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Computing codes for ordinary differential equations:

state of art and perspectives (**)

1 - Introduction

The fundamental importance of mathematics in the current technological de-
velopment is by now recognized also in official documents (see for example [20]).
The fields of mathematics that more directly influence every phase of the techno-
logical cycle are the Modeling and the Scientific Calculus. While everyone has a
more or less precise opinion of the complex of ideas and techniques which are the
basis of Modeling, at least for having learned them in the courses of Physics and
Mathematical Physics, this is not equally true for Scientific Calculus, even if,
paradoxically, we may say that are very few the mathematicians who have never
used some products in commerce (Mathematica, Matlab, etc). This for two reasons:

(a) the mathematics curricula of our Universities seldom go beyond the first
elements of the Numerical Analysis;

(b) Scientific Computing is a very young discipline developed in the last
thirty years and therefore, in wide measure, it is unknown to unacquainted
people.

It is also a varied and complex discipline, ranging by now in every field of the
Applied mathematics, from the approximation to the simulation of dynamical sys-
tems of every type. Besides, it is a discipline in fast evolution, due both to the fast
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development of the computers, and to the enormous pressure exercised from the
always-increasing necessity of the applications. To start with the description of
some specific topics of this discipline, we consider first the dimension of the prob-
lems. Large value of this parameter is the rule rather than the exception. In fact,
even relatively simple continuous problems, once discretized, can give rise to
large dimensional problems whose solution requires, often, the execution of a
number of operations growing polynomially and, sometimes, also exponentially
with the dimension. These operations are not done with real numbers but with a
finite representation of them. This implies that there is always a source of errors
that disturbs the computing model. Such perturbation operates in a way very sim-
ilar to that of a permanent perturbation of the equations in the continuous case.
How to control the effect of such perturbations? Which are the most opportune al-
gorithms to use? How to structure the calculations in a way that the memories of
the computers are sufficient? (think to the three-dimensional models of the fluido-
dynamics, where the number of the unknowns grows like the cube of the dimen-
sions). Above all, how to structure the calculations in order to have the result in
reasonable times?

All these questions and many others, that for brevity we omit, require a sys-
tematic study and are the basis of Scientific Calculus.

Naturally, as is common praxis in mathematics, the problem is divided into
many subproblems. This process may be repeated many times, until a simple ho-
mogeneous problem is derived. The objective is to obtain algorithms with increas-
ing efficiency and reliability. Such algorithms, often, are modules to be combined
in a way that more and more complex problems can be solved in more and more
reliable way.

The process generates an extreme division of the discipline, very similar to
what happens in other fields of mathematics. This may be considered either a po-
sitive or negative phenomenon, according to the points of view and we will not be
here to give a judgment. Rather we want to emphasize that, in this particular
field, the main objective of the study is to render the algorithms more efficient
and easy to use. In fact it often happens that the end product, even if obtained
after decades of intense study, can be used in extremely simple way by everyone,
as the example of the commercial programs demonstrates.

In this review article we will describe some of the problems connected to the
construction of codes for the numerical solution of ordinary differential equations.
Our aim is to show, on a concrete example, the complexity of the process which,
starting from the problem, arrives at its numerical solution handling a more or
less large number of intermediate numerical problems. The whole process needs
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to be at a very high level of reliability and ready to be encapsulated «in the plas-
tic» (or, if it is preferred) in the «chip» of a computer.

2 - Continuous and discrete problems

In order to fix the ideas, the considered continuous problem will be in the nor-
mal form:

y 84 f (t , y)(1)

where the function f :[t0 , T]3RmKRm is so smooth as to satisfy the conditions
of existence and uniqueness of the problems considered later on. When studying
the order of convergence of the methods, more restrictive conditions are usually
required.

The study of the qualitative behavior of the solutions of (1) has engaged the
mathematicians in the last century and is still a field of active researches, which
often surprises with the variety of its results. Moreover such engagement has
been culturally and scientifically very profitable since it has generated new tech-
niques and new ideas, all of which have useful applications in the treatment of
other problems.

It turns out, however, that the qualitative information, although of extreme
importance, often is not enough in the applications, where it is necessary a more
specific knowledge of the solutions, even if on a discrete subset of points. The first
attempts to obtain such information go back to the beginnings of the Mathemat-
ical Analysis (Newton, Euler, etc.), even though with insufficient results, if partic-
ular simple cases are excluded. To the beginning it seemed that the only difficulty
was the large amount of time required to execute the needed calculations. The ne-
cessity of having machines, or, at least, techniques, to shortening the time of cal-
culation, was perceived very soon (Leibniz, Pascal, ...). Kepler asserted that the in-
vention of the logarithms had doubled the life of an astronomer.

The sideboard that the only difficulty was the quantity of calculations re-
mained for more than two centuries. Also Richardson, at the beginning of this
century, thought in the same way when he proposed its «Mathematical factory»,
in which 64000 mathematicians, trained to execute particular types of calculations,
could have been able to solve, in «real time», the equations for the weather
forecast.

With the advent of modern computers, and therefore with the overcoming of
the mentioned long lasting difficulty, the existence of a more subtle difficulty, i.e.
the possible catastrophic propagation of unavoidable errors, showed up. As a mat-
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ter of fact, even if the plan of the «Mathematical factory» could have been real-
ized, the executed calculations would have been unusable since affected from high
relative errors. Von Neumann was among the firsts to be aware of this. He ob-
tained a condition on the discretization steps to have the computations executed in
regime of stability. This last term, already famous in the qualitative theory, enters
for the first time in the study of the propagation of the errors. In the following
years it has become the hinge around which the current theory of the approxi-
mate solutions has been built. In the same period many of the results obtained in
the qualitative theory of differential equations were extended to the solutions of
the difference equations. This gave a remarkable impulse to the study of the nu-
merical methods. To approximate numerically the solution of (1) is equivalent in
fact to replace it with a difference equation.

With the passing by of time it became evident that the concepts which in the
past the construction of the numerical methods was based on, i.e. the local error
and the order of convergence, were inadequate. Examples of methods with high
orders of convergence and behaving in disastrous way were very soon found. Also
the 0-stability concept, recently introduced, resulted widely inadequate.

In years 60 and 70, people started to realize that the right condition to impose
was to demand that the solutions of both continuous and discrete problems should
share the same qualitative behavior. Since, as we have said, the qualitative behav-
ior of the solutions of (1) may be extremely varied, depending on the shape of the
limit set, this condition is easy to formulate, but extremely difficult to real-
ize.

One started from the simpler case, fortunately the most common in the appli-
cations, i.e. the case, in which an initial condition is associated to (1) and the re-
sulting problem has an asymptotically stable equilibrium point. One supposes
moreover that the solutions are to be approximated in a region around such point.
In this case, the qualitative theory, both in the continuous and in the discrete case,
had already developed mathematical instruments, like, for example, the funda-
mental theorem of stability in first approximation, which permits to study the lin-
earized problem. The introduction of the famous equation test

y 84ly , Re lE0 ,

done by Dahlquist is justified by the cited theorem. For each method it is then de-
fined a region in the complex plane hl (said region of Absolute stability) within
which the product hl has to stay in order to have the equilibrium point asymptoti-
cally stable for the discrete equation.

The choices of the discrete equations are unbounded. A long job of classifica-
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tion and study of methods essentially, but not exclusively, belonging to the two
great classic families, i.e. the Multistep and the Runge-Kutta methods, started in
the sixties and still continues.

The absolute stability regions can vary very much from method to method:
they may range from empty regions to regions containing all the negative com-
plex plane (A-stable methods). Often there is a conflict between the order of accu-
racy of the methods and the amplitude of the absolute stability region. A typical
result is due to Dahlquist:

T h e o r e m 2.1 (Dahlquist Barrier). If initial conditions are associated to
equations in the multistep class, the resulting methods cannot be A-stable with
order of precision greater then two.

3 - Stiff problems

As from the sixties some applications coming from Chemistry and Mechanics
had evidenced that, with the methods known at that time, the solution of some
problems demanded the use of very small integration steps. Such problems were
said stiff and are characterized by two constants of time very large apart. It is
stiff, for example, the equation test if the integration interval is [0 , T] with T410

and l42106. The ratio
T

NlN
is said stiffness ratio. To recognize stiffness is not

always easy as in the example and the discussion on its exact definition still con-
tinues. It happens sometimes that some entities are more recognizable from their
consequences than from their definitions. This is the case of stiff problems. The
consequence is that, if a method has a bounded region of absolute stability, to
have hl inside it, one must take hBNlN21. This value of h is very small in many
applications. Explicit methods, having bounded regions of absolute stability, are
not suitable to solve this type of problems. A-stable methods, necessarily implicit,
are needed instead. To fix the ideas, we will say that the stiff problems have, in
general, solutions with fast variations on small intervals. We have said in general,
since it is obvious that for special initial conditions this may be not true, but the
fast variations come in as soon as the initial conditions are perturbed. From the
point of view of the Numerical Analysis this does not make any difference. The
use of implicit methods, however, requires, the solution of a nonlinear system at
every step. Moreover, for the class of multistep methods, at least in their classic
formulation, the limitation due to the barrier of Dahlquist, which limits the attain-
able precision, has to be considered. An analogous limitation does not exists for
class of the Runge-Kutta methods and this explains the preference for this class
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of methods in the last years. Recently the class of the multistep methods has been
generalized. In such generalization the Dahlquist barrier has been eliminated and
therefore A-stable methods of all order can be used. The new methods have been
called Boundary Value Methods (BVMs).

4 - Boundary value methods

Multistep methods are difference equation of order k while equation (1) has
order one. This means that the discrete problem needs k21 additional condi-
tions: in the classical use of such methods, all the additional conditions are im-
posed at the beginning of the interval. In such case the above mentioned conflict
between the stability conditions and the precision order appears. If one takes the
freedom of using such additional conditions where it appears to be more conve-
nient, the conflict disappears. The question has been discussed in the recent
monograph [12]. Obviously, except for the case k41, methods which were consid-
ered stable in the previous formulation, are no longer stable in the new formula-
tion and vice versa. Typical is the case of the Top Order Methods (TOMs), i.e.
those having the maximal precision order in the class (p42k). They were already
known in the fifties and never used because unstable. As BVM, they are perfectly
stable (perfect stability means that their absolute stability region coincide with
C2).

Multistep methods contain well-known historical families of methods. For fu-
ture references we report such families along with their generalizations as
BVMs.

4.1 - Generalized backwards methods

The methods in this family are defined by

!
i40

k

a i yn1 i4hfn1 j .(2)

For j4k, one obtains the classical backward differentiation formulae. They are
important because they are used in many of the most important codes. Their re-
gion of absolute stability is very large and contain C2 for k41, while it become
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smaller and smaller as k increases. For j4n given by

n4

.
/
´

k12

2

k11

2

for even k ,

for odd k .

(3)

the methods of order k, used as BVM with n additional conditions at the begin-
ning of the interval and k2n at the end, are A-stable for all k.

4.2 - Generalized Adams methods

Such family is defined by

yn1 j2yn1 j214h !
i40

k

b i fn1 i .(4)

The classical Adams-Moulton methods are obtained for j4k . Such methods
have very small absolute stability regions and were used only for non stiff
problems.

As BVMs, by taking

j4

.
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k11
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k

2

for odd k ,

for even k ,

(5)

the methods of order k11, are A-stable for all k. On such methods is based the
code GAM [31].

4.3 - Symmetric schemes

This family has not a classical counterpart since they were all unstable. As
BVMs, those of higher order are perfectly A-stable. Their main characterization is

a i42a k2 i , b i4b k2 i , i40, R , k .(6)

In practice such characterization is too wide. It is necessary to introduce some
more strict classification. We have then
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l Extended Trapezoidal Rules (ETRs)

yn1n2yn1n214h !
i40

2n21

b i fn1 i .(7)

l Extended Trapezoidal Rules of second type (ETR2s)

!
i42n

n21

a n1 i yn1 i4h (bfn1 (12b) fn21 ) ,

and the already mentioned TOMs. All such methods are suitable to be used in
special problems where the perfect stability is important (Hamiltonian problems,
boundary value problems, etc.).

5 - Mesh selection

As evident in the case of stiffness, many difficult problems are multiscale. This
implies that, if one wishes to recover from the numerical approximation enough
information about the solutions in a reasonable amount of time, the use of variable
stepsizes is needed. This leads to the problem of defining the most suitable choice
of points (mesh points), on which the value of the solution will be computed, in or-
der to bound the global error within a prefixed tolerance.

Mesh selection is in a sense the numerical counterpart of the scaling theory of
Mathematical Physics. It is a non trivial task, which has been studied in the last
thirty years. There is not, so far, a complete satisfactory theory of mesh selection.
Recently, (see [11], [12]), it has been proposed the introduction of two parameters,
essentially the lQ and the l1 norms of the solutions, as characterizing the presence
of multiscale for both continuous and discrete problems. The fulfilment that the
discrete problem has both parameters as near as possible to the corresponding
continuous ones, permits to select an optimal mesh. Such criterion is costly and, in
our opinion, can be justified only for boundary value problems. It can be proved
that for well conditioned initial value problems, it may be simplified. The obtained
simplification reduces to the classical deferred correction (see [12]). Anyway this
problem needs more studies. In practice one uses more empirical methods usually
based on the control of local error, which essentially consists in the computation
of a measure of the local error, scaled with the user specified accuracy require-
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ment, and in choosing, at the current time of integration, the optimal stepsize as

hnew4hng 1

err
h1/(p11)

where p is the order of the method and hn is the old stepsize. Usually a safety fac-
tor is introduced in order to have more probability that the error will be accepted
the next step. If the control on the local error is satisfied then the new stepsize is
used to advance the solution in time. For explicit methods this stepsize variation
strategy may generate a sequence of oscillating stepsizes. Such behavior depends
on a conflict between accuracy and numerical stability when they are used for
solving stiff or mildly stiff problems. It can be explained by studying the corre-
sponding dynamical systems on the border of the stability region. The SC-stabili-
ty has been introduced to explain this phenomenon [27]. The study of the best way
of choosing the stepsize is essential for the construction of efficient codes, so re-
searches have been made to find techniques that generate a smoother sequence of
stepsize for explicit and implicit methods [21], [22], [23], [24], [37]. One of this is
based on a discrete PI (proportional integral) controller which, for implicit
method, is essentially based on the following formula

hnew4hng 1

errn11
h1/p1g hn

hn21
h g errn

errn11
h1/p2

where p1 and p2 are opportunely chosen [24]. This technique is used, for example,
in the codes RADAU5 (1996) and RADAU (1998) written by E. Hairer and G.
Wanner, based on RADAU IIA methods [27], [28].

For one-step methods, once the new stepsize has been chosen, one needs only
to advance the solution in time using the same numerical method. On the con-
trary, the use of a variable stepsize for multistep methods needs some more care
because such methods use information taken from previous points, which have
been computed by using different stepsizes. The most common techniques used
are:

(1) the constant coefficient technique, which computes the constant step
multistep formula by using the new stepsize and then interpolates to find the ap-
proximation of the solution in the previous points;

(2) the variable coefficient technique, which computes the coefficient of the
multistep formula of a given order by using variable stepsize.
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In order to maintain the stability and the convergence properties of the whole
method, restrictions on the ratios of contiguous stepsizes have to be respected,
usually the sequence of stepsizes must be quasi-uniform and hn11 /hn41
1O (max (hn ) ). Some theoretical and empirical results show that the variable co-
efficient implementations have better stability properties.

The amount of work that each implementation requires is different. The con-
stant coefficient method requires an interpolation if the stepsize changes. This can
be performed efficiently by using the Nordsieck history array, with a cost propor-
tional to m, the dimension of the continuous problem. For the variable coefficient
technique one needs to compute the new coefficients and this work is proportional
to k, the number of steps of the formula.

An alternative technique consists in using, for implicit methods, a fixed leading
coefficient formula. Such formula uses variable coefficients except for the leading
one, which is kept independent on the ratios of the stepsizes [34]. This has the ad-
vantage to minimize the number of factorizations, as we will see in the next
section.

For multistep formulae the estimation of the local truncation error is comput-
ed by using asymptotic relation, that are easy to find in the case of constant step-
size and can be generalized in the case of variable stepsize. For Runge-Kutta
methods the approximation of the local error may be computed by Richardson ex-
trapolation, or by using embedded Runge-Kutta formulas, that compute, without
further evaluations of functions, two different approximation of the solution of or-
der p and q, whose difference gives an estimation of the local truncation
error.

6 - Solution of nonlinear systems

Together with the mesh selection described in the previous section, the sol-
ution of nonlinear systems is the most delicate of the entire process. While the
mesh selection reflects the presence of possible multiscales and then it is more re-
lated to the properties of the continuous solutions, the solution of the nonlinear
systems depends more on the dimension of the discrete problem. In other words,
if the previous steps (i.e. choice of the discretization method, mesh selection, etc.)
have been done judiciously, the discrete problem should have a similar condition-
ing of the continuous one. This means that the two problems have a similar
sensitivity to perturbations. If this is true, then the difficulties from now on are
essentially due to the dimension of the discrete problem and to the ability to get a
good approximation of the initial profile of the solution from which the iterative
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process for solving the nonlinear problems will start. We shall discuss the latter
problem later. Concerning the dimension, in the most general case, this is given
by the product Nm where N is the total number of points needed to cover the
whole interval and m is the dimension of the continuous problem. Even though
the mesh selection has minimized N, still this number may result to be very large.
The main objective is now to minimize the number of operations to arrive at the fi-
nal solution, as well as to design the sequence of operations such that no ill condi-
tioning is added to the problem.

For IVPs, the dimension may be lowered by subdividing the interval in a cer-
tain number of parts and then solving sequentially the problem on each subinter-
val. The value of the solution in the last point of each subinterval is the initial
value of the next problem. Of course, if the subintervals are N, the resulting
methods turn out to be one-step, such as Runge-Kutta methods. However, since
such methods are multistage, the dimension of the nonlinear systems is ms where
s is the number of stages.

For linear multistep formulae the nonlinear equation to be solved at each
step is:

yn2a n hn f (tn , yn )4bn ,

with a n a positive scalar. The solution of this equation by the Newton method re-
quire at each iteration one jacobian evaluation and the solution of a linear system
of size m. This can be expensive if m is large.

Methods which do not require the solution of linear systems are, for example,
the simple functional iteration or the predictor corrector technique (usually the
predictor is an explicit method and the corrector is an implicit method with the
same accuracy). In both cases the A-stability of the implicit method is no longer
preserved by the resulting scheme, this means that such techniques are useful
only for nonstiff or mildly stiff problems.

For stiff problems the nonlinear equation is therefore solved by using the
Newton method or some variants of its in order to minimize the computational
cost. Usually the jacobian is kept constant, so that only one LU factorization is
needed. The initial approximation of the solution is computed by using an interpo-
lation polynomial, or an explicit method.

For example, the solver LSODE (1980) written by Hindmarsh [29] uses pre-
dictor-corrector Adams methods in the nonstiff case, and a fixed coefficient imple-
mentation of Backward Differentiation Formulae in the stiff case. The nonlinear
system are solved by a modified Newton scheme.
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In the solver CVODE (1994) for stiff and nonstiff initial value problems writ-
ten by Cohen and Hindmarsh [18], the methods used are fixed-leading-coefficient
implementation of variable coefficients Adams and BDF methods. The nonlinear
systems are solved by using a simple fixed point iteration in the nonstiff case and
a modified Newton iteration in the stiff case.

For Runge-Kutta methods the solution of the nonlinear systems is more en-
tangled, since the dimension depends on the internal stages and usually the initial
approximation must be known a priori for all the stages.

The nonlinear systems are of the form:

Yi2yn212h !
j41

s

aij f (tn211cj h , Yj )40 , i41, s

which in matrix form became

R(Y)4Y2h(A7Im ) F(Y)2e7yn2140

where the matrix A , of size s, is the matrix containing the coefficients aij

of the method, Y4 (Y1 , R , Ys )T is the vector of the internal stages, F(Y)
4 ( f (tn211c1 h , Y1 ), R , f (tn211cs h , Ys ) )T is the vector of the function evalua-
tions, e4 (1 R 1)T and 7 is the Kronecker tensor product. The solution of this
systems with a simplified Newton method leads to the following iteration

(I2hA7J)(Y j2Y j21 )42R(Y j21 )

where J is the jacobian of f evaluated at (tn21 , yn21 ). When A is a full matrix, all
the stages are coupled. If a direct solution method is used, the LU decomposition

requires
2

3
s 3 m 3 operations. This becomes expensive if sD3. The research has

followed two main directions to try to reduce this computational cost.
The first idea, due to Butcher [14], is to transform A to a simpler matrix, for

example diagonal or block diagonal, by using a similarity transformation T 21 AT
4D. This transformation requires the solution of some real linear systems of di-
mension m for real eigenvalues and some complex linear systems for the complex
eigenvalues.

This procedure has been used in the code RADAU5, which computes the
quantities zi4Yi2yn21 by solving real and complex systems of size m obtained
using the Jordan canonical form of the matrix A.

If the matrix A has only real eigenvalues then the computational cost for the

LU factorization is reduced to
2

3
sm 3. Moreover, if the matrix has a one point

spectrum, only one factorization is needed, making the computational cost equiva-
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lent to that of multistep methods. This is the reason of developing singly implicit
RK methods. The basic idea in the code STRIDE (1979), written by J. C. Butcher,
K. Burrage and F. H. Chipman, is the use of the singly implicit Runge-Kutta
methods of Burrage [13]. Singly-implicit methods have a coefficient matrix with a
one-point spectrum, so the operation count is reduced to the level which prevails
in linear multistep methods.

If the eigenvalues are more then one, then it is possible to implement in paral-
lel the solution of the s linear systems, thus giving a parallelism across the
method implemented for example in the code PARSODES (1996) written by C.
Bendtsen in Fortran 90 and MPI that uses a multi implicit Runge-Kutta with par-
allelization across the method [5].

The second idea of solving the nonlinear systems is to use a one-step splitting
iteration

(I2hL7J)(Y j2Y j21 )42R(Y j21 )

where L is a lower triangular matrix. The convergence of this kind of splitting is
studied for the test problem y 84ly with l in the negative part of the complex
plane. In this case, by using constant stepsize, we obtain a linear difference sys-
tem of the form Y k114SY k1b with iteration matrix S defined as

S(q)4q(I2qL)21 (A2L) , q4hl

and the region of convergence is described by

G4]q�C : r (S(q) )E1 ( .

with r (S(q) ) the spectral radius of S. If we are dealing with A-stable formulae, L
should be chosen in order that G contain the left half complex plane (A-conver-
gence) or at least the region ]q : p2aEqEp1a( (A(a)-convergence) with a

Cp/2. Another constraint for the elements of L is to require r (S(Q) )C0 be-
cause in such a case the iteration is fast in correspondence of stiff components of
the solution. In general we need s factorizations that can be performed in parallel.
The code PSIDE (1998), written by J. J. B. de Swart, W. M. Lioen, and W. A. van
der Veen, that implement the RADAU IIA method of order 7, uses this tech-
niques for solving implicit differential equations on shared memory parallel com-
puters [38].

If the matrix L has constant entries on the main diagonal then we need to per-
form only one real factorization to solve the block lower triangular system. This
technique is used in the code GAM (1997) [31], [32]. This code implements a block
version of the Generalized Adams Methods and the novelty with respect to the
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other codes based on Runge-Kutta methods is the error estimation which allows
an order variation strategy. The one point spectrum of the matrix L considerably
reduces the computational cost making the code comparable with the most used
ones. This code has also been parallelized using the diagonalization with similarity
transformations for solving the nonlinear systems. The resulting matrices are di-
agonal with complex eigenvalues, so the number of processors that can be used is
s/2 if s is the number of stages. The order variation strategy is allowed by making
some processors idle when the order used is not the maximum one. In the actual
implementation the formulae have order 3,5,7 and 9 and the number of active pro-
cessor changes form 2 to 5 depending on the order used [33].

7 - Boundary value problems

For this type of problem, the condition coupled to (1) to get a unique solution
is not concentrate at the first point, but it involves more points. We shall refer, for
simplicity, to the case where such points are the first and the last of the interval
of integration. This makes more difficult both the problems of mesh selection and
the solution of linear systems. Concerning the former, for example, the techniques
based on local errors are often inadequate because at each point the global error
depends not only on the previous points, as in the case of IVP, but also on the
subsequent ones. Only when one can assume that the error at each point depends
essentially on the points around it, such technique may give good results. Note
that this is equivalent to ask that the Green’s function G(t , s), for each fixed t , de-
cays fast as Nt2sN increases. When this is not true, the general approach of using
two measures, already mentioned in section 5 gives much better results [7],
[12].

7.1 - Choice of the methods

The choice of the methods needs a deeper discussion. In fact until few years
ago, the solution of this kind of problems was brought back to the solution of an
equivalent IVP problem. This sounds logic. One looks for the initial condition giv-
ing rise to the same solution, by solving iteratively a nonlinear problem (shooting
method). Here we have a clear example of the conflict between what is equivalent
in Analysis and what is so in Numerical Analysis. The key difference is that the
two disciplines operate on two different sets of numbers. Only when the initial
condition is obtained with infinite precision and the subsequent computations are
made with the same precision, the two problems can be considered equivalent.
This is never the case. It turns out that the IVP problem correspondent to a well-
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posed BVP is always ill conditioned. In fact a well-posed boundary value problem
needs to have the so-called dichotomy. To be more clear, suppose to consider a
linear function f (t , y)fAy. The dichotomy amounts to assert that the matrix A
has eigenvalues in both sides of the complex plane. An initial value problem with
such matrix would have unstable critical points, and then be very sensitive to per-
turbations. The shooting technique is then an example of how a good continuous
problem may be transformed in a bad discrete one by choosing a wrong method.
Of course such criticisms are more evident when the interval of integration is
large (or when the absolute value of real parts of the eigenvalues are
large).

It is then not surprising that the most recent and best codes do not use nei-
ther the celebrate shooting method, neither any of its derivations. For example
the codes COLSYS and COLNEW [3], [4] use a truncated powers collocation
method at Gaussian points, whereas the code TWTBVP [17] uses a deferred cor-
rection algorithm with mono-implicit Runge-Kutta methods.

A code based on BVMs is under construction. It will use the symmetric
schemes described in Section 4. The reason of such choice is the following. The
presence of dichotomy in such problems requires that the method should treat in
a symmetric way both the decreasing and increasing modes. Such condition, not
necessary for contractive problems, is very important for the present class of
problems. The symmetric schemes are able to match such necessity.

8 - Perspective

It is evident, from what said in the previous sections, that the existing codes
for IVPs are well suited to solve contractive problems. Often they give good re-
sults for more general problems but they are unable to match special require-
ments such as, for example, the conservation of energy for conservative systems.
The main objectives of next generation codes is then to be able not only to ap-
proximate the solution of larger class of problems but also, to keep some impor-
tant properties of the continuous solution. Among the most important problems
which need more insight we quote

1) Hamiltonian problems;
2) algebraic differential problems;
3) delay differential problems.

Concerning the Hamiltonian problems, in the last decade there has been a
great improvement in the identification of numerical methods, which are able to
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define a discrete symplectic map. There is a debate whether symplecticity is
enough to get the conservation properties. While this is enough for continuous
maps, it may not be true for discrete maps. Anyway, for Runge-Kutta methods,
which are one-step methods, many symplectic methods have been identified. For
multistep methods, the problem is more difficult. It has been proved (see [19])
that when used as to generate discrete initial problems, they are unable to pro-
vide conservative methods. On the contrary, when they are used as BVMs many
of them, the symmetric ones, are conservative on a subset of the mesh
points.

For Differential-Algebraic equations the research has allowed the develop-
ment of robust and efficient codes, even if some numerical and theoretical difficul-
ties that not arise in the solution of ODEs, need more studies. Codes like DASSL
written by L. Petzold and well described in [6], RADAU5, RADAU and MBDF-
DAE (1998) written by Cash [15], [16] allow the numerical solution of subclasses
of DAEs with a given structural form.

The multistep codes are based on backward differentiation formulae, which
were the first class of methods considered for the solution of DAEs. Such formu-
lae can be viewed as a way to approximate the derivative in one point and this
simplify the theoretical analysis about convergence and stability [35], [6]. The
code DASSL works on implicit DAEs, the only limitation is that it can fail for
DAEs of index higher than two. The code must be suitably modified for what con-
cerns the scaling and the error estimation. Moreover the implicit Euler method it-
self, used to start the computation, is not suitable for high index problems. Usual-
ly it is suggested to reduce the index of the problem before solving it numerically.
Results about Runge-Kutta methods applied to DAEs are in [25], where the code
RADAU5 is described. The Runge-Kutta formulae are well suited for solving
higher index problems because they do not need starting procedures and, more-
over, they have good stability features. The code RADAU5 is designed for solving
DAEs up to order three in Hessenberg form. Another important question con-
cerning DAEs is the computation of a complete set of consistent initial values. The
continuous problem needs only a subset of them to have locally a unique solution,
whereas the numerical methods usually require all the starting values. Recently a
class of BVMs, namely the GBDFs, has been analyzed for the solution of this
problem [1], [2], [36]. A numerical scheme requiring only the initial values needed
by the continuous problem has been analyzed for DAEs in Hessenberg form up to
the order three. Such methods are able to gather most of the positive features of
BDFs and the Runge-Kutta methods without having some negative ones, such as
the instability of BDFs or the reduction of the order depending on the internal
stages of some Runge-Kutta methods.
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A b s t r a c t

This review article describes some of the problems connected to the construction of
codes for the numerical solution of ordinary differential equations. Our aim is to show,
on a concrete example, the complexity of the process which, starting from the continuous
problem, arrives at its approximate solution handling a large number of intermediate
numerical problems.

* * *


