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Introduction

Mathematical models and problems of various kind are encountered in cardiol-
ogy. These problems are related to the flow of blood through the heart (fluid-dy-
namics), to the rhythmic contraction and dilatation of the heart (linear and nonlin-
ear elasticity), to potential problems and the spreading of the excitation wavefront
related to the bioelectric activity of the heart. We shall limit ourselves to problems
in electrocardiology.

Most of the above problems in electrocardiology have been investigated by our
group in cooperation with B. Taccardi who was for some years professor of physi-
ology at Parma University, and is now with CVRTI (Cardiovascular Research and
Training Institute) University of Utah, Salt Lake City, USA. Part of the research-
es have been carried out with physiologists of the Parma University and some
mathematical problems in electrocardiology have been investigated at the Depart-
ment of Mathematics of Parma University by a research unit under the direction
of G. Di Cola.

These researches fit in the framework of a vast area of Applied Mathematics,
i.e. Mathematical Physiology, see e.g. [30] and also for more detailed electro-phys-
iological descriptions [37], [24], [36].
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1 - Bidomain model and reaction-diffusion systems

The bioelectric activity of the heart during an heartbeat is a fairly complex
phenomenon of which we give only a brief description. The problems which we
shall consider can be studied at the cellular or at the macroscopic level; we shall
deal only with macroscopic models.

In the bidomain model [24], [42], [48], [11] the cardiac tissue is characterized
by the intra (i) and the extracellular (e) media which we consider at a macroscopic
level so that they are superposed continuous media with related potentials ui , ue .
The two media are connected by the distributed cellular membrane and we con-
sider also the transmembrane potential v4ui2ue .

The anisotropy of the (i) and (e) media depends on the fiber structure of the
myocardium. At the macroscopic level the fibers are regular curves and we de-
note by a4a(x) the unit vector tangent to the fiber at x .

Starting from the sino-atrial node, which acts as a pacemaker, a front-like
variation of the transmembrane potential v spreads first in the atria and then
through the myocardium with a very fast transition from the resting vr to the
plateau value vp . The values of vr , vp for the cardiac cell are about -90 mV and
10 mV. This phase constitutes the excitation or depolarization phase; it is followed
by an interval of almost constant potential (refractory period) and a subsequent
slower return to the initial state (repolarization). The time behavior of the trans-
membrane potential v(x , t), also called the action potential, may depend general-
ly, on the position x and on the local state of the heart and the duration from de-
polarization to the return to the initial value vr is about 300 ms in the human
heart.

The fiber structure [49] strongly affects the excitation process and in particu-
lar is the main factor of the anisotropic conductivity in the cardiac tissue [39].

The whole process is quite complicate and is essentially due to a flow of sodi-
um, potassium and calcium ions through the cellular membrane separating the (i)
and (e) media. The process can be modeled by a set of ordinary differential equa-
tions of Hodgkin-Huxley type [26] or in qualitative studies by a simplified model
of FitzHugh-Nagumo type [20].

Denoting by s l
i , e , s t

i , e the conductivity coefficients along and across the fiber
direction at a point x and always assuming axial simmetry for s i , e

t we have in the
media (i), (e) the conductivity tensors

Mi , e4s t
i , e I1 (s l

i , e2s t
i , e ) aaT .

Since the anisotropic conductivity is related to the fiber structure, the matrices
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Mi , Me have the same principal axes, one being the local fiber direction a , the
other two given by any orthogonal couple of unit vectors perpendicular to a . The
corresponding eigenvalues are s l

i , e (simple) and s t
i , e (double). The coefficients

s l
i , e , s t

i , e may depend in general on the position x and on the local state of the
myocardial tissue; in our simulations we assume them constant.

To the potentials ui , ue are associated the current densities:

Ji42Mi ˜ui1Ji8 Je42Me ˜ue1Je8

in the myocardial volume V H , where Ji8 , Je8 are applied currents. The heart is
imbedded in an extracardiac medium V 0 (e.g. blood or physiological fluid) with
conductivity M04s 0 I , current density J042M0 ˜u0 and potential u0 . Let

V4VHNV0 , G4¯V , S4¯V H

i.e. V , G and S represent the body volume, the body surface and the epi and endo-
cardium, assumed entirely in contact with the extracardiac medium V 0 . Moreover
since the body is imbedded in the air, which is an insulating medium, G is an insu-
lated boundary.

Since induction effects are negligible (see [36], [38]) the current field can be
considered quasi-static. Therefore if there are no external applied sources, the
field Ji1Je is solenoidal and the same holds for J0 . We then have:

.
/
´

div (Ji1Je )40

div J040

in V H

in V 0

ue4u0 and nT (Ji1Je )4nT J0 , nT Ji40 on the surface S and nT J040 on G; n is
the normal to S or G .

In terms of ui , ue , u0 the above differential system becomes:

.
/
´

div (Mi ˜ui1Me ˜ue )40

div M0 ˜u040

in V H

in V 0 .
(1)

Using the relation v4ui2ue the first equation becomes:

div M˜ue42div Mi ˜v M4Mi1Me(2)

the condition on S:

u04ue , nT (M˜ue1Mi ˜v)4nT M0 ˜u0(3)
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and on the insulated boundary G we have

nT (M0 ˜u0 )40 on G .(4)

This potential problem provides the framework for relating the torso potential to
the transmembrane potential v; in fact, if v(x , t) is known, then the previous
boundary value problem characterizes univocally, up to an additive constant, the
extracellular and extracardiac potentials ue , u0 .

The currents Ji , Je are related to the membrane current im by the conserva-
tion law im42 div Me ˜ue4 div Mi ˜ui ; applying the nonlinear cable theory for
the membrane current (see [26]) in terms of potentials we have the following reac-
tion-diffusion (R-D) system:

.
/
´

div (Mi ˜ui )4 im

div (Me ˜ue )42 im

im4b (Cm ¯t v1Iion ) ,

in V H

in V H

v4ui2ue

(5)

where b is the membrane surface area per unit volume and Cm is the membrane
capacitance. Iion results from the combination of various ionic fluxes, i.e.

Iion4S s Is(6)

where

Is4 gs»
r

yr
prs (v2vs )(7)

with prs non negative integer. The conductance variables yr satisfy the ordinary
differential equations:

¯t yr4a r (v)(12yr )2b r (v) yr .(8)

Successive refinements of the Iion model for cardiac cells and the parameters cali-
bration appearing in (7, 8), by fitting new available experimental data, start from
the Beeler-Reuter model in 1977, with s44, r47 [3], then Ebihara-Johnson in
1980 [19], Di Francesco-Noble 1985 [18], and Lou-Rudy 1991, 1995, with s46,
r49 [32], [33]. The reaction diffusion system (R-D) represents a macroscopic de-
scription of the entire electric behavior of the cardiac tissue, i.e. depolarization
and repolarization phases. To this end it was used for a few 2-D and 3-D simula-
tions in a small piece of tissue [6], [25], [41], [21], [22], [40].

In problem (5) the transmembrane potential v exhibits a steep propagating
layer spreading throughout the myocardium with an upstroke phase lasting about
1 ms during the depolarization process. The numerical solution of the problem re-
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quires small space and time steps (of the order of 0.1 mm and 0.05 ms). For this
reason the numerical simulations of only the excitation process were limited to a
3-D block with dimensions of few cm [6], [25].

For large scale simulations involving the whole ventricles the computer memo-
ry and time requirements become excessive and a less demanding approximation
must be developed.

2 - Wavefront propagation and eikonal approximations

The main feature of the depolarization phase is the excitation wavefront con-
figuration and motion. Hence we must investigate the internal layer of v which af-
fects the spreading. To this end we can disregard the fine details associated to the
ionic fluxes through the cellular membrane considering a simplified model of the
membrane current called the FitzHugh-Nagumo approximation [20], [11]. For the
excitation phase this model yields Iion4 f (v) with f (v) a cubic-like function of v;
scaling appropriately the R-D system (see [11], [13]) we have the following singu-
larly perturbed R-D system with v4ui2ue :

.
/
´

¯t v1
1

e
f (v)2e div (Mi ˜ui )

2¯t v2
1

e
f (v)2e div (Me ˜ue )

40

40

in V H .(9)

This system must be closed by suitable boundary conditions which for an insulat-
ed heart are given by nT Mi , e ˜ui , e40 on ¯V H and by the initial condition
v(x , 0 )4v0 (x).

We introduce the activation time W(x) which, for a given stimulation, is the
time instant in which the v potential at x reaches the value (vr1vp )O2. The level
surface t4W(x) represents then the excitation wavefront St at time t; actually it is
the median surface of the thin layer where depolarization occurs. W(x) is a smooth
function time-independent so that in the numerical simulations we can use a
greater space step (about 1-2 mm) achieving a reduction by a factor of 43 in the
number of grid nodes. We define:

F(x , j)4 (qi (x , j)211qe (x , j)21 )21/2(10)

where

qi , e (x , j)4jT Mi , e (x) j .(11)
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If n is a unit vector qi , e (x , n) represents the conductivity coefficient at a point x
in the intra and extra-cellular medium measured along the direction n . The func-
tion F is the harmonic mean of the quadratic forms associated to the conductivity
tensors Mi , e [11].

Then using suitable perturbation analysis, see [11], [13], we obtain up to first
order in e , the equation:

c F(x , ˜W)2e div (F j (x , ˜W) F(x , ˜W) )41 in V H(12)

or, also up to terms of order O(e 2 ) (see [4], [27], [29], [30]) we have:

U(n)4
1

N˜WN
4F(x , n) (c2e div F j (x , n) )(13)

where n4
˜W

N˜WN
and U(n) are the normal to the front and the front velocity

along n; c is defined later by problem (15). The term of order e is related to the in-
fluence of the wavefront curvature on the propagation in an anisotropic me-
dium.

The transmembrane potential distribution in the eikonal approach is approxi-
mated by

ve (j , t)4a g t2W(j)

e
h .(14)

where (c , a) is the unique bounded solution of the eigenvalue problem:

.
/
´

a91c a81 f (a)40

a(ZQ)4vr or vp , a(0)4 (vp1vr )O2 .
(15)

The condition a(ZQ) corresponds to a stretching of the upstroke of the trans-
membrane potential near the wavefront.

The R-D model and the eikonal approximation have been tested on a small
volume and the results have been found in very close agreement [6].

Therefore large scale simulations, concerning the depolarization process in the
whole heart, can be performed by computing the activation time W(x) related to
one of the two eikonal-curvature equations (12, 13) using a fairly large space reso-
lution of the order of 1 mm since the activation time W(x) is a smooth function
without internal or boundary layers. From the knowledge of the activation time
we derive the transmembrane potential ve from equation (14). Then in the differ-
ential problem (2) the transmembrane potential ve acts as a source term while ue

and u0 (if V H is not insulated) are the quantities to be determined. This procedure
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allows to perform an analysis of the potential pattern on the epi and endocardium
and intramurally and also to study the morphology of the associated electrocar-
diograms. This last study can be more efficiently carried out by means of an inte-
gral representation of the potential.

We define:

M×4M×(x)4
.
/
´

M(x)

M0 (x)

x�V H

x�V 0

, u(x , t)4
.
/
´

ue (x , t)

u0 (x , t)

x�V H

x�V 0

÷

with M0 (x)4
.
/
´

s f I

s b I

x�V f

x�V b

the conductivity tensor in V 04V bNV f where

V b , V f are the volumes occupied by the blood or by the fluid.
Moreover we set:

Jve
42Mi ˜ve

then collecting equations (1, 3, 4) we have the following boundary value prob-
lem:

.
`
/
`
´

2div M× ˜u4
.
/
´

div Jve

0

in V H

in V 0

e u fS40, e nT M× ˜u fS4nT M× ˜ve

nT M× ˜u40

on S

on G

(16)

e f fS denotes the jump of f through S , i.e. e f fS4f S12f S2 with f S6 the
traces of f taken on the positive and negative side of S with respect to the orient-
ed normal.

For the solution of the bidomain model (16) in differential form the following
integral representation holds:

u(x , t)2u(x0 , t)4 �
V H

Jve

T ˜j c dj42 �
V H

(˜j ve (j , t) )T Mi (j) ˜j c dj(17)

where, for the observation point x , the Green function c(j , x), also called lead
field, is the solution of the problem defined by:

.
/
´

2divj M× ˜j c4d(j2x)2d(j2x0 )

nT M× ˜j c40

in V 0NV H

on G .
(18)

d(j2x), d(j2x0 ) are the Dirac measures in x , x0 respectively.
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The lead field c is the potential arising from the source and sink located at the
observation and reference points x and x0 respectively in the body volume
conductor.

We remark that in the case of media with equal anisotropy ratio r i4r e ,
where r i4s l

i Os t
i , r e4s l

e Os t
e , we have Me4lMi with l4s l

e Os l
i4s t

e Os t
i and

M4 (11l) Mi . Under this assumption and for l constant we have:

u(x , t)2u(x0 , t)42
1

11l
�

V H

Jve

T ˜j c dj42 �
V H

˜j ve
T Mi ˜j c dj

and applying formally the Green formula, it follows

u(x , t)2u(x0 , t)42
1

11l
�

S

ve nT M˜j c ds j1

1
1

11l
�

V H

ve div M˜j c dj for x�V HNV 0 .

Taking into account (18) this expression reduces to

u(x , t)2u(x0 , t)42
1

11l
�

S

ve nT M˜j c ds j1

1
1

11l
[vAe (x , t)2vAe (x0 , t) ] .

(19)

where vAe (x , t)4
.
/
´

ve (x , t)

0

x�V H

x�V 0

. Therefore in the case of equal anisotropy ra-

tio the potential representation, apart an additive term proportional to the trans-
membrane potential, consists of an integral over the heart surface S4¯V H . We
refer to this model as the heart surface source (HSS), i.e. the potential is generat-
ed by a double layer on the heart surface S (see [21], [48], [54]).

3 - Models of the potential field: various degrees of approximation

The experimental results of Corbin and Scher in 1976 [17] indicated that the
commonly accepted model of the uniform normal dipole layer is not a correct rep-
resentation of the heart sources on the excitation wavefront.

In fact we may have negative potential values ahead of the front in the resting
(not yet excited) tissue and in the case of a closed front the potential is not con-
stant outside the front.



131MATHEMATICAL MODELS AND PROBELMS IN ELECTROCARDIOLOGY[9]

Corbin and Scher [17] attributed the discrepancies to the fiber structure of the
heart and proposed an axial dipole layer model, i.e. with the dipole axis defined by
the local fiber direction a4a(x) and longitudinal dipole moment dl . In this model
it was also assumed that the axial dipole layer is imbedded in an isotropic and ho-
mogeneous medium. This model has been extended by considering the superposi-
tion to the axial layer of two mutually orthogonal dipole layers; these layers have
dipole direction transverse to the fiber axis and the same dipolar moment dt , see
[13], [14], [15].

The corresponding potential can be expressed as the potential due to the su-
perposition of a uniform normal double layer characterized by dt n and an «axial»
double layer characterized by (dl2dt )(aT n) a , see [14]; hence the source is relat-
ed to the dipolar tensor:

D4dt I1 (dl2dt ) aaT .

In an unbounded homogeneous and isotropic medium with conductivity s 0 the
potential generated by the Oblique Dipole Layer (ODL) on St is given by:

u(x , t)4
1

4ps 0

�
St

nT D˜r 21 dS , r4Nx2jN , j�St .(20)

For the jump potential relationships across St see e.g. [14]. Concerning the simu-
lations with oblique dipole layers and some of their mathematical properties see
[15], [13], [7]. If dl4dt we recover the classical uniform normal dipole layer and in
the case of an unbounded, homogeneous and isotropic medium we obtain the solid
angle theory. A further simplification, widely used in electrocardiology, is given by
the representation of the electric sources of the heart by a single or multiple dipoles
with fixed or variable location and variable direction, see [22], [23], [34], [35].

In an unbounded, homogeneous and isotropic domain with conductivity s 0 the
potential due to a dipole located at j with moment d and direction n is given by

u(x , t)4
1

4ps 0

dnT ˜r 21 with r4Nx2jN .

The previous (ODL) model can be derived from the bidomain model consider-
ing successive simplifying assumptions.

If we want to simulate the potential field far away from the cardiac sources we
can neglect the thickness of the layer displayed by v across the wave front surface St;
this is achieved considering equation (14) with e tending to zero. Therefore ve tends to

W4vr1(vp2vr) H (t2W(x) ), i.e. W(x , t)4
.
/
´

vp ,

vr ,

W(x)Et

W(x)Dt
with H the Heaviside

function and, in the sense of distributions, ˜ve tends to (vp2vr) ˜x H (t2W(x) )
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42 (vp2vr) nSt
d St

where nSt
(x) is the normal to the front St4]x : W(x)4t( ori-

ented toward the resting region, which is characterized by v4vr and d St
is the Dirac

measure on the surface St .
Passing formally to the limit in (17) we obtain:

u(x , t)2u(x0 , t)4 (vp2vr )�
St

nT Mi ˜j c ds j , for x�St(21)

while in the case of equal anisotropy ratio we have, considering (19):

u(x , t)2u(x0 , t)4
vp2vr

11l
�

S t
a

nT M˜j c ds j1

1
1

11l
[WA ( t2W(x) )2WA ( t2W(x) )] , for x�S a

t

(22)

where WA4
.
/
´

W ( t2W(x) ),

0 ,

x�V H

x�V 0

and S a
t 4]x�S , W(x)G t( i.e. the activated

part of the heart surface S . We refer also to this model as the activated heart
surface source (AHSS) model, i.e. the potential is generated by a double layer on
the activated heart surface S a

t (see [21]).
Formula (21) defines the potential generated by an oblique dipole layer on the

wavefront surface St imbedded in a volume conductor with conductivity tensor
M×(x) used in [13] for an anisotropic semispace with parallel fiber.

If V4R 3 and M×4s 0 I we have c4
1

4ps 0 r
, with r4Nx2jN and the two

previous models (ODL) and (AHSS) reduce to:

u(x , t)4
vp2vr

4ps 0

.
`
/
`
´

�
St

nT Mi ˜j r 21 ds j for x�St , when r icr e

1

11l
�

Sa
t

nT M˜j r 21 ds j for x�S a
t when r i4r e .

Setting:

D4
vp2vr

s 0

Mi

the first potential model yields the potential field due to cardiac generators repre-
sented by an oblique dipole layer on St imbedded into an infinite homogeneous
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isotropic medium with conductivity s 0 , previously recalled in (20). The second
model coincides with the classical uniform normal dipole layer on the activated
epi- endocardial surface.

In order to use these models for simulating the electrocardiograms, i.e. the
electrograms recorded on the body surface, we must consider the case of a do-
main V bounded and insulated; V represents the body volume imbedded in air
and it is assumed to be an homogeneous, isotropic volume conductor. In this case
the lead field is given by the solution of

.
/
´

2s 0 D j c4d(j2x)2d(j2x0 )

nT
j ˜j c40

j�V

j�¯V .
(23)

Instead of solving this boundary value problem for any observation point x , it is
computationally more convenient to solve an integral equation on the body sur-
face G4¯V . To derive this integral formulation we consider problem (1-4) for

ve4a g t2W(j)

e
h and passing to the limit, problem (2, 3) becomes

2s 0 Du4
.
/
´

div Mi ˜W

0

in V H

in V 0 ,
nT ˜u40 on G .(24)

Using formally the second Green formula with u and s(j , x)4
1

4pNx2jN
the

fundamental solution of the Laplace operator we have:

2s 0
21�

V

s div Mi ˜W dj1u(x , t)42�
G

u nT ˜s ds j

but ˜W42 (vp2vr ) nSt
d St

therefore:

u(x , t)4
vp2vr

s 0

�
St

nT Mi ˜s ds j2�
G

u nT ˜s ds j , for x�V2St .(25)

Moreover for x�G we derive that the body surface potential u on G is the unique
solution, apart from an additive constant, of the following integral equation on G:

u(x , t)1�
G

u nT ˜j s ds j4
vp2vr

s 0

�
St

nT Mi ˜j s ds j , for x�G .

Formula (25) yields the potential generated by the an oblique dipole layer on St in
an isotropic conducting medium which is fully insulated and is obtained by adding
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to the potential uQ (x , t) in the infinite medium, the correction

u(x , t)4uQ (x , t)2�
G

u nT ˜s ds j

which is the potential due to a normal dipole layer on G with moment density u on G .
The same derivation can be applied to the case of equal anisotropy ratio.
Summarizing, the two models, one with anisotropic generators and the other

with isotropic generators, are given by

u(x , t)4uQ (x , t)2�
G

u nT ˜s ds j

with u on G solution of

u(x , t)1�
G

u nT ˜s ds j4uQ (x , t) , for x�G

and

uQ (x , t)4
vp2vr

4ps 0

.
`
/
`
´

�
St

nT Mi ˜j r 21 ds j

1

11l
�

Sa
t

nT M˜j r 21 ds j

for x�St , when r icr e

for x�S t
a when r i4r e .

For convenience in the developments of Section 4 for a given wavefront sur-
face St or activated heart surface S a

t the potential generated by the (ODL) and
(AHSS) source models will be denoted by uSt

(x , t) and uSa
t
(x , t).

Actually in the development of mathematical models in electrocardiology, the
path from simpler to more complex models has been followed. Hence in the order
the single dipole, the classical uniform dipole layer in an isotropic medium and the
oblique dipole layer were applied.

4 - Direct and inverse problem in terms of potentials and sources

In a bounded and insulated volume V (e.g. the torso volume without sources)
composed of parts V j j41, 2 , R , m each with constant conductivity s j (e.g.
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lungs, bones, ...) we have the elliptic problem:

Duj40 in V j

ui4uj

s i ¯ui O¯n4s j ¯uj O¯n
} on Sij4¯V iO¯V j(26)

¯ui O¯n40 on G i4¯VO¯V i

where Sij is the surface separating the region V i and V j of different constant
conductivity. The last condition characterizes the fact that G is insulated i.e. no
current flows through it.

Consider the simple case of V isotropic and homogeneous defined by V 1%V 2 ,
V4V 2 0V 1 , S14¯V 1 , S24¯V 2 .

The direct problem is defined by:

.
/
´

Du40

u4 f1

¯uO¯n40

in V

on S1

on S2 .

(27)

The case of interest is that of S1 bounding the heart and close to it (the motion of
the heart is neglected) and of S2 the insulated torso surface. For t fixed and
u4u14 f1 (x , t) on S1 , let u4u2 be the trace on S2 of the solution of the problem.
We have a transfer operator A from u1 to u2 . The problem is well posed.

The inverse problem is defined as:

.
/
´

Du40

u4 f2

¯u

¯n
40

in V

on S *%S2

on S2

(28)

where S *%S2 denotes the part of the torso surface where the potential
f24 f2 (x , t) is measured. For t fixed we have a corresponding u1 on S1 . The prob-
lem is known to be strongly ill-conditioned.

Discretizing the problem by FEM (Finite Element Method) or BEM (Bound-
ary Element Method) the transfer operator A from S1 to S2 is approximated by a
matrix in which the ratio between the greatest and smallest non zero singular
values is of the order of 107 indicating strong ill-conditioning of the inverse prob-
lem, see [1], [2], [5], [16], [43], [44], [45].

The inverse problem has been applied to the torso volume V with S1 contain-
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ing the heart and close to it; for this reason S1 is called «epicardial» surface. For
a sequence of time instants f2 represents the torso potential measured on a set of
points and u1 the corresponding potential on S1 . Since S1 is close to the heart, the
potential u1 for a sequence of time instants, yields more detailed information than
f2 on the bioelectric activity of the heart. The inverse problem can be solved by
means of regularization techniques (e.g. Tikhonov technique) see [52], [31] for
details.

The inverse problem may be formulated also for V composed of different
parts, with a piecewise constant conductivity.

We now consider the inverse problem in term of sources using the oblique
dipole layer model. If S is the set of admissible wavefront surfaces St then the
uniqueness of the inverse problem corresponds to:

uS 8t 4uS 9t on G4¯V implies S 8t 4S 9t .

In the case of equal anisotropy ratio the uniqueness problem is stated in terms
of the activated epi-endocardial surface (St4S a

t ) at time t . In [53] the inverse
problem is recast in terms of the activation time on the epi-endocardial surface
(see eq. (20) and (21) in [53]).

For surveys on the direct and inverse problems see [43], [44], [45], [53]. The
inverse problems can be formulated in terms of integral equations and this line
has been followed for numerical simulations. However, in this approach, the con-
ductivity anisotropy is neglected.

In the general case of the (ODL) model uniqueness results were achieved in
[7] for various admissible classes S of wavefront surfaces.

For the oblique dipole layer model not much is known about the degree of ill-
posedness of the problem. The eikonal-curvature equations could be considered as
a constraint in order to define admissible physiological wavefront surfaces; hence
the eikonal-curvature equation could be used for stabilizing the inverse problem.

5 - Numerical simulations

Large scale simulations of the eikonal model were mainly obtained by two
groups of researchers [28], [29], [6], [12], [9], [10]. We now focus on the numerical
simulations obtained by our group. The left ventricle has been modeled as a set of
packed ellipsoidal surfaces truncated at the base and at the apex. We assumed ro-
tational simmetry around the z-axis which coincides with the longitudinal axis of
the ventricle. The volume V H representing the ventricle was modeled using the
system of curvilinear coordinates (W , u , r) as follows. Given 0Ea1Ea2 , 0Ec1
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Ec2 the ellipsoidal surfaces describing V H are defined by:

.
/
´

x4a(r) cos u cos W

y4a(r) cos u sin W

z4c(r) sin u

u 1GuGu 2

0GWG2p

0GrG1

with a(r)4a11r (a22a1 ) and c(r)4c11r (c22c1 ). The values r40 and r41
characterize the endo- and epicardium respectively, i.e. the inner and outer sur-
faces of the myocardium. Conducting media, e.g. blood or physiological fluid, were
modeled by an interior or exterior ellipsoidal layer in contact with the endocardi-
um or the epicardium. In our simulations the volume V H was defined by a141.5,
a242.7, c144.4, c245 (in cm), u 142 3pO8, u 24pO8 (see [9], [10]).

Our model included also the fiber rotation; more specifically fibers rotate
counterclockwise moving from epicardium (245o) to endocardium (75o). Moreover
we incorporated the epi- endocardial obliqueness of the fibers through the so
called «imbrication angle», i.e. fibers do not lie on the packed myocardial surfaces
but intersect them at a small angle. For more details on the myocardial fiber ar-
chitecture see Ref. [9]. We limited our simulations to the case of constant parame-
ters since significant results can be obtained under this simplifying assumption.
We used the constant calibration parameters of papers [6], [9].

The FEM has been used for the numerical computations concerning the
spread of the excitation wavefront, the pattern of the potential u and the struc-
ture of the electrocardiograms. We considered a regular mesh Rh on V 0NV H ob-
tained by a uniform subdivision of W , u and r; the number of subdivisions were
nW490, nu460 and nr441 respectively. We approximated the ellipsoidal volume
V with hexahedral isoparametric elements of first order (see [9], [10], [8] for more
details).

A suitable upwind technique has been used to solve the eikonal equation (12).
More specifically the Hamiltonian term in (12), given by c F(x , ˜W)1/2 , required
an upwind treatment similar to that investigated for propagating fronts with cur-
vature dependent speed (see [46], [47], [9]). In this way large scale simulations of
the potentials v and u for a sequence of time instants were obtained.

In the simulation of the potential distribution u away from the cardiac excita-
tion wavefront, satisfactory results were obtained using a space resolution of
about 1 mm (see [10]). This space resolution is not suitable for the simulation of
EGs since numerical artifacts appear. Thus we developed a numerical procedure,
based on an adaptive technique, which allowed large scale simulations of EGs
maintaining a reasonable computational cost. Moreover, since EGs are usually
recorded at a limited number of points, it is computationally more convenient to
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use the integral formulation (17) instead of (16) since we can solve a number of
problems, dependent on the parameter t , for the chosen observation points x [8],
[51]. The accurate computation of integral (17) required a special treatment of the
lead field c , due to the singularity in x , and of the transmembrane potential
v(x , t), characterized by a steep wavefront moving across the myocardium. The
main steps of our numerical procedure were:

– a finer subdivision of the FEM mesh in proximity of the singular point x

– a sub-element technique for the elements crossed by the wavefront

– a suitable decomposition of the potential u(x , t)

(see [8] for more details).
The results of the numerical simulations have been compared with experimen-

tal measurements [50] in the case of fairly similar fiber structure and initial stim-
ulation. These results have been found to agree very well, see ([9], [10]).

6 - Open problems

The models, previously outlined, allow to correctly capture the main features,
at different levels of description and accuracy, of the spread of the excitation
wavefronts and of the associated extracellular/extracardiac potentials.

A development of a family of models is not at present available for the descrip-
tion of the repolarization process with different levels of accuracy and therefore
large scale simulations of an entire heart beat is an open problem.

Some problems, to be investigated by means of mathematical models and nu-
merical simulations, concern the evolution of one or more complete heart beats
(including repolarization) and the simulation of the excitation process when is-
chemic regions or arrhythmias or fibrillation are present in the heart.
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A b s t r a c t

Some mathematical models and problems, arising in electrocardiology, are reviewed.
The excitation process, characterized by a front of the transmembrane potential sprea-
ding through the myocardium is examined. It is an evolution problem exhibiting consi-
derable numerical difficulties for its solution and the eikonal approximation is introdu-
ced. Some aspects of these problems are described and we derive under subsequent assum-
ptions different models for the far-field potential approximation yielding the model of the
oblique dipole layer, imbedded into an anisotropic or in a uniform isotropic medium,
and the classical model of a uniform normal double layer.

* * *


