
R i v . M a t . U n i v . P a r m a ( 6 ) 2 * ( 1 9 9 9 ) , 1 0 1 - 1 1 6

GIUSEPPE TO M A S S I N I (*)

Levi type extremal operators (**)

1 - Introduction

Let z4x1 iy , w4u1 iv be complex coordinates in C2 . Given a smooth hy-
persurface M we denote by LM the distribution of the complex tangent lines to M .
LM is called the Levi distribution on M . It is well known that LM is completely in-
tegrable if and only if
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vanishes on M , r40 being a local equation for M .
In this situation, by virtue of the Frobenius Theorem, M is foliated by holo-

morphic curves and is said to be Levi flat.
If M is a graph v4F(x , y , u) we have
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Thus Levi flat graphs are solutions of the Levi equation
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(1.2)

L(F) is a degenerate elliptic operator. It has been introduced in Complex Analysis
in the context of the Dirichlet problem for Levi flat graphs ([BG], [DG], [T],
[ST 1]).

In the last years sophisticated techniques of PDE theory have been employed
to prove a series of interesting results on the regularity of solutions of the Levi
equation ([C], [CLM], [CM 1], [CM 2]).

Let DF4 (Fz , Fu ), NDFN4 (11NFzN
21F 2

u )1/2 and L(F)4 (11NDFN2 )21

QL(F), be the normalized of L(F). Due to the particular form of L(F) it is easy to
show (Sec. 2) that there are two fully nonlinear degenerate elliptic operators L 1 ,
L 2 such that

L 1 (F)GL(F)GL 2 (F)(1.3)

for every smooth function F .
L 1 , L 2 are «extremal operators», in the sense of Pucci ([P]), for a family of

degenerate elliptic operators. Precisely consider a domain V in C3R and opera-
tors La , b (F) of the form

La , b (F)42 det u0
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where a , b are measurable functions of (z , u), F , DF , D 2 F with the proper-
ties:

1) for fixed (z,u), a , b are differentiable a.e. with respect to F , DF ,
D 2 F;

2) NaN21NpN241;

3) the hermitian form

¯La , b

¯Fzz

jj1
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h 2

is positive definite (F0).
Let FV be the family generated by the La , b (F)8 s: FV4 m !

1G jGm
l j La j , b j

n
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where l j is measurable and nonnegative, !
1G jGm

l j41 and m�N . Then L 1 , L 2

are the extremal operators for FV .
We call them Levi type extremal operators.
Extremal operators were introduced to study singularities for solutions of el-

liptic equations, in particular to produce critical examples. For all this matter as
well as for other applications in PDE we refer to [P] and [CC].

In this paper we state some simple property for weak (viscosity) solutions of
L 1 , L 2 . In particular in Section 3 we prove a special form of «maximum princi-
ple» (Prop. 3.5) and as a consequence we obtain that weak solutions of L 1 , L 2

and L satisfy a «weak Hartogs property» (Cor. 3.6).
Finally in Section 4 we deal with the Dirichlet problem for L 1 , L 2 . After

shown that solutions of that provide barriers for the Levi operator we prove that
this problem translates into a Dirichlet problem for a Bellman equation (Prop.
4.2)

2 - Extremal operators

1 - Consider the Levi operator L(F) and let L(F)4NDFN22 L(F) be the nor-
malized of L(F), F smooth.

Let H 4 H (F) denote the hermitian matrix

gFzz

Fzu

Fzu

Fuu
h .(2.1)

Given (z 0 , u 0 )�C3R there exists a unitary matrix A4 (aab ) such that
A t H A4diag (L 1 (F), L 2 (F) ) at (z 0 , u 0 ). Therefore the matrix
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diagonalizes L(F) i.e.
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It follows that

L(F)4Nl2 (F)N2 L 1 (F)1Nl1 (F)N2 L 2 (F)

with lj (F)4 (11NDFN2 )21/2 l 8j (F), j41, 2 .
Since Nl1 (F)N21Nl2 (F)N241 and A is unitary one has

L 1 (F)GL(F)GL 2 (F)(2.5)

for every F�C 1, 1.
We define L 1 (F), L 2 (F) Levy type extremal operators.
They have the following explicit forms:

L 1 (F)4
1

2
]Fzz1Fuu2 [ (Fzz1Fuu )224(Fzz Fuu2NFzuN

2 ) ]1/2(

L 2 (F)4
1

2
]Fzz1Fuu1 [ (Fzz1Fuu )224(Fzz Fuu2NFzuN

2 ) ]1/2( .

The linearized operators are rspectively

L 1, F (G)4aGzz12 Re bGzu1cGuu(2.6)

L 2, F (G)4cGzz22 Re bGzu1aGuu(2.7)

where

a4 (d(F)21/2O2 )(d(F)1/22Fzz1Fuu ) ,(2.8)

b42 d(F)21/2 Fzu ,(2.9)

c4 (d(F)21/2O2 )(d(F)1/21Fzz2Fuu ) ,(2.10)

d(F)4 (Fzz2Fuu )214NFzuN
2(2.11)

and aF0, cF0, ac4NbN2.
In particular, L j , F (F)4L j (F), j41, 2 .
Moreover if F and G are smooth functions L j (F)2L j (G), j41, 2 we have

the formulas

L 1 (F)2L 1 (G)4CHzz22 Re BHzu1AHuu(2.12)

L 2 (F)2L 2 (G)4AHzz12 Re BHzu1CHuu(2.13)
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where

A41O2 g11 Fzz2Gzz1Fuu1Guu

d(F)1/21d(G)1/2 h ,(2.14)

B4
Fzu1Gzu

d(F)1/21d(G)1/2
,(2.15)

C41O2 g12 Fzz2Gzz1Fuu1Guu

d(F)1/21d(G)1/2 h .(2.16)

Since AF0, CF0 and AC4NBN2 the hermitian form

Ajj12 Re Bjh1Chh

is positive definite (with at least one positive eigenvalue).
In particular the extremal operators are of the form

det u0
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where a , b are functions of D 2 F .
They are degenerate elliptic in the sense of viscosity ([J], [L]).

2 - Let V’C3R be a domain and FV the family of the Levi type operators as
defined in Introduction.

Let L 1 , L 2 be the extremal operators. It is immediate to check that the fol-
lowing properties hold true:

(i) for every F�C 1, 1 (V) and L� FV there is a linear operator l� FV such
that l(F)4L(F) a.e.;

(ii) L 1 , L 2 belong to FV ;
(iii) for every F�C 1, 1 (V)

L 1 (F)4 min
L� FV

L(F) , L 2 (F)4 max
L� FV

L(F) .
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3 - Maximum principle for weak solutions

1 - Let us recall the definition of weak solution (in the sense of viscosity).
Denote L(F) one of the operators L j (F), j41, 2 . Let V%C3R be a domain

and F : VKR a continuous function. F is said to be a weak subsolution (respect-
ively a weak supersolution) of L(F)40 if, for every p�V and f smooth near p
such that F2f has a local maximum (respectively a local minimum) at p one has
L(f)(p)F0 (respectively L(f)(p)G0).

A weak solution is a continuous function which is both a weak subsolution and
a weak supersolution.

Observe that in view of the definition of L 1 and L 2 , weak subsolutions (super-
solutions) of L 1 (L 2 ) are subsolutions (supersolutions) of all operators
L� FV .

P r o p o s i t i o n 3.1. Let F be a continuous function in V%C3R . If F is a
weak subsolution (weak supersolution) of L 1 (F)40 (L 2 (F)40 ) then F has no
local maximum point (local minimum point) in V .

P r o o f . We may assume that V is bounded with regular boundary and that
F�C 0 (V).

Let F be a weak subsolution L 1 (F)40. It is immediate to check that F is a
weak subsolution of Fzz1Fuu40 so that (passing to new variables z 84z ,
u 84u/2) we may assume that F is a weak subsolution of DF40. F is subhar-
monic. To prove this let U be the harmonic function which coincides with F on bV

and assume that F2U has a positive maximum a at a point p4 (z 0 , u 0 )�V . Let
e be sufficiently small to have e(Nz2z 0N21Nu2u 0N2 )Ea on bV . It follows that
F2U1e(Nz2z 0N21Nu2u 0N2 ) has some maximum point in V , say q . Since F is
a weak subsolution of DF40 and V4U2e(Nz2z 0N21Nu2u 0N2 ) is smooth in
V , by definition of weak subsolution we must have D(U2V)F0 at q . On the
other hand D(V)42 6e , and this gives a contradiction. Therefore FGU on
whole V . Thus F is subaharmonic and hence has no local maximum point in V .

The proof for supersolution is similar. r

In particular under the conditions of the above proposition we have

max
V

F4max
bV

F mmin
V

F4min
bV

Fn .
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In order to prove the comparison principle for the extremal operators we recall
briefly the main properties of the regularization by «sup and inf» convolution
([ES], [J], [Sl]).

Let F : C3RKR be continuous and bounded. Set, for eD0, z�C and u�R

F e (z , u)4max ]F(z , v)2e21 (Nz2zN21 (u2v)2 ), (z , v)�C23R(

and

Fe (z , u)4min ]u(z , v)1e21 (Nz2zN21 (u2v)2 ), (z , v)�C3R( .

The above definitions immediately imply that FeGFGF e and NFeN , NF eN are
bounded by sup NFN; Fe , F e are Lipschitz and F e 7F , Fe 6F uniformly on com-
pact subsets as eK0. Moreover, the functions

F e (z , u)1e21 (NzN21u 2 )

and

Fe (z , u)2e21 (NzN21u 2 )

are respectively convex and concave. In particular they are twice differentiable
a.e. ([K]).

Let F be a continuous, bounded function in C3R and suppose that F is a
weak subsolution of L(F)40 (respectively a weak supersolution) in a bounded
domain V of C3R . Let

V e4](z , u)�V : dist ((z , u), bD )D2 sup NFNe 1/2( .

Then F e (respectively Fe ) is a weak subsolution (respectively a weak supersolu-
tion) in V e . Moreover

L(F e )F0 (L(F e )G0 )

at each point of twice differentiability of F e (Fe ).
This can be seen as follows. Let F e2f have a local maximum at (z 0 , u 0 )

�V e , f smooth, and (z 0 , u 0 )�C3R be such that

F e (z 0 , u 0 )4F(z 0 , v 0 )2e21 (Nz 02z 0N21 (u2v)2 ) .

Set

c(z , u)4f(z1z 02z 0 , u1u 02v 0 ) .
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Then (z 0 , v 0 )�V and for all (z , u) near (z 0 , u 0 ) and all (z , v)�C3R we
have

F(z , v)2e21 (Nz2zN21 (u2v)2 )2f(z , u)GF e (z , u)2f(z , u)Gu(z 0 , v 0 )

2e21 (Nz 02zN21 (u2v)2 )

2f(z 0 , u 0 ) ;

in particular, for z4z1z 02z 0 , u4v1u 02v 0 and (z , v) near (z 0 , v 0 ), we
have

F(z , u)2c(z , v)GF(z 0 , v 0 )2c(z 0 , v 0 ) ,

i.e. F2c has a local maximum at (z 0 , v 0 ). Since

c a (z 0 , v 0 )4f a (z 0 , u 0 ) , c ab (z 0 , u 0 )4f ab (z 0 , v 0 )

we obtain L(f)F0.
Now twice differentiability a.e. of F e and Fe easily implies the statement.

T h e o r e m 3.2. Let F�C 0 (V) be a weak subsolution and G�C 0 (V) a weak
supersolution of L40 in V . Then

max
V

(F2G)4max
bV

(F2G) .

P r o o f . We have to prove that if FGG on bV then FGG .
We may assume that FEG on bV . Moreover, since for H smooth and c�R

positive we have L (HZc(NzN21u 2 /2 ) )4L(H)Z2c we may also assume that F
is a weak subsolution of L(F)4c and G is a weak supersolution of L(G)42 c , c
positive.

Let max
V

(F2G)4aF0. Extend F , G by continuous functions in such a way

to have FEG in C3R 0 V and F4 const, G4 const for NzN21u 2c0. Since
max

V
(F2G)4aD0 we have

max
C3R

(F2G)4a

and consequently

max
C3R

(F e2Ge )Fa(x)

for all eGe 0 .
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Now set j4 (z , u) and define for j , j1h�C3R ,

F e , d (j , h)4F e (j1h)2Ge (j)2d21NhN4 .

F e , d is negative outside of a compact subset K and F e , dFF e 8 , d , F e , d 8FF e , d

provided e 8Ge , d 8Gd . Moreover, because of (x),

max
K

F e , dFa .

Let pe , d4 (j 8 , h 8 ) be a maximum point for F e , d . By definition Nh 8 NGCd 1/4

(where C depends only on F and G). We claim that for e , d near 0 , j 8 and j 81h 8

belong to V .
To prove this we consider a limit point (j 0 , h 0 ) of the bounded set ]pe , d(.

Then, since F e , d (pe , d )Fa , d21Nh 8 N4 must be bounded as e , dK0 and this
forces h 0 to be 0 . It follows that

F(j 0 )2G(j 0 )2BFa

for some positive constant B . Since FEG outside of V this proves our
claim.

From now on in the proof e , d are fixed.
According to convexity and concavity properties of the «sup and inf» convolu-

tion the function F(j , h)1C(NjN21NhN2 ) is convex near (j 8 , h 8 ) for some suffi-
ciently large constant C . Since F takes its maximum at (j 8 , h 8 ) we can apply the
theorem of Jensen [J]: there exist sequences (j k , h k )K (j 8 , h 8 ) and e kK0 such
that D 2

j , h F(j k , h k )Ge k I as kK1Q .
By definition

D 2
j F(j k , h k )4D 2 F e (j k1h k )2D 2 Ge (j k )4R k2Rk .

and R k2RkGek I . Moreover, again by virtue of convexity and concavity properties
of the «sup and inf» convolution, there exists a constant C such that R kF2CI
and RkGCI . Consequently, passing to subsequences we obtain R kKR , RkKR
and, since L(F e )(j k1h k )Fc , L(F e )(j k )G2 c , L(R)Fc , L(R)G2 c (here we
consider L as an operator acting on the matrices M4 (Mij ) just replacing second
derivatives ¯ij G of a function G by Mij).

Now observe that d(R)1d(R)D0 (otherwise Tr (R)DTr (R) which is absurd
since RGR) and put S4R2R to have

0EL(R)2L(R)4a(S111S22 )12 Re b(S131 iS23 )1gS33

where aF0, gF0 and ag4NbN2 .
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For X14X24 (2NbN)21 g 1/2 , X34 (2NbN)21 a 1/2 (if bc0) the above inequality
rewrites

0EL(R)2L(R)4S11 X 2
1 1S22 X 2

2 12S13 X1 X31S33 X 2
3

and this is a contradiction since the matrix S is nonpositive. r

For smooth solutions strong maximum and minimum principle hold true.
Namely

Theorem 3.3. Let F�C 0 (V)OC 2 (V) be a nonconstant solution of L(F)40.
Then F has no interior maximum or minimum.

In view of what is preceding we only have to show that F has no interior maxi-
mum. This is actually a direct consequence of the following Hopf Lemma which
can be proved in the same way as for elliptic operators ([GT]):

L e m m a 3.4. Let V 8 be a bounded domain with smooth boundary and let
F�C 1 (V8OC 2 (V8) be a nonconstant solution of L(F)40. Assume that x 0�bV8

is a peak point for F (i.e. F(x)EF(x 0 ) for xcx 0 ). Then the outer normal
derivative of F at x 0 is positive.

2 - The maximum principle for weak solutions of L(F)40 as well as of L(F)40
can be refined. Let us discuss it in a simple situation namely when V is a bounded
convex domain in C3R .

P r o p o s i t i o n 3.5. Let V c4VO ]uEc(, S c4bVO ]uEc(, c�R , and
F�C 0 (V ). Then

(i) if F is a weak subsolution of L 1 (F)40 or L(F)40

max
Vc

F4max
Sc

F ;

(ii) if F is a weak supersolution of L 2 (F)40 or L(F)40

min
Vc

F4min
Sc

F ;

(iii) if F is a weak solution of L(F)40

min
Sc

FGF(z , u)Gmax
Sc

F

for every (z , u)�Vc .
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P r o o f . Let G(z , u)4max
Su

F . G is constant with respect to z and FGG
on bV .

G is a weak supersolution of L 1 .
To show this let f be smooth and F2f have a local minimum at (z 0 , u 0 ),

i.e.

G(u)2f(z , u 0 )FG(u 0 )2f(z 0 , u 0 )

near (z 0 , u 0 ). Then f(z , u 0 )Gf(z 0 , u 0 ) near (z 0 , u 0 ) so that f zz (z 0 , u 0 )G0.
By definition

L 1 (f)(z 0 , u 0 )4f zz (z 0 , u 0 )1f uu (z 0 , u 0 )2d(f)(z 0 , u 0 )

where d(f)4 (f zz2f uu )214Nf zuN
2 .

If f uu (z 0 , u 0 )G0 then L 1 (f)(z 0 , u 0 )G0.
If f uu (z 0 , u 0 )F0 we have

d(f)1/24 [ (f zz2f uu )214Nf zuN
2 ]1/2 (z 0 , u 0 )

F (f uu2f zz )(z 0 , u 0 )

and consequently

L 1 (f)(z 0 , u 0 )G2f uu (z 0 , u 0 )G0 .

The inequality (i) is now a direct consequence of theorem 3.2.
The proofs of (ii) and (iii) are similar. r

Remark 3.1. The «minimum (maximum) statement» for weak solutions (solu-
tions) of L 1 (L 2) fails to be true: e.g. let F4NzN22u (F4NzN22u) and
V4]uDNzN2(.

C o r o l l a r y 3.6. Let K be a compact convex subset of V . Then

(i) continuous weak subsolutions of L 1 (F)40 or L(F)40 in V0K are
bounded from above near K ;

(ii) continuous weak supersolutions of L 2 (F)40 or L(F)40 in V0K are
bounded from below near K ;

(iii) continuous weak solutions of L(F)40 in V0K are bounded
near K ;
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P r o o f . Let U%V be a relatively compact convex neighbourhood of K . For
each point p�bK there is a «support hyperplane» T for K (p�T). By a holomor-
phic change of coordinates we may assume that T4]u4c( and ]uEc(OK4¯ .

Let S4bU and S c4bUO ]uEc(. In view of the above proposition we have
respectively

F(z , u)Gmax
Sc

FGmax
bU

F , min
bU

FGmin
Sc

FGF(z , u)

and

min
bU

FGmin
Sc

FGF(z , u)Gmax
Sc

FGmax
bU

F

for (z , u)�UO ]uGc(.
This proves the corollary. r

R e m a r k 3.2. The above statement gives rise to the following general ques-
tion: what closed sets can be singular for weak solutions of L(F)40 or
L(F)40?

Using the results stated in [ST 2] it can be proved, for instance, that every
continuous function F which is a weak solution of L(F)40 in V0K is a weak solu-
tion in all of V .

4 - Dirichlet problem for extremal operators

1 - Solutions of the Dirichlet problem for the Levi type extremal operators
provide bounds for solutions of the Dirichlet problem for Levi type operators (i.e
belonging to FV); in particular for the Levi operator.

Precisely consider the Dirichlet problem for the complete Levi equation

.
/
´

L(F)

F

4k(Q , F)(11NDFN2 )1/2 in V

4 f on bV
(4.1)

where k4k(z , u , t) is continuous in V3R and suppose that F�C 0 (V) is a weak
solution of (4.1) ([ST 1]). Let F1 , F2�C 0 (V) be the weak solutions of the corre-
sponding Dirichlet problems for L 1 and L 2 respectively.
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Then F1 is a weak subsolution of L 12k(Q , F)(11NDFN2 )1/2 and F2 is a weak
supersolution of L 22k(Q , F)(11NDFN2 )1/2 . Now we invoke the maximum princi-
ple to derive that F1GF in V, if k is non-decreasing with respect to t , and FGF2

if k is non-increasing.
In particular, if k does not depend on t we have

F1GFGF2

in V and F14F4F2 on bV i.e. F1 , F2 are barriers for the complete Levi
equation.

In what follows we formulate the Dirichlet problem for the extremal operators
and we translate it into a Dirichlet problem for a Bellman equation.

For simplicity we restrict ourselves to the homogeneous case.

2 - Let us consider the following operators

D
A(F)4Fzz1Fuu ,

MA(F)4Fzz Fuu2NFzuN
2 .

A continuous function F is said to be a weak subsolution of MA(F)40 if, for
every p and f smooth near p such that F2f has a local maximum at p , one has
MA(f)(p)F0, D

A(f)(p)F0.
F is said to be a weak supersolution if for every p and f smooth near p such

that F2f has a local minimum at p either MA(f)(p)G0 or MA(f)(p)D0 and
D
A(f)(p)E0.

A weak solution is a continuous function which is both a weak subsolution and
a weak supersolution.

We have the following

P r o p o s i t i o n 4.1. Let F be continuous in V . Then

(i) F is a weak solution of L 140 if and only if is a weak solution of
MA(F)40;

(ii) F is a weak solution of L 240 if and only if 2F is a weak solution of
MA(F)40.
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The proof is straightforeward.
Now we observe that if F is regular and the matrix

H (F)4 gFzz

Fzu

Fzu

Fuu
h

is positive definite at each point (z , u)�V then

MA(F)(z , u)1/24 (det H(F)(z , u) )1/24 inf
A�V

Tr A H (F)(z , u)

where V is the set of the positive definite hermitian matrices with det A41/4.
Furthermore the differential operator inf

A�V
Tr AH (F) is degenerate elliptic.

This reduces the Dirichlet problem for MA(F)40 to a Dirichlet problem for a
Bellman equation. Precisely

P r o p o s i t i o n 4.2. The Dirichlet problem: MA(F)40 in V , F4 f on bV

and F�C 0 (V) is solvable if and only if is solvable in C 0 (V) the Dirichlet
problem

.
/
´

inf
A�V

Tr A H (F)40 in V

F4 f on bV .
(4.2)

P r o o f . Let F be a weak subsolution of MA(F)40 and let F2f , f smooth,
have a local maximum at p�V . Then MA(f)(p)F0 and D

A(f)(p)F0. It follows
that H (f)(p) is positive definite and consequently inf

A�V
Tr A H (F)F0. Let F be a

weak supersolution and F2f have a local minimum at p�V . If MA(f)(p)40, 0
is an eigenevalue of H (f)(p); therefore inf

A�V
Tr A H (F)G0. If MA(f)(p)E0 one

eigenvalue is negative and again inf
A�V

Tr A H (f)(p)G0. Finally assume that

MA(f)(p)D0 and D
A(f)(p)E0. Then H (f)(p) is negative definite and

inf
A�V

Tr A H (f)(p)42Q .

This proves that F is a weak solution of inf
A�V

Tr A H (F)40.

The proof of the converse is similar. r

R e m a r k 4.1. For each A�V the operator

BA (F) »4Tr A H (F)

is elliptic.
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In order to solve (4.2) we fix a dense subset ]An( of matrices of V and for
every m�N we solve the Dirichlet problem

.
/
´

inf
1GnGm

BAn
(F)40 in V

F4 f on bV .
(4.3)

Next uniform (with respect to m) a priori estimates insure that the sequence
]Fm( of the corresponding solutions has a subsequence converging in Lip (V) to
(the unique) weak solution of (4.2).
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[CC] X. CABRÉ and L. CAFFARELLI, Fully nonlinear elliptic equations, AMS Coll.
Publ. 43 (1995).

[CLM] G. CITTI, E. LANCONELLI and A. MONTANARI, On the interior C Q-solvability of
the Dichlet problem for the prescribed Levi-curvature equation (to appear in
Rend. Mat. Acc. Lincei).

[CM 1] G. CITTI and A. MONTANARI, Strong solutions for the Levi equation (to appear in
Adv. in Diff. Eq.).

[CM 2] G. CITTI and A. MONTANARI, Regularity properties of Levi flat graphs (to appear
in C. R. Acad. Sci. Paris).

[DG] A. DEBIARD and B. GAVEAU, Problème de Dirichlet pour l’equation de Levi, Bull.
Sci. Math. 102 (1978), 369-386.

[ES] L. C. EVANS and J. SPRUCK, Motion of level sets by mean curvature. I, J. Differ-
ential Geometry 33 (1991), 635-681.

[GT] D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of sec-
ond order, Grundleherer der Math. Wiss. 224 Springer-Verlag, Berlin 1977.

[J] R. JENSEN, The maximum principle for viscosity solutions of fully nonlinear
second order partial differential equations, Arch. Rational Mech. Anal. 101
(1988), 1-27.

[K] N. V. KRYLOV, Nonlinear elliptic and parabolic equations of second order, Rei-
dei, Dordrecht 1987.

[L] P. L. LIONS, Optimal control of diffusion processes and Hamilton-Jacobi-Bell-
man equations. Part 2. Viscosity solutions and uniqueness, Comm. Part. Differ-
ential Equations 8 (1983), 1229-1276.

[P] C. PUCCI, Operatori ellittici estremanti, Ann. Mat. Pura Appl. 74 (1966),
15-30.



116 GIUSEPPE TOMASSINI [16]

[S] Z. SLODKOWSKI, Pseudoconvex classes of functions I. Pseudoconcave and pseu-
doconvex sets, Pacific J. Math. 134 (1988), 343-376.

[ST 1] Z. SLODKOWSKI and G. TOMASSINI, Weak solutions for the Levi equation and en-
velope of holomorphy, J. Funct. Anal., 101 (1991), 392-407.

[ST 2] Z. SLODKOWSKI and G. TOMASSINI, Evolution of a graph by Levi form, (to appear
in AMS Ser. «Contemporary Mathematics).

[T] G. TOMASSINI, Geometric properties of solutions of the Levi equation, Ann. Mat.
Pura Appl. 152 (1988), 331-344.

S u m m a r y

We introduce maximal and minimal operators L 1 , L 2 (in the sense of Pucci) for the
family FV of the «Levi type operators» La , b on a domain V of C3R . We state some sim-
ple property for (weak, viscosity) solutions of L 1 , L 2 . In particular we prove a special
form of the maximum principle. As a consequence we obtain that solutions of L 1 , L 2 sat-
isfy a «weak Hartogs property». We are also dealing with the Dirichlet problem for L 1 ,
L 2 . After shown that solutions of that provide barriers for the Levi operator we prove that
this problem translates into a Dirichlet problem for a Bellman equation.

* * *


