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On the H-theorem in lattice kinetic theory (**)

1 - Introduction

Over the past decade the lattice approach to hydrodynamics has received con-
siderable attention as an efficient alternative to discretization of the Navier-
Stokes equations for the numerical solution of hydrodynamie problems [1]. In par-
ticular, in the Lattice Boltzmann method [2], one considers populations of ficti-
tious particles moving about in a discrete lattice and colliding on lattice sites ac-
cording to simplified rules designed in such a way as to recover hydrodynamic be-
haviour in the large-scale limit.

The state of the system is then described by a discrete distribution function
N;(r, t), where 1 =1, ..., b labels discrete velocities ¢;, associated with outgoing
links at each site r of a regular and sufficiently isotropic lattice.

Populations are updated at discrete time steps ¢ according to a simple stream-
and-collide first-order equation,

(1) Ni(r+ci,t+1)_Ni(r,t):Ai.

In the following, we restrict our attention to the isothermal Navier-Stokes
equation. For this case, the collision integral 4; must obey only the local conser-
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vation laws
b
@) 2 {1, ¢} 4;=0
i=1

b
for the local hydrodynamic fields, i.e., the density o = >, N,(r, t), and the mo-
b i=1
mentum ou, = >, ¢, N;(r, t).
i=1

Here a =1, ..., d labels the Cartesian components of d-dimensional vectors.
If the long-time large-scale limit of Eq. (1) recovers the Navier-Stokes equation,
then hydrodynamics is implemented in a fairly simple, fully discrete kinetic
picture.

In the following, we denote IV as the b-dimensional vector of populations in ki-
netic space.

An important part of any realization of the Lattice Boltzmann method is the
problem of the local equilibrium N*.

From the perspective of classical kinetic theory [3], local equilibria are found
as local minima of a convex function H(N), subject to constraints fixed by the hy-
drodynamic fields,

b
3) ;{1, Cioy Nit= {0, otg } -

The convex function H (called the entropy function in the sequel) plays the
role of the Boltzmann H-function in classical kinetic theory.

In addition, in order to recover the Navier-Stokes equation up to second-order
accuracy in u, the local equilibrium must fulfill the condition

b
(4) '21 Cia CifNieq = QUyq /M/ﬁ + QCSZ 0 aBs
i=

where ¢, is the constant speed of sound.

One of the main open questions of the Lattice Boltzmann method is: Do there
exist entropy functions such that the corresponding local equilibria satisfy si-
multaneously the additional condition (4) to the order of accuracy of the
method?

Following ref. [4], such entropy functions will be named perfect, in that they
erase any effect of the underlying lattice discreteness. Besides the theoretical in-
terest on its own, this question is relevant to the practical issue of numerical sta-
bility of the Lattice Boltzmann method.

The Boltzmann entropy function is perfect in the context of classical continu-
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um Boltzmann equation, which is the only kinetic theory known so far where the
above question is answered.

Indeed, if the classical definition of local equilibria is relaxed, it is possible to
introduce a local equilibrium ansatz N (typically, a second-order polynomial in
u,) which satisfies both conditions (8) and (4), regardless of any difference in
their origin.

The choice of the ansatz is usually not unique, and different realizations may
differ drastically: some are relatively stable while others are not.

On the other hand, if the local equilibrium is supported by some entropy func-
tion, then the Lattice Boltzmann method can be equipped with the H-theorem,
and the stability problem can be studied in a more controlled way.

The first problem in constructing the local equilibrium in the Lattice Boltz-
mann method is as follows: The seemingly natural’ choice for the entropy func-
tional as the Boltzmann entropy is not solvable exactly, that is, the local equilibri-
um cannot be found as an explicit function of the local hydrodynamie fields (unlike
the classical case of continuous velocities and local Maxwell distribution func-
tion).

This is not a mere technicality, but a basic problem related to phase-space dis-
creteness. In fact, Galilean invariance (G-invariance), a basic symmetry of classi-
cal mechanics, requires kinetic equilibria to depend on the relative speed P
(sometimes called «peculiar» speed) rather than on the molecular speed v
itself.

On the other hand, in the continuum, entropy additivity imposes a Maxwellian

_ 2
dependence e~ Y , where vy = \/kpT/m is the thermal speed setting the
v

T -
natural scale for molecular fluctuations around the fluid speed . Since the
Maxwellian is a trascendental function, large departures from global equilibria (u
=0) require a large (virtually infinite) number of terms in the series expan-
sion:

5) e’( ) =e o EZ:OHn(v/vT)(u/vT)”

where H, are the Hermite polynomials.

These terms correspond to excitations on top of the uniform «ground state»
and are described by higher and higher order polynomials in the velocity variable.
It is therefore natural that a finite set of discrete speed can only support a finite
number of these excitations, thereby breaking Galilean invariance. On the other
hand, G-invariance can certainly be restored if local equilibria are no longer rep-
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resented by exponential functions. But then, the H-theorem is no longer valid, at
least not in the classical sense.

To attempt a way out of this unconfortable situation, it is useful to distinguish
several properties of entropy functions which are almost given for granted in the
continuum and which becomes instead highly non trivial in a discrete phase space.
These are:

® G-invariance
® Solvability
® Realizability

By solvability we imply the possibility to express the Lagrangean parameters
as explicit (analytie) function of the conserved hydrodynamic variables, i.e. density
o and flow speed u, for the case in point.

Realizability applies to the domain of hydrodynamic parameter space where
the local equilibria derived by a given lattice entropy are real-valued and in the
range [0, 1] (fluid density made 1). Realizability is a necessary (but not sufficient)
condition for stability.

2 - Solvable lattice entropies

Following [5], we shall first consider a special convex entropy function,

b
(6) H= X N VN,

chosen in such a way that the local equilibrium s the explicit function of the hy-
drodynamic fields. Incidentally, we observe that this is a Tsallis entropy T, with
exponent g =3/2 [6].

This construction is merely an illustration to get an idea of what local equilib-
ria derived from a solvable lattice entropy may look like, and how the H-theorem
modifies under the discrete time dynamics.

We consider lattices which satisfy usual symmetry requirements, E Ci, =0,
and 2 CiuCig=&"0 ) «p- The following local equilibrium minimizes the functlon (6),

subJect to the constraints of fixed ¢ and u:
) Nf=(o/b)[R + ¢, 2u-¢; + (4¢/R) " (u-¢;)].

Here c2=b 1£% is the sound speed squared, and R is a function of the local
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Mach number squared, MZ*=u?/c?,

[1+V/1-M2].

1
®) R= 3
The above equilibria are G-compliant (R = 1) only in the limit of vanishing
flow, M — 0. At any finite flow speed, a quadratic anomaly in the Mach-number is
apparent. This is the typical situation of first-generation Lattice Gas and Lattice
Boltzman models.

The equilibrium (7) is positive for M <1 but it does not exist, at least not as a
real-valued function, for M > 1. This means that no collisional drag is able to
equilibrate the non-equilibrium gradients produced by supersonic motion. It is
worth pointing out that, in a discrete lattice, the distinction between «supersonic»
and «superluminal» is less sharp than in ordinary fluids because the sound speed
is a comparable fraction of the maximal particle speed (lattice light speed).

This is similar to the relation holding for a relativistic ideal fluid [7]. This con-
veys a flavour of relativity, as also suggested by the equation 8: beyond M > 1 lo-
cal equilibria become purely imaginary, somehow like the mass of a material par-
ticle at superluminal speeds.

Relativistic analogies have been noticed pretty early by T. Toffoli [10], who
speculates that «lattice gas might know more physics they are credited with». The
idea is intriguing but, as far as we can judge, quantitatively untenable. Apart from
becoming purely imaginary at supersonic/luminal speeds, the lattice relativistic
factor R has manifestly little to do with the Lorentz contractor \/1 —v2/c2. In
fact, the lattice factor R is dictated solely by the functional form of the entropy 6,
not by a quest of frame invariance of the lattice light speed.

Let us proceed with the proof of the discrete H-theorem.

Proof of the discrete H-theorem. We denote by = {N;|N;
=0, |[u[N]| <c,} the set of admissible non-negative populations which can be
mapped onto the equilibrium (7).

The knowledge of the local equilibrium in the explicit form can be utilized in a
straightforward way by plugging it into the Lattice BGK collision integral
[11]:

4;=—w(N;—N{[o[N], u[N]]),

where o is the relaxation parameter. In the standard version of the Lattice BGK
method, the parameter w is assumed to take values in the so-called linear stability
interval, w € [0, 2]. This restriction is dictated by the requirement of the non-
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negative viscosity, according to the well-known expression [2]
9) v~cZ(l/w —1/2).

The value w = 2 corresponds to the zero viscosity limit, most relevant to appli-
cations to turbulent flows.
In continuum kinetic theory [3], the local entropy production,

oH
o_igl(aNi)Ai[N]’

is a non-positive function.

This is sufficient to prove the H-theorem in the continuum time case in its
usual form: the time derivative of the entropy equals the entropy production,
hence it is a decreasing function of time.

The situation is different if time is discrete: For simplicity, let us consider the
space-independent version of the Lattice BGK equation:

(10) N;t+1)=(1-w)N;{)+oNH.

The average velocity u is a constant, and if the initial population is admissible,
and if 0 <w <1, then N;(t) e for all £=0.
The straightforward application of the convexity inequality gives

(11) Hit+1)-H@®) <olH*-H®)].

From the variational origin of N/ it follows that the right-hand side of
Eq. (11) is nonnegative, which proves the H-theorem in the space-independent
case for we [0, 1], the entropy decreases at each time step [5], [8].

The second half of the linear stability interval is more difficult, and here we
shall mention only the asymptotic result for populations close to the equilibrium

[5]:

(2-w)

(12) H,(t+1) - H,(t) = ,(t).

where the subscript ¢ indicates quadratic approximation H, = E(Ni — N2,

In fact, the equation 12 defines the entropy production for the Lattice Boltz-
mann fluid.

Eq. (12) also implies that, close to equilibrium, variation of the entropy per
time step is positive if 0 <w <2, that is on the entire linear stability interval.
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However, this is deceivingly simple, and a justification is required because
N;(w) = (1 —w) N; + oN/? may become negative for w >1.

A qualitative argument is as follows: If |u| < c,, the equilibrium (7) is positive,
and therefore it has a nonempty positive neighborhood U.

Thus, N/ has a nonempty neighborhood (Ug in the admissible domain U, = U
N P, where P is the hyperplane of populations with fixed u).

This neighborhood U, can be taken small enough to make H, a valid approxi-
mation, and each of the two states N;* = N/ + AN, belong to U,. (Then the seg-
ment L joining N;* and N,  also belongs to Uy, and it consists of two parts, L.
(between N;* and N/9)).

Fig. 1. - Stabilization procedure, bulk case. Curves represent entropy levels, surrounding
the local equilibrium N®. The solid curve L is the entropy level with the value H(V)
= H(N*), where N is the initial, and N* is the conjugate population. The vector A
represents the collision integral, the sharp angle between A and the vector —VH reflects
the entropy production inequality. The point M is the minimum entropy state on the
segment [N, N*] (see also Ref. [12]). The result of the collision update is represented by
the point N(B). The choice of B shown corresponds to the «overrelaxation»: H(N(B))
> H(M ) but H(N(B)) < H(N). The particular case of the BGK collision (not shown) would
be represented by a vector Aggk, pointing from N towards N°, in which case M = N.
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Let us take one of the populations N;= (say, N;") for the initial condition, and
consider H, at the subsequent time as a function of w.

This function H, (w) decreases as o varies from 0 to 1. As w exceeds 1, the
function H,(w) starts increasing again but its value remains less than in the in-
itial state N;*, until w reaches the value 2. Then H,(2) = H,(0), and the update
has arrived into N; .

If w €]0, 1], populations N, (%) are confined to the segment L, , and they tend
to N/ along a one-sided, local, discrete trajectory.

If we[1, 2[, populations N,(%) are confined to the segment L. They also tend
to N/? but in a different way, i.e. by jumping («overrelaxing») back and forth from
L. to L=.

This qualitative consideration highlights the entropic origin of the linear sta-
bility interval, and indicates the importance of pairs of states with equal entropy.
The general case of the H-theorem is qualitatively represented in Figure 1.

This consideration explains why it is impossible to prove the nonlinear H-the-
orem for the standard version of the Lattice BGK equation with a fixed stability
interval w € [0, 2] on its second half (w € [1, 2]): For a generic population taken
far away from the local equilibrium, one has to explicitly take into account the de-
formation of the levels of the entropy function. In the presence of a generic defor-
mation, the two-sided approach to local equilibria may well run away and never
converge.

3 - Perfect lattice entropies

Perfect lattice entropies have been discussed already in the literature and con-
sequently we shall only present a brief survey of the main ideas. Perfect entropies
can be found which are valid up to the fourth power in the lattice Knudsen num-
ber, i.e. the ratio between the lattice spacing and the shortest hydrodynamic
scale.

These entropies have the usual NlogN form of continuum kinetic theory but,
owing to the finite number of speeds, they are not solvable, i.e. it is not possible to
find an analytic form of the lagrangean parameters as a function of the hydrody-
namic fields. Solvability, however, can be regained by expanding the Lagrangean
parameters to second order in the Mach number.

A simple example will illustrate the point.

Let us consider a one-dimensional lattice with spacing c. The velocity set
at each lattice site consists of three discrete speeds, ¢, =c¢, ¢c. = — ¢, and
¢y =0.
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We consider H-functions of the form
(13) H=hy(Ny)+h (N.)+hi(N_).

Here h, and &, are two yet unknown convex functions. The local equilibrium is
found as the minimum of H, subject to given hydrodynamic fields ¢ and ou.

Denoting by p o, 1(x) = [hg, ;(x)]~" the inverse of the derivatives of the func-
tions 7y, (x), a formal result of this minimization reads:

(14) N¢t'=uo(a),
(15) N =u,(a=ic)

The Lagrange multipliers a and 4 are related to ¢ and ou via the usual mass-
momentum-momentum flux constraints:

(16) tola) +ui(a+ic) +pu(a—4c) =0,
am cu(a+ Ac) —cu(a—Ac) = ou
cui(a+2c)+ciuq(a—Ac) = ou’+ ocl.
For the time being, the sound speed c, is regarded as a free parameter.
Expressing the right hand side of the latter equation in terms of u;, with the
help of the constraints, we find a single non-linear functional equation for the un-
knowns u; 1=0, 1.

T[/’tO) Ui, Csz] 262[/11(@"'10) +[M1(a_i(3)]

B c?lui(a+Ac) —u (a—Ac)P
uola) +u(a+2Ac)+u(a—Ac)

(18)

—cZ[ug(a) +u(a+ic) +u(a—Aic)]=0.

This equation can be solved approximately by using a Taylor expansion to or-
der 22: ui(a = Ac) =u () = ui(a)ic+ (1/2)u'i(a)(Ac)* + ..., where primes de-
note derivatives in the point a. Upon substituting this expansion into Eq. (19),
and requiring that terms of the order A° and 1% are equal to zero (terms of the or-
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der A cancel out identically), after some algebra one obtains the following two
equations:

(19) wo=2[(cle,? =11y,  uiP=1/2)[(c/c =1 uf.

The parameter ¢, must now be chosen in such a way that the differential equa-
tion in the last line of Eq. (20) admits solutions compatible with the convexity re-
quirement for the H-function (13).

In particular, for c¢Z=(1/3)c?, the resulting differential equation, s u}
= (u1)?, has the solution u,(a) =exp(a), and uy(a) =4 exp(a).

This means that functions of the form u;(a = Ac) = exp(a = Ac), and u(a)
=4 exp(a), satisfy Eq. (19) to order A%, for arbitrary a.

This solution is the local equilibrium of the convex Boltzmann-like H-func-
tion:

(20) H=Ny(InNy—1-In4)+N,(nN, —1)+N_(InN_—1).

Thus, the entropy function (21) is perfect to the order 1*. Note the different role
of the rest population with respect of moving particles in this expression.

As is well known, the Lagrange multipliers behave for small % as follows:
a=ay+u?as+...,and 1=ul+ ..., where ay, 2 and A, are constants. Thus our
local equilibrium satisfies condition (4) not exactly but within the overall accura-
cy of the Lattice Boltzmann method. With the Boltzmann-like entropy function
(20), the local equilibrium is not known as the explicit function of the hydrody-
namic fields.

Nonetheless, it can be shown that when these functions are expanded up to
terms of order 2, and when the higher-order terms are neglected, the result is a
polynomial quadratic in ». This polynomial satisfies the condition (4) exactly, and
provides the quadratic local equilibrium ansatz. This remark is quite general: the
second-order expansion of the local equilibrium corresponding to a perfect en-
tropy function is itself the local equilibrium ansatz which satisfies condition (4)
exactly.

Interestingly enough, this procedure leads to known faces, such as the D2Q9
equilibria first introduced by Qian and D’Humieres [11].

The present analysis provides a more solid theoretical backdrop to these lat-
tice equilibria and (partially) explains their better stability properties as compared
to other G-compliant lattice equilibria.
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Before concluding, we wish to underscore that all present considerations refer
to isothermal lattice models, in which no attempt to track temperature as an inde-
pendent variable is made.

For an exhaustive discussion of lattice H-theorems for thermal models using a
fully non-linear collision operator, the reader is directed to the original work by
H. Chen [15].

4 - Conclusions

These considerations complete the construction of the Lattice Boltzmann
method for isothermal Navier-Stokes equations as a self-contained kinetic theory
with the proper H-theorem.

The authors are thankful to V. Boffi, A. N. Gorban, H. C. Ottinger, B.
Boghosian, L.S. Luo for many valuable discussions.
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Abstract

This paper reviews recent results of the entropy-based approach to the Lattice Boltz-
mann method for simulation of hydrodynamics. Two issues are discussed: Which entropy
functions are relevant to hydrodynamics, and how the classical Boltzmann’s H-theorem
1s modified under discrete time dynamics.



