N such
that 2k¢ (mod 1) belongs to the subinterval J of [0, 1)°, where ¢ is a pointin [0, 1)*
chosen as in Theorem 2. Obviously, A(N, J) = N(V(J) — Dy). Therefore the
inequality

V(J) > Dy
yields that 2k (mod 1) eJ for some k.
Put a;=u;+1w;, j=1, ..., s. Then
a; u; + W;
i Y% J anio; .
— = — ="M, j=1,...,s,
aj Mj—’L/Uj
and so
a; by u;, e+ W g
dnikg; _ Y, ko . .
e TP = — ——,—pjyk-l-v/‘j,k, j—l,...,S,
a; Uj, e — Wik
where
2 2
) I 20, 1V,
kT T e kT T T e
Uik T Vjk Uik T 5k

Using this notation we will establish a result for simultaneous diophantine approxi-
mation on the unit circle.

Theorem 4. Let (Ay, By), ...,(A,, By) be points on the unit circle. Then the-
re exist positive integers k < N such that

1 1

C S C s
A—p <= 1B-r . < ,
|4 = pj | (logN) | B =7 k| (logN)

for some constant ¢ > 0.

Proof. Let Z;=A;+iB;=¢*"i and consider the interval J= xi_,[y;
_D$, v +D1§]' Then V(J) =128DN>DN, hence 2k¢ (mod 11) eJ for some k.
This yields |y; — 2k, | <2aD; , and so |Z; — e*™i | <2aD; . Thus the asser-
tion follows. =
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In the following we present an application to the construction of uniformly di-
stributed points on the sphere. Consider the unit sphere K : X2 + X + X2 =1in R®
with surface area 47 and equipped with a probability measure

1
PS) = UdK

(for each measurable set S c K). Let F' be a real valued continuous function defined
on this sphere, then

1
[Fap= — [[FaK.
K dm K
Consider now the parametrization of K given by
Xl = \/ 1- (1 - 2t1)2C082.7Tt2 =: gl(tb tz)
Xz = \/ 1- (1 - 2t1)2Sin2.7Tt2 =: 9’2(151, tz)

X3 =1-2t; =: g5(ty, ta),

for ¢, t,[0, 11.
Setting

5) f(t, t) = F(g1, g2, 93)

we obtain after simple calculations
11
”FdK:zmj jf(tl, t,) dt, dt,.
K 00
Thus we derive
11
6) j FdP = j j f(t,, t,) dt, dts.
K 0 0

LetI2=1[0, 1] x [0, 1]and (u;, v}), ..., (uy, vy) € I?be a sequence in [0, 1)*with
discrepancy Dy . Suppose that f given by (5) is of bounded variation V( f) in the sen-
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se of Hardy and Krause. Then by Koksma-Hlawka’s inequality (see [DT1997]) we
have

1 N 11
© = 3 flu, v = [ [, &) dydty| S V(f)-Dy.
N k-1 00

Put now X(k) = (g, (uy, v), 9oy, Vi), 95y, ) for k=1, ..., N. Then X(k) are
points on the sphere K, and F(X(k)) =f(u;, v;). Thus by (6) and (7) we
obtain

1 XN
&) ‘ — > F(X(k)) - J’FdP‘ < V(f)-Dy.
N k=1 g

Let ¢ = (¢4, ..., ¢,)€[0,1)° such as in Theorem 2. Consider the vector @

1 1

= (go Lyeeoy@ gy — ) = (go, — ), and the sequence @y={2k@(modl), k=1...N}
2N 2N n Y

For abitrary sequence {x,}Y_; it holds NDN([(acn, ﬁ)} )<<rn<a§7<mDm({xn}le)

and so by Theorem 2 we have n=1

1
9 Dy(oy) = O( )
MW log N
Let a be a Gaussian integer relatively prime with its complex conjugate @. Consi-
der ¢ [0, 1) such that |L =¢%™%  Then

a
a . a
— = e4mq0’ ( _
a

k
) — e41cm¢’
a

and moreover

(a)k af — b2 w 2a, by
JR— = /L .
a af + b? af + b

Thus

af — bf . 2ay, by,
TR, sind kg = 5
Qaj; + bk Qay, + bk

cosdrky =

where ay, b, are given by linear reccurence relations a, =a, b, =0, a;,, = aq,
— bby, by, 1 =bay + ab,. Hence, by (9) the two-dimensional sequence of points

k 1
{(Zkgo(mod 1), — )], k=1, ..., N has a discrepancy Dy =0 ( —— ) Therefo-
N log N
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re, for the points

ok k® aZ-b2 [2k kZ 2 ok
X(k,N) = ———-M,\/———- T T
N NZ? a?+0bf N NZ a?+0bf N
we obtain
(10) ’ S px N))—”FdK‘ —0( ! )
N k=1 ’ I log N ’

Now, let us consider the pointset w(N) = {X(k, N), k=1, ..., N} and a Jordan
measurable set Sc K. Then (10) yields

4
1) lim -2 card (w(N) N S) = area s .
N— N

We conclude with the following result.

Theorem 5. Let {X(k)} be the sequence {w(1), w(2), w(3)...} consisting
of the blocks w(N), N=1,2, .... Then {X(k)}y-1 is uniformly distributed on
K.

Proof. For ScK put A(S, N) = |{k<N; X(k)eS}|. Let k(N) be defined
by a number that |w(1)| + ... + |w(k(N)) | SN < |w(1)| + ... + |w(k(N) +1)]|.
Then A(S, N)= |w(1)NS| + ...+ |wk(N))NS| + O(k(N)). Thus we obtain
from (11) that for any Jordan measurable set Sc K

A(S, N) _ area (S)

hm )
N—o N 47

which proves uniform distribution of the sequence {X(k)};-,. =
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Abstract

The discrepancy of special sequences related to the factorization of elements in rings
with diwvisibility theory is estimated. Applications to diophantine approximation on the
unit circle and to the construction of uniformly distributed sequences on the sphere are
established.



