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GIUSEPPE TOMASSINI (%)

Levi type extremal operators (**)

1 - Introduction

Let z=x + iy, w=u + iv be complex coordinates in C2. Given a smooth hy-
persurface M we denote by £, the distribution of the complex tangent lines to M.
£y s called the Levi distribution on M. It is well known that £, is completely in-
tegrable if and only if

0 F, F,+i
(1.1) kL = - det Fz FEZ qu
Fu -1 qu Fuu

vanishes on M, ¢ =0 being a local equation for M.

In this situation, by virtue of the Frobenius Theorem, M is foliated by holo-
morphic curves and is said to be Levi flat.

If M is a graph v=F(«x, y, ) we have

1
ky, = Z{(l"‘F?%)(Fxx""Fyy)""(Fﬂ?—'—F?/Z)F““

+2(Fy_FxFu)ch_2(Fx+FyFu)Fyu}'
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Thus Levi flat graphs are solutions of the Levi equation

1
L(Fy=~-{(1+F2)F, +F,)+ (F:+F2F,,
12) (F) 4{( )(F, ) T ( v Fy

+2(F,~-F,F)F,, -2(F,+F,F,)F,}=0.

L(F) is a degenerate elliptic operator. It has been introduced in Complex Analysis
in the context of the Dirichlet problem for Levi flat graphs ((BG], [DG], [T],
[ST 1]).

In the last years sophisticated techniques of PDE theory have been employed
to prove a series of interesting results on the regularity of solutions of the Levi
equation ([C], [CLM], [CM 1], [CM 2]).

Let DF =(F,, F,), |DF|=(1+ |F,|>+F?)' and L(F)=(1+ |DF|*)!
- L(F'), be the normalized of L(F'). Due to the particular form of L(F) it is easy to
show (Sec. 2) that there are two fully nonlinear degenerate elliptic operators A,
Ay such that

(1.3) A, (F) S L(F) < A5 (F)

for every smooth function F'.

A4, A, are «extremal operators», in the sense of Pucci ([P]), for a family of
degenerate elliptic operators. Precisely consider a domain 2 in C X R and opera-
tors L, z(F) of the form

0 a I}
(1.4) L, s(F)=—det|la F; F;,
B FZZL Fuu

where a, B are measurable functions of (z, ), F, DF, D*F with the proper-
ties:

1) for fixed (z,u), a, f are differentiable a.e. with respect to F, DF,
DF,
2) |al*+ |p|*=1;

3) the hermitian form

2

L, s _ oL, oL, 5 . oL,
LeEy il y 2l 0y

aF 2z aF U aF zZu aF un
is positive definite (= 0).
Let Jo be the family generated by the L, z(F)'s: L‘ng{ > AjLuj,ﬂj}

1<jsm
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where 1; is measurable and nonnegative, 2 Aj=1and meN. Then A4, 4,
are the extremal operators for F. tsism

We call them Levi type extremal operators.

Extremal operators were introduced to study singularities for solutions of el-
liptic equations, in particular to produce critical examples. For all this matter as
well as for other applications in PDE we refer to [P] and [CC].

In this paper we state some simple property for weak (viscosity) solutions of
A4, Ay. In particular in Section 3 we prove a special form of «maximum princi-
ple» (Prop. 3.5) and as a consequence we obtain that weak solutions of A, A,
and L satisfy a «weak Hartogs property» (Cor. 3.6).

Finally in Section 4 we deal with the Dirichlet problem for A,, A,. After
shown that solutions of that provide barriers for the Levi operator we prove that
this problem translates into a Dirichlet problem for a Bellman equation (Prop.
4.2)

2 - Extremal operators

1 - Consider the Levi operator L(F') and let L(F') = |DF| “2L(F) be the nor-
malized of L(F'), F' smooth.
Let 9C= 9C(F) denote the hermitian matrix

(FEz FEu )

2.1) .
FZV/ Fuu

Given (2°, u")eC xR there exists a unitary matrix A= (a,5) such that
ALICA = diag (A (F), A5(F)) at (z°, u°). Therefore the matrix

1 0
2.2) B= ( )
0 A

diagonalizes L(F) i.e.

0 F, F,+i 0 W)  L(F)
2.3) B! F F, Fs, B= 21, (F) 4 1(F) 0
Fu_i qu Fuu Z2V(F) 0 A2(F)

where A,(F) < A,(F) and

‘(F
2.4) (ll( ))=At( F )
Ij (F) F,+i
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It follows that
L(F) = |L(F) |PA(F) + |LL(F) |*Ay(F)

with [;(F) = (1 + |DF|2)‘1/2l7’(F), j=1,2.
Since |, (F) |2+ |l(F) |2= 1 and A is unitary one has

25) A1(F) < L(F) < A(F)

for every FeCb1,
We define A(F), A5(F) Levy type extremal operators.
They have the following explicit forms:

1
AI(F) = E{FZ§+FIt1I - [(Fz2+Fuu)2_4(Fz2Fuu_ |qu|2)]1/2}

1
A2(F) = E{Fz%+F1¢u+ [(Fz§+Fuu)2_4(FzEFuu_ |qu|2)]1/2}-

The linearized operators are rspectively

(2.6) Ay p(G) =aG:+2 RebG,, + Gy,
2.7 Ay 5 (G) =Gz — 2 RebG,, + aG,,
where

(2.8) a=(6(F)" "2 /2)(6(F)"?~F;+F,),
2.9) b= — 0(F) "*Fy,,

(2.10) c=((F)"2/2)(6(F)*+F:~F,),
2.11) OF) = (Fz—=F, ) +4|F,,|

and a=0, ¢=0, ac= |b|~

In particular, A4; z(F)=A4;(F), j=1, 2.

Moreover if F' and G are smooth functions A4 ;(F) — A4;(G), j=1, 2 we have
the formulas

(2.12) Ay(F) = A,(G)=CH.—2 ReBH,, + AH,,

2.13) Ay(F) = Ay(G) = AH- + 2 Re BH,, + CH,,
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where
F:—Gz:+F
(2.14) A = 1/2 (1 + i Gzz + un + Guu ) ,
O(F) + 6(G)"”
Fz + G
2.15 = 2u 2u ’
e O + 8(G)'
F:—Gz+F,+G
2.16 C=1/2|1- Rz 2z u un
=0 / ( O + 6(G)'” )

Since A=0, C=0 and AC = |B|* the hermitian form
AEE+ 2 Re B&E + Oy

is positive definite (with at least one positive eigenvalue).
In particular the extremal operators are of the form

0 « B
(2.17) det|a Gz Gy
B qu Guu

where a, 8 are functions of D?F.
They are degenerate elliptic in the sense of viscosity ([J], [L]).

2 - Let 2¢cC x R be a domain and J, the family of the Levi type operators as
defined in Introduction.

Let A, A, be the extremal operators. It is immediate to check that the fol-
lowing properties hold true:

() for every FeC11(Q) and L € F, there is a linear operator [ e J, such
that I(F) = L(F) a.e;
(i) A4, A, belong to Fo;
(iii) for every FeCh1(Q)

A4(F) = min L(F),  A»(F) = max L(F).
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3 - Maximum principle for weak solutions

1 - Let us recall the definition of weak solution (in the sense of viscosity).

Denote A(F) one of the operators A ;(F),j=1, 2. Let 2c C X R be a domain
and F': 2—R a continuous function. F' is said to be a weak subsolution (respect-
ively a weak supersolution) of A(F) =0 if, for every pe 2 and ¢ smooth near p
such that F' — ¢ has a local maximum (respectively a local minimum) at p one has
A(p)(p) =0 (respectively A(p)(p) < 0).

A weak solution is a continuous function which is both a weak subsolution and
a weak supersolution.

Observe that in view of the definition of 4 and A ,, weak subsolutions (super-
solutions) of A; (A,) are subsolutions (supersolutions) of all operators
Le ;.

Proposition 3.1. Let F be a continuous function in QcCXR. If F is a
weak subsolution (weak supersolution) of A1(F) =0 (A,(F)=0) then F has no
local maximum point (local minimum point) in Q.

Proof. We may assume that 2 is bounded with regular boundary and that
FeC'@).

Let F' be a weak subsolution A ;(F) =0. It is immediate to check that F' is a
weak subsolution of F,;+ F,, =0 so that (passing to new variables z' =z,
u' = u/2) we may assume that F' is a weak subsolution of AF =0. F is subhar-
monic. To prove this let U be the harmonic function which coincides with ' on b2
and assume that F' — U has a positive maximum «a at a point p = (z°, 4°) € Q2. Let
¢ be sufficiently small to have e(|z — 2|2+ |u —u"|*) < a on bQ. It follows that
F—U+ée(]z—2"|*+ |u—u"|?) has some maximum point in 2, say q. Since F is
a weak subsolution of AF =0 and V=U —&(|z—2°|*+ |u—u"|?) is smooth in
Q, by definition of weak subsolution we must have A(U —V) =0 at ¢q. On the
other hand A(V) = — 6¢, and this gives a contradiction. Therefore F'< U on
whole Q. Thus F' is subaharmonic and hence has no local maximum point in Q.

The proof for supersolution is similar. =

In particular under the conditions of the above proposition we have

max F' = maxF{minF= minF}.
o bQ o bQ
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In order to prove the comparison principle for the extremal operators we recall
briefly the main properties of the regularization by «sup and inf» convolution
(LES], [J], [SID.

Let F': CxR—R be continuous and bounded. Set, for ¢>0, 2zeC and ueR

Fé(z,u) = max {F(&, v) —e |z = §|* + (u —v)?),(, v) e C* x R}
and
F.(z, u) =min{u(g, v)+ e (|2 = ¢|*+ (u —v)*),(§, v) e C X R}.

The above definitions immediately imply that F.<F<F°® and |F.|, |F*| are
bounded by sup |F'|; F., F'¢ are Lipschitz and F'* \F', F, / F uniformly on com-
pact subsets as ¢—0. Moreover, the functions

Fe(z,u)+e (|22 +u?)
and
F.(z,u)—e '(|z|*+u?)

are respectively convex and concave. In particular they are twice differentiable
a.e. ((K)).

Let F' be a continuous, bounded function in C X R and suppose that F' is a
weak subsolution of A(F) =0 (respectively a weak supersolution) in a bounded
domain Q of C X R. Let

Q,={(z,u) e Q:dist (z, w), bD) >2 sup |F|e'*}.

Then F¢ (respectively F,) is a weak subsolution (respectively a weak supersolu-
tion) in £,. Moreover

AFH=20  (AF)<0)

at each point of twice differentiability of F'¢ (F,).
This can be seen as follows. Let F¢ — ¢ have a local maximum at (z°, u°)
eQ,, ¢ smooth, and (£° u°) e C xR be such that

Fez% u®) =F(&° ") —e 1(]2° = &P+ (w —v)).
Set

Y, u)=p(z+2" =% u+u’—22.
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Then (£° v°)e® and for all (z, u) near (2°, u°) and all (&, v)eC xR we
have

F&,v)—e '(Jz =P+ (w—v)*) —p(z, u) S F (2, u) — p(z, u) <u(g’, v°)
—e (2" = &P+ (u—v)?)
—p(z°, u’);

in particular, for z=¢+2°—¢° u=v+u’—2° and (¢, v) near (£° ), we
have

F(C’ u) - w(é, v) $F(CO7 vO) - U)(CO, /Uo)y
ie. F— has a local maximum at (£°, v°). Since
P (%0 =9, u, "% u’)=¢.5E°% 0"

we obtain A(¢) =0.
Now twice differentiability a.e. of F* and F, easily implies the statement.

Theorem 3.2. Let FeC%Q) be a weak subsolution and G e C°(Q) a weak
supersolution of A =0 in Q. Then

max(FF—G)=max(F—G).
o b0

Proof. We have to prove that if F <G on bQ then F<G.

We may assume that F' <G on bQ2. Moreover, since for H smooth and ce R
positive we have A (H F ¢(|z|* + u?/2)) = A(H) ¥ 2¢ we may also assume that F
is a weak subsolution of A(F) = ¢ and G is a weak supersolution of A(G) = — ¢, ¢
positive.

Let mgx (F—-G)=a=0. Extend F', G by continuous functions in such a way

to have F <G in Cx R\ Q and F = const, G = const for |z|*+u2>0. Since
max (F — G) =a >0 we have
Q

max(F—G)=a
CxR

and consequently

(*) max (F*—G,) =a
CxR

for all ¢ < e¢,.
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Now set £=(z, u) and define for &, £+ 7neC xR,
D, 5(& ) =F(E+n)—G(5)—0 " n|"

@, ; is negative outside of a compact subset K and @, s=Z @, 5, D, s 2P,
provided ¢’ <¢, 0’ <. Moreover, because of (*),
ml%x D, s=a.

Let p, s= (&', n') be a maximum point for @, s. By definition |n'|<Co™
(where C depends only on F' and ). We claim that for e, d near 0, £’ and &' + »’
belong to 2.

To prove this we consider a limit point (£°, #°) of the bounded set {p, ,}-
Then, since @, s(p.. ) =a, 6 '|n’|* must be bounded as &, 5—0 and this
forces 7° to be 0. It follows that

FE)-GEY-B=a

for some positive constant B. Since F' <G outside of £ this proves our
claim.

From now on in the proof &, 6 are fixed.

According to convexity and concavity properties of the «sup and inf» convolu-
tion the function @(&, ) + C(|&€|*+ |5|?) is convex near (&', n') for some suffi-
ciently large constant C. Since @ takes its maximum at (§', ') we can apply the
theorem of Jensen [J]: there exist sequences (&%, #*) — (&', ') and ¢*— 0 such
that D , D(E¥, n*) < e¥I as k— + .

By definition

DEB(E", ") = DAF* (6" + ") ~ D*G,(5") = R* ~ R,

and R* — R* < ¢*I. Moreover, again by virtue of convexity and concavity properties
of the «sup and inf> convolution, there exists a constant C such that R*= —CI
and R*<CI. Consequently, passing to subsequences we obtain R*—R, RF—>R
and, since A(F)EF +n*)=c, AF)EF) < — ¢, AR) =c, AR) < — ¢ (here we
consider /1 as an operator acting on the matrices M = (M) just replacing second
derivatives 9;G of a function G by M;).

Now observe that 3(R) + d(R) > 0 (otherwise Tr(R) > Tr(R) which is absurd
since R<R) and put S=R — R to have

where a =0, y =0 and ay = |B]>.
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For X, =X, = (2|8]) 'y"2 Xs=(2|B|) *a'? (if B #0) the above inequality
rewrites

O < A(R) - A(I_‘B) = S11X12 + SszZZ + 2S13X1X3 + S33X32
and this is a contradiction since the matrix S is nonpositive. ™

For smooth solutions strong maximum and minimum principle hold true.
Namely

Theorem 3.3. Let FeC%Q)NC?*(Q) be a nonconstant solution of A(F)=0.
Then F has no interior maximum or minimum.

In view of what is preceding we only have to show that F' has no interior maxi-
mum. This is actually a direct consequence of the following Hopf Lemma which
can be proved in the same way as for elliptic operators ([GT]):

Lemma 34. Let Q' be a bounded domain with smooth boundary and let
FeCl(Q NC*R') be a nonconstant solution of A(F) =0. Assume that x° e bQ’
is a peak point for F (i.e. F(x) <F(x°) for x=x°). Then the outer normal
derivative of F at x° is positive.

2 - The maximum principle for weak solutions of A(F") =0 as well as of L(F) =0
can be refined. Let us discuss it in a simple situation namely when £ is a bounded
convex domain in C X R.

Proposition 3.5. Let Q.=Q2nN{u<c}, Z.=b2N{u<c}, ceR, and
FeC%Q). Then

() if F is a weak subsolution of A;(F)=0 or L(F)=0

max F' = max F ;
2 2

() if F is a weak supersolution of A,(F)=0 or L(F)=0

min ¥ = min F' ;

(iii) of F is a weak solution of L(F)=0

min F' < F(z, ) < max I’

¢ c

for every (z, u) € Q..
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Proof. Let G(z, u) =max F. G is constant with respect to z and F <G
on bQ. =

G is a weak supersolution of ;.

To show this let ¢ be smooth and F — ¢ have a local minimum at (z°, u°),
ie.

Gu) — ¢z, u") = G(u®) — pz°, u°)

near (z°, u°). Then ¢(z, u°) < ¢p(z°, u°) near (z°, u°) so that ¢ ,:(z°, u°) <0.
By definition

AP u®) =¢ 2% u®) + ¢, (2% u®) — 8(P)2°, u®)

If (puu(zoy uO) < (0 then Al(qb)(zo, uO) <0.
If ¢,,(2° u’) =0 we have

P =T(pz— )+ 49| 17", u®)

= ((puu - ¢z2)(z0, u())
and consequently
Ay(@)E°% u’) < = ¢, (2° u’) <0,

The inequality (i) is now a direct consequence of theorem 3.2.
The proofs of (i) and (iii) are similar. =

Remark 3.1. The «minimum (maximum) statement» for weak solutions (solu-
tions) of A; (A,) fails to be true: e.g. let F=|z|>—u (F=|z|*—u) and
Q={u>|z|*}.

Corollary 3.6. Let K be a compact convex subset of 2. Then

(i) continuous weak subsolutions of A{(F) =0 or L(F)=0 i Q\K are
bounded from above near K;
(i) continuous weak supersolutions of A(F) =0 or L(F) =0 in Q\K are
bounded from below near K;
(ili) continuous weak solutions of L(F)=0 in Q\K are bounded
near K;
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Proof. Let Uc 2 be a relatively compact convex neighbourhood of K. For
each point p € bK there is a «support hyperplane» T for K (p e T'). By a holomor-
phic change of coordinates we may assume that 7'={u=c} and {u<c}NK=0.

Let ¥=0bU and X, =bU N {u < c}. In view of the above proposition we have
respectively

F(z,u) <max F<maxF', min F <min F<F(z, u)
s bU bU s

¢ c

and

mnF<mnF<F(z,u) <max F<max F
bU s, s, bU

for (z, w)eUN {u<c}.
This proves the corollary. =

Remark 3.2. The above statement gives rise to the following general ques-
tion: what closed sets can be singular for weak solutions of A(F)=0 or
L(F)=0?

Using the results stated in [ST 2] it can be proved, for instance, that every
continuous function F' which is a weak solution of L(F) =0 in Q\K is a weak solu-
tion in all of Q.

4 - Dirichlet problem for extremal operators

1 - Solutions of the Dirichlet problem for the Levi type extremal operators
provide bounds for solutions of the Dirichlet problem for Levi type operators (i.e
belonging to J,); in particular for the Levi operator.

Precisely consider the Dirichlet problem for the complete Levi equation

L(F)=k(-, F)(1+ |DF|»)'* in Q
@D {_() ¢, )1+ |DF %) in

F =f on bQ

where k = k(z, u, t) is continuous in 2 x R and suppose that F e C°(Q) is a weak
solution of (4.1) ([ST 1]). Let F,, Fye C°(Q) be the weak solutions of the corre-
sponding Dirichlet problems for A4; and A, respectively.
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Then F| is a weak subsolution of A, — k(-, F)(1 + |DF|*)"? and F, is a weak
supersolution of A, — k(-, F)(1 + |DF|*)"2. Now we invoke the maximum princi-
ple to derive that F; < F in Q, if k is non-decreasing with respect to ¢, and F < F,
if k is non-increasing.

In particular, if k£ does not depend on ¢ we have

in Q and F;=F=F, on bQ ie. F,, F, are barriers for the complete Levi
equation.

In what follows we formulate the Dirichlet problem for the extremal operators
and we translate it into a Dirichlet problem for a Bellman equation.

For simplicity we restrict ourselves to the homogeneous case.

2 - Let us consider the following operators
Z(F) :Fzz_l—an
MA(F) :FzzFuu - |qu|2

A continuous function F is said to be a weak subsolution of MA(F) =0 if, for
every p and ¢ smooth near p such that F' — ¢ has a local maximum at p, one has
MA($)(p) =0, 4(p)(p) =0.

F'is said to be a weak supersolution if for every p and ¢ smooth near p such
that F — ¢ has a local minimum at p either MA(¢)(p) <0 or MA(¢)(p) >0 and
A(p)p) <0.

A weak solution is a continuous function which is both a weak subsolution and
a weak supersolution.

We have the following

Proposition 4.1. Let F be continuous in Q. Then

(i) F is a weak solution of A,=0 if and only if is a weak solution of
MA(F) =0;

(ii) F is a weak solution of A, =0 if and only if —F is a weak solution of
MA(F) =0.
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The proof is straightforeward.

Now we observe that if F' is regular and the matrix
F zZz F Zu

H(WF) = ( )

FZH FZH//

is positive definite at each point (z, u) € Q then

MA(F)(z, w)"? = (det I(F)(z, u))"? = I}nf"/ TrA )z, u)

where V is the set of the positive definite hermitian matrices with det A=1/4.
Furthermore the differential operator jn‘f/ TrAI(F) is degenerate elliptic.

This reduces the Dirichlet problem for MA(F) = 0 to a Dirichlet problem for a

Bellman equation. Precisely

Proposition 4.2. The Dirichlet problem: MA(F) =0 i Q, F=f on bQ
and FeC°Q) is solvable if and only if is solvable in C°(Q) the Dirichlet
problem

(inf TrAIC(F)=0 in Q
(4.2) TAEV
F=f onbQ.

Proof. Let F be a weak subsolution of MA(F) =0 and let F — ¢, ¢ smooth,
have a local maximum at p e 2. Then MA(¢)(p) =0 and Z(¢)(p) = 0. It follows
that 3 (¢)(p) is positive definite and consequently jnﬁ/ TrAI(F)=0. Let F be a

weak supersolution and F' — ¢ have a local minimum at p e Q. If MA(¢)(p) =0, 0
is an eigenevalue of I((¢)(p); therefore jnﬁ/ TrAI(F)<0.If MA(¢)(p) <0 one

eigenvalue is negative and again jnfv TrAd(¢p)(p) <0. Finally assume that

MA(p)(p) >0 and Z(¢)(p)<0. Then IC(¢)(p) is negative definite and
jrelﬁ/ TrAX(9)(p) = — .

This proves that F' is a weak solution of gnf"/ TrAI(F)=0.

The proof of the converse is similar. m
Remark 4.1. For each A eV the operator
By(F) :=TrAI(F)

is elliptic.
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In order to solve (4.2) we fix a dense subset {4,} of matrices of V and for
every melN we solve the Dirichlet problem

inf B (F)=0 inQ
(4.3) { svsm

F=f on bQ.

Next uniform (with respect to m) a priori estimates insure that the sequence
{F,,} of the corresponding solutions has a subsequence converging in Lip (2) to
(the unique) weak solution of (4.2).
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Summary

We introduce maximal and minimal operators A, Ao (in the sense of Pucci) for the
family Jq of the «Levi type operators» L, 5 on a domain Q2 of C X R. We state some sim-
ple property for (weak, viscosity) solutions of A, Ay. In particular we prove a special
form of the maximum principle. As a consequence we obtain that solutions of A, A5 sat-
isfy a «weak Hartogs property». We are also dealing with the Dirichlet problem for A,
A . After shown that solutions of that provide barriers for the Levi operator we prove that
this problem tramslates into a Dirichlet problem for a Bellman equation.



