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P, approximation of the nonlinear

semi-continuous Boltzmann equation (**)

1 - Introduction

The non-linear Boltzmann equation [1] is one of the most useful and successful
tools in the kinetic theory of gases. Many of its mathematical and physical proper-
ties have been investigated during the last several decades [2]. Due to the com-
plexity of this integro-differential equation, its actual solution remains a quite dif-
ficult task. Thus, several simpler models approximating the integrals of the colli-
sion term have been proposed for practical purposes. Among these models, the
simplest ones are discrete velocity models (DVM) reducing the integrals to finite
sums. In fluid-dynamic applications [3], multiple speed DVM have become very
popular. However, the detailed treatment of each allowed collision inflates the col-
lision term and restricts the number of possible different speeds [4].

In a recently published paper [5], Preziosi and Longo provide a semi-continu-
ous formulation of the non-linear Boltzmann equation. This formulation is done in
terms of a set of distribution functions f; depending on a solid angle @, the spatial
position x and time ¢. In discretizing the kinetic energies (i.e. the moduli of the
velocity) of the particles (subscript %), the authors reduce the complexity of the in-
tegrals in the collision term. In fact, the collision operator of semi-continuous
models contains only integrals over compact domains (parts of the two dimension-
al sphere). Physically speaking, this operator describes the hopping of the gas
particles from one energy group ¢ to another ¢’ due to binary collisions. In leaving
a continuous set of allowed directions of velocities, semi-continuous models pro-
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vide a larger and more realistic set of possible outcomes of binary collision
processes.

For numerical implementations however, a further approximation of these in-
tegrals over the solid angle has to be developed. In this paper, we thus expand the
dependence of the distribution function on the solid angle € in terms of spherical
harmonics and provide a scheme for solving these kinetic equations for spatially
inhomogeneous geometries and small deviations from isotropy. This approach has
the advantage of integrating over many binary collision processes and yields com-
paratively small collision terms. Thus, an application of this procedure in extended
kinetic theory [6] including several different species of gas as well as the interac-
tion with a laser field is possible even on small computers. Here, we outline the
main features of this approach on the basis of a single gas of Maxwellian
molecules.

The paper is organized as follows: After this introduction, we sketch the semi-
continuous kinetic model underlying our numerical schemes. In Seec. 3 we intro-
duce the P; approximation for Maxwellian molecules and deduce the resulting mo-
ment equations. The Fourier expansion of the P; collision terms is presented in
Sec. 4, where we also prove conservation of mass, momentum and energy under
the time evolution resulting from a truncated Fourier expansion. The numerical
implementation of the model is described in Sec. 5. Sec. 6 presents some numeri-
cal studies of high frequency stationary acoustic waves as occurring in degenerate
four wave mixing experiments (DFWM). We compare the evolution calculated
with the Fourier expansion with that obtained by using an operator splitting
method. Finally, in Sec. 7 we conclude.

2 - The semi-discrete Kkinetic equations

The Boltzmann equation [1] governing the evolution of the distribution func-
tion f(v, x, t) of a single species of a monatomic gas is an integro-differential
equation:

of
gt +v- V% f
8]
= J dv,.dn'o(g, a) glfW', x,t) f(vs', x, 1) = fv, x, t) fvs, x, D].

R3 x 82

As usual, o(g, a) denotes the differential cross section depending on the rela-
tive speed g of the two colliding particles and the angle of deflection a. The colli-
sion term at the r.h.s. of Eq. (1) models binary collisions of the molecules chang-
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ing their velocities v’ and v’, according to

2 v, v'y) < (v,v,).

Following the standard notation, primed symbols refer to pre-collisional quan-
tities. To obtain their semi-continuous model, Preziosi and Longo [5] introduce a
discrete set of allowed kinetic energies {w;, ©=0,..., n} with the property

3) w; = o + %5 with 6> 0.

The quantity md/2 is the energy gap between two neighbouring energy
groups. To each energy w,; we associate the speed v; of a particle of mass m whose
kinetic energy corresponds to w;. The solid angle € links the speed v; with the
velocity v;

4) V; =1 —, v, =8, v, =v;9,.

For such a discretized set of kinetic energies, Preziosi and Longo [5] provide
multigroup equations of the nonlinear Boltzmann eq%a}ion, Eq. (1). These integro-
differential equations for the unknowns f;(€2, x, t) = fv; 2, x,t) read as

of
—1 + viQ'V i
ot 2V
) n hk<n 2n . o
=C; X vfao [ dRAL@ Qe O f = Fif 4,

=0 hth=i+)
Dg_(vi, vj, v))

with the constant C, = §/2. Conservation of momentum restricts the domain of in-
tegration of the solid angle ?2* to the set Dg (v;, v;, v,) defined as

def

©) Da, (v, v;, 1) & [?z*: 199, < 2%

Vi V;

The quantities A of Eq. (56) are linked with the collisional cross section o and
the total momentum of the two colliding particles in the following way:

Rij(ﬁ'ﬁ*)

) A@Q,, 9 L4
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The symbol R denotes the modulus of the total momentum and the angle ¥ is
linked [5] with the angle of deflection a. The dependence of the cross section on
the relative speed g of the colliding particles is hidden by our notation. The quan-
tities R and g are defined as

®) Ry(@9,) € \Jo? + 07 + 200,29,
and
(9) glj(ﬁﬁ*) déf \/Uiz + '1)]'2 - 2’1)1'7)]‘?}'?}* y

and are preserved under collisions. In their paper [5], Preziosi and Longo prove
that this semi-continuous model obeys conservation of mass, momentum and en-
ergy. For a further application, it is also worth noting that the quantity

—_ def —_
(10) S;(R-2,) = 1,929,
is conserved under collisions. Moreover, an H-Theorem as well as estimations of
the error introduced by the discretization are provided.

3 - P;-approximation and its properties

As is usually done in neutron transport theory [8], one can deduce a P; ap-
proximation of a transport equation by means of the ansatz

iy 1 .
(11) [i(@) = — (n; + 3 237,),

47
where the new symbols 7; and j; stand for the integrals
(12) w=[f@de, = [er@ade.

s2 s2
In the case where the differential scattering cross section is inversely propor-
tional to the relative speed (Maxwellian molecules), the quantities A/ are given
by
4K _ 4K
Rij(g' 9*) glj(g Q*) \/(,vi2 + ,0]2 )2 _ 4%’2 ’1)72(3\2 /5\2* )2

13 Alt@-Q,, 9 =

)

with a constant k. This is a symmetric function of the variable ﬁ-ﬁ*. Since we
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discretize the kinetic energy variable, it is convenient to introduce the scalar flux
@ ; =v;n;. We insert ansatz (11) into Eq. (5) and project over 1 and Q. Neglecting
all higher order terms and exploiting the symmetry of A(2-€,,), we obtain after
some algebra

a(p . n h,k<n
(14) S +ofVyi=C 2 X LG ee—gie)),

ot j=0 i+j=h+k

aji 1 n h,k<sn : 27)/2
15 2y ZVe, =02 Tl () 1k s _iol
1o a 37 xj§0i+j§h+k u \Vo a2 n eI

i J

This set of coupled nonlinear PDE will be referred to as P; approximation.
The integrals I/ over the scattering cross section are given by
1 ) V; V;
16) k== fdﬁ j du A (u, 9, with uy=min{1, y§,} and y%=—L.
20 oY

Remark. The special symmetry of Maxwellian molecules is required to de-
duce the simple set of Eqs. (14) and (15). Once the P; approximation is estab-
lished, it can be viewed as a transport model in its own right. Then the restriction
to Maxwellian molecules is not needed to prove the following properties of the
model.

3.1 - Microreversibility, Maxwellians, H-functional

The appropriate microreversibility condition for the P, approximation can be
written in terms of the integrated cross sections I}*. It is given by

an If =yl 1.

This condition will entail conservation of mass, momentum and energy for
general interaction laws (not only for Maxwellian molecules).

Proof of Eq. (17). We derive the microreversibility condition (17) for our
P; model from microreversibility of the differential cross section and conservation
of total momentum R under collisions. The microreversibility of the collisional
cross section reads as

(18) oM@, ) =0l (2-2,, D,
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and the conservation of total momentum R is expressed by
(19) R;j(2-9Q,)=R,(2-2,).

In what follows we will frequently use the abbreviations »’ = Q- @', and u
= -8, for the directional cosines of the incoming and outgoing velocities. Fur-
thermore, by differentiating the identity S =v;v;u=v,v,u’, Eq. (10), we de-
rive

du VpV 3
20) — = 2= =y
du V; )

Therefore, combining microreversibility (Eq. (18)) with the above identity, the
cross sections A transform as follows
offtu, ) _, o', ®
Rij(u) Ry(u')

(1) Alf(u, 9) =4 =Aj(u", ),

and the bounds of the integral in Eq. (16) are given by

(22) w' =y%u = uy=min{1, yji} =us =min{1, yJf

Inserting all the above information into Eq. (16), we obtain

2 U
s 1
1= 5 J'dﬁ f duAj(u, 9)

0 —

1 27 g

5 jdﬁ j yidu' Aj(u', 9)
0

77'{0’

(23)

= }J/Zk I iﬁm
which corresponds exactly to the demanded relation, Eq. (17). =

There are stationary solutions to the P; equations that have the form of a
Maxwellian. In the case of vanishing flux (j; = 0 for all 7) a stationary solution im-
plies that the r.h.s. of Eq. (14) is zero. This is fulfilled if every summand vanishes,
e if

(24) YHoier=0i9;
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holds. Inserting the definition of y/ and ¢;, and taking the logarithm, Eq. (24)
equals

(25) log ny, + log 1y, = log m; + log n;.

Assuming conservation of particle number and energy as proved below, it is
standard to derive from Eq. (25) that log n; must be of the form

(26) log n; = log a — pw;,

where o and § are two constants and w; is the kinetic energy of one gas particle
in energy group ¢. The mass velocity is zero as a consequence of the condition j;
=0. Thus, in terms of the scalar fluxes ¢;, a stationary solution is given by

(27) Y, =a \/7/{_)1‘6 — Bw;

which is indeed a Maxwellian if kinetic energy is considered as independent vari-
able. On the other hand, in the space homogeneous case one obtains by standard
techniques (exchanging the indices i, 7, & and k in a convenient manner and ex-
ploiting the microreversibility condition, Eq. (17))

d 1
(28) EZ%‘D]’:—CE > kli?k()’%kfphﬁl?k_(ﬂi??j)(@i"'¢j_¢1z_¢k)

ji=0 4 Tivj=h+

for an arbitrary vector (@, ..., @,). Choosing @ ; =logn;, we derive from Eq.
(28) that a Lyapunov functional reflecting trend towards equilibrium is given
by

(29) Hlg] = Zﬂfp Jdog L1 = Zofp ilog n;.

K3

This functional H is stationary only if ¢ is a Maxwellian, i.e. has the form of
Eq. (27). Otherwise H is decreasing,

d
—H <0.
30) % [e)] <0

3.2 - Moment equations

The P;-multigroup equations preserve mass, momentum and kinetic energy,
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whose densities g, ou and ¢ are defined as
n n m n
(31) o= mCx"Zoﬁﬂi, ou =mC, _ZOUiZJ'm = > Cxl,go??izfpi,

respectively. The moment equations derived from Eqs. (14) and (15) expressing
conservation of mass, momentum and kinetic energy are given by

oo
32 X 4V =0,
(32) 3 (ou)
3 2
33) (ow)  2¢, o,
st 3
(34) ﬁ+v-(ﬁc fw'-)—o
ot 2 %o iJi )

Remark. Since the kinetic energy appears without any corrections in the
second of the above equations, these moment equations are quite similar to the
Euler equations [1] of an ideal fluid. However, due to the sum of the third equa-
tion that is not reducible to a combination of ¢, u and ¢, they are not closed. After
all, moment equations derived from the P;-multigroup equations (14) and (15) are
more general than the Euler equations.

The proofs of the cancellation of the r.h.s. of Eqs. (82)-(34) is achieved by the
following considerations.

Conservation of mass. Summing the r.h.s. of Eq. (14) over all 7, exchang-
ing the indices <>k and j<=Fk in the first term and exploiting the microreversibili-
ty condition, Eq. (17), we obtain

(35) S IFGMeei—eie)= 2 Livheiei— 2 IFe,0;=0,
k h+k=i+j i+j=h+k

i+j=h+

which shows the conservation of the total particle number and proves KEq.
32). =

Conservation of momentum. We multiply Eq. (15) by v? and sum over
all 4. It is possible to symmetrize the gain term by exchanging i<=j with the con-
sequence that the fraction vanishes. Exchanging ¢<=h and j<=k in the gain term
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and using the microreversibility condition (17) we obtain

2
S [hkgy2 V}?kﬂjm%—j@'
gy Yi i 1)2+7}'2 A ¥

itj=h+k ; ;

_ s gLz ey 2V e
Y z(vl +vj )Vu ’1)'2+’U~2Jh¢k vl]l(p]

ivj=h+k Z+ )

= . AthrkIz‘_?k(V(Z;kU}?jh(Pk - UiZJ'N?j)
itgy=

:O’

which shows the conservation of the total momentum and proves Eq.
33). =

Conservation of kinetic energy. We multiply Eq. (14) by v? and sum
over all 7. Exchanging ¢<>j in a first step, then ¢<=h and j<=k in the gain term
and applying the microreversibility condition (17) as well as detailed energy con-
servation yields

1
> kli?k?fiz(i/}ékQDh@k—(PﬂDj)=— > ]igk(vz‘zﬂL?)jz)(V%kQDMOk—CDi%)

iti=h+k 2 itj=h+k

1
Rk ()2 2 2 2
> ‘+‘zh+k1ij (i +of —vF =) @i,
i+j=h

=0,

because the sum v; + v — vf — vf vanishes due to the conservation of kinetic en-
ergy under binary collisions. This proves the conservation of the total kinetic
energy. ™

Remark. The considerations of this section show that the P, approximation
of the semi-continuous Boltzmann equation as formulated in Eqgs. (14) and (15)
meets the fundamental requirements of a non-linear transport model.

4 - Fourier expansion in real space

The P; multigroup equations are a set of coupled nonlinear partial differential
equations. One way of solving them numerically is to resort to an operator split-
ting method [2]. This approach divides the evolution of the system in a free-
streaming part and a collision part within each time step.
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As an alternative to any operator splitting scheme, this section develops an ex-
pansion of the x-dependence of the distribution function fin a Fourier series. This
is done in one spatial dimension. When we are interested in applying cyclic bound-
ary conditions — as is the case for the simulation of the evolution of thermal grat-
ings — this approach is quite natural. However, care must be taken when tackling
the collisional terms. Due to their quadratic dependence on f, they introduce high
spatial frequencies that must be dropped in a numerical implementation.

4.1 - Evolution equations for the coefficients

To simplify the notation, we consider the interval [ —z, 7] to be our real
space, where the Fourier series takes on its simplest form. The ansatz reads as
follows:

(36) @i, 1) = ad(t) + li (a(t) cos (le) + b (1) sin (i),
-1

37 g, t) =P (t) + zi (¢f2(t) cos (l) + dP(t) sin (lx)).
1

Only the factors a”, b, ¢/? and d/” are time-dependent. Thus, their evolu-
tion describes the time evolution of the system. We don’t use the factor 1/2 usual-
ly associated with the zero order terms ad” and c¢{”. This has the advantage of a
simpler form of the collisional terms.

Differentiation with respect to x yields the streaming terms needed for the left
hand side of the Boltzmann equation, Eqgs. (14) and (15),

(38) o9, t) ;x b _ li(w;%) cos (Iz) — Lo (1) sin (l) ),
e =

(39) i@, H ;x’ D _ lil(ldl“)(t) cos (lx) — lef (t) sin (Iz) ).
e =

Since the sine and cosine functions with different frequencies are orthogonal
with respect to the Lebesgue measure, we simply compare the coefficients in front
of each trigonometric function. Therefore, the streaming part of the Boltzmann
equation gives rise to the following set of coupled ODE:

40) cosle: af? +vFld=A(a,b), &+ glbz“) =Ca, b, ¢, d),

41) sinle:  bf” —vPle” = B"(a, b), di’ + 3 laf” =Df"(a, b, ¢, d).
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As usual, dots denote derivatives with respect to time. The whole complexity of
the collision terms is abbreviated by A, B, C and D. Only their dependence on all
the Fourier coefficients, denoted as vectors a, b, ¢, d, is explicitly reminded. Eqs.
(40) and (41) constitute the evolution equations of the Fourier coefficients
a?, b, ¢/” and d”, provided that explicit expressions for the collision terms can
be calculated. This is indeed feasible. For the moment, however, it should be not-
ed that different spatial frequencies are only coupled in the collisional r.h.s. of
Eqgs. (40) and (41). This implies that in the case of local thermal equilibrium (i.e.
vanishing r.h.s.) the spatial frequencies [ completely decouple.

Furthermore, we have to admit that summing up from one to infinity in
Eqgs. (36)-(39) is obviously impossible within numerical calculations. Hence, we
truncate the Fourier series constituting ¢ ; and j; at a given number M, discarding
all higher spatial frequencies 1> M of ¢;(«,t),7;(x,t) and their temporal
derivatives.

The relations needed to treat the products of the collisional terms A, B, C and
D are given by

(42) sin (lx) cos (' x) = %(sin(l+l’)x+sin(l—l’)x),

and analogous expressions for the other products of trigonometric functions.
Since all the appearing terms display a similar structure, we only consider an ex-
emplary term namely the loss term of Eq. (14) with its product ¢ ;¢ ;. The index
of the series constituting ¢ ; shall be [, whereas the one of the series of ¢; is ['.
Terms containing a factor cos (gx) for ¢ =0, ..., M and thus contributing to A"
are found under the conditions

1y
(43) l+l’:q2—>l’:q_l, EZgoal“)afq(]_)l_bl(t)bq(@h
1Mo -
(44) l’_l:q, l’?l:ﬁl,:l'f'q, E lzoal(”al(i)q+bl(”bl(i)q,
18 oo
(45) I-1'=q,l'<l:—1'=1—q, Ezz az(”az(l)q+bz(”bz(i)q.
=q

Special care must be taken in the case ¢ = 0 where the terms of Eq. (44) and
Eq. (45) refer to the same contribution and must not be counted twice.
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Now, we investigate contributions of the same loss term to B/’ for

q=1,..., M. They contain a factor sin(qx) and are found under the condi-
tions

1 2 o
(46) I+1l'=q:—>1l'=q—1, Ezg b a (J)l—al(”bq@l,

1Mz L
(47) l,—l=q,l’2li—>l/=l+q, E al(”bl(i)q-i-bl(”al(i)q,

=0

1 ¥ . . . .

(48) == ' <li=l'=l=gq, = 3 a8+ b0,

The case ¢ =0 does not exist for the sine-terms.

Similar terms as the above quoted appear for the gain of ¢ and for the colli-
sions affecting the evolution of j. Putting them all together yields the terms
A, B, C and D of Egs. (40) and (41). Only terms A and B shall be explicitly given
here:

A“)——CZZ s zhk( > 7, = b0 b)) — @l a2, = b b))

j=0 1+j=h+k
! hk h k I/ k i j
+ 120 )’z‘j ( )OL( ) _ bl( ) bl(+)q) _ (al(l)al(ﬁq _ bl(Z) bl(']r)q)

Lo, 2 Y@ 0P, — 5P b®,) — (af? 4P, — b b ))

with §, , expressed by the Kronecker delta as {, ,=1—0 4, and

B(Z)_ _CZ z E [hk(z % (b(h)a(k) —Cb(h)b(k) )_ (a(Z)b(i) _ambu) )

] 0i+j=h+k
M-q
Wk ¢y () 1 G Gk NG G
+ 240 Vi (af )bl(+)q - bl(+)q) — (a” bz('i)q —a bz('i)q)

M
+ 2 yi0" e - o b0) = (0 a2, - of” bl@q)) :
=q

Terms C and D have a similar structures.

The coupled set of ODE (40) and (41) can be solved by a Runge Kutta method
for any initial condition. The result of such numerical calculations is presented in
Sec. 6.
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4.2 - Conservation of mass, momentum and energy

An advantage of the Fourier ansatz of Eqs. (36) and (387) are the simple ex-
pressions obtained for the total mass, momentum and energy of the system. They
are provided in this section.

Integration of ¢ ; over the whole x-space [ —, 7] cancels all frequencies un-
equal to 0. Hence, only the terms af” contribute to the total mass of the

system:

7 n

(49) = J o(x) dx =mC, > f @ i(x) de =2amC, 2 as”.
i=0_- i=0

-

The same is true for the total kinetic energy:

(50) &= J e(x) de = % sz,ovf f @i(x) dx = ﬂmCxigoviZ as?,

- —7

as well as for the total momentum:
(51) P = j (ou)(x) dic = mC, X, v? j ji(e) de = 2amC, X vief?.
i=0 i=0

Despite of truncating the series in Eqs. (36) and (37) at [ = M, these three
quantities are conserved under the time evolution. This is rather remarkable,
since collisions generate (and destroy) higher spatial frequencies (up to [ =2M)
than accounted for. However, this generation and destruction seems to be bal-
anced such that no net effect occurs.

4.2.1 - Proof of the conservation equations

We show conservation of mass, momentum and energy of the truncate Fourier
expansion by direct inspection:

Conservation of total mass 9. We have to carry out the sum over all
collision terms A{”,i=0, ..., n. This yields

n ) 1 n o S
EA(;L): ch 3 D Ii;?k(y’?k(aémaé’f)—b(](h)bo(k))—(aé”aé”—bé”bé”)

. £ L Y
4,j=0 i+j=h+k

1=0

M
+ 3yl a® - 5 - @ b0 l<;>)) _
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Application of the microreversibility condition, Eq. (17), shows that the terms con-
taining @,V and a/* equal the terms containing a,”

Therefore they cancel. =

and a except of the sign.

Conservation of total energy &§. A similar argument applies for the con-
servation of total kinetic energy. We have to multiply A§” by v2 and sum over all i
=0, ..., n. This gives an equation equal to the above one except of the factors v?
in front of the cross sections Il?". Exchanging 7 and j yields an equation with the
factors v/ in front of the same I//* = I/*. Adding these two equations, applying the
detailed conservation of kinetic energy, (¢ +j =k + k), and the microreversibility
condition, Eq. (17), yields the desired result. =

Conservation of total momentum &. The proof follows the lines of the
above one for the collision terms C{” and shall be omitted here. =

4.3 - Expansion of the initial distribution

Given an arbitrary initial condition for the quantities ¢, j;, we can calculate
the initial Fourier coefficients a, b, ¢ and d. However, in order to mitigate the
Gibbs oscillations, damping coefficients shall be applied when expanding the initial
distribution. A comparison between different approaches to Gibbs damping can be
found in [9]. In this paper, the authors study the expansion of a positive function
in terms of Chebychev polynomials. Since this is tightly linked to a Fourier expan-
sion, their coefficients also apply in our context.

On the other hand, the Boltzmann equation describes relaxation towards a
thermal equilibrium. Therefore, initial Gibbs oscillations are also expected to be
damped by the time evolution of the system.

5 - Implementation

Both the partial differential equations of the P;-multigroup approximation as
well as its Fourier expansion are implemented for a one-dimensional spatial inter-
val with cyclic boundary conditions. These cyclic boundary conditions naturally
derive from the geometry of the laser field in DFWM experiments [7], which shall
be the main application of the numerical codes.

The set of partial differential equations of the P;-multigroup approximation,
Eq. (14) and (15) is implemented by application of the fractional step (or operator
splitting) method [2]. To this end, the spatial interval is discretized in a number of
spatial knots. To obtain a stable code, the free-streaming time step is approximat-
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ed by an implicit finite differencing scheme of order 2 [10]. The collision time step
is carried out on each knot by application of a Runge Kutta scheme with adaptive
step-size control.

Since the Fourier expansion yields already a set of coupled ODE, we merely
have to introduce suitably controlled time steps 4¢ and apply a Runge-Kutta
method to implement these equations.

6 - Simulations

In this section, we apply the P; multigroup equations to a simplified model of
thermal gratings as occurring in degenerate four wave mixing (DFWM) experi-
ments [7]. In such experiments, two strong coherent laser pulses interfere at a
small angle within a gas mixture for some nanoseconds. Their common frequency
is tuned as to electronically excite a rare species of the mixture. Within one inter-
val of periodicity of the resulting spatial intensity pattern, called fringe spacing,
the intensity variations of the laser light follow a cosine-curve. This is due to the
two beam interference. In the following discussion, we choose the fringe spacing

A A
[ R E] in such a way that there is zero light intensity at the borders whereas

the maximum intensity is found in the center.

For small laser intensities, the reaction of the rare resonant species to the
laser photons is linear. Thus, in this case, the spatial variation of the degree of the
excitation of this species has the shape of a cosine function within one fringe spac-
ing. For higher intensities, however, the response of the resonant species is not
linear any more because saturation phenomena alter the spatial shape of the de-
gree of excitation: The slopes become steeper and a plateau of strong excitation
appears in the center of the fringe spacing.

While the short laser pulse fades out, the excited species looses their internal
energy due to inelastic binary collisions with the dominant species. Thus, kinetic
energy and pressure of the gas rise mainly in the center of the fringe spacing.
This effect occurs periodically according to the interference pattern of the laser
beams and triggers a stationary acoustic wave. Due to its small wave length (typi-
cally A =5—20um), this wave is strongly damped.

Linearized hydrodynamic equations are the standard method used to describe
the evolution of these stationary waves [7]. Also discrete velocity models of the
Boltzmann equation have been applied to such a physical situation [4]. Here, we
simulate the high frequency oscillations in the dominant gas species with the P;
multigroup equations.

Since our multigroup equations merely consider one single species of particles,
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we choose an initial condition for this species corresponding to the result of the
inelastic scattering processes. Generally speaking, the result is that particles of
average thermal kinetic energy are kicked out into the Maxwellian tail by the fast
spatially non-homogeneous de-excitation process. Therefore, the state of the gas
after this process (our initial condition) is not simply a spatially varying local
Maxwellian. The evolution of the gas is then studied by solving the P; multigroup
equations numerically.

The total cross section for the elastic binary collisions is chosen as to corre-
spond to values for simple molecules (N, or CO,):

(52) O ot = 50 AZ .

We assume isotropic scattering and simply divide o, by 47 to obtain the av-
erage differential cross section o gr. The parameter k of Eq. (13) is then adjusted
as to give an average of g4y in thermal equilibrium. This implies the formula

(53) K= O ot \/ﬂkBT

%4 m

For the following simulations, we choose a spatial interval of 1 =27 um. This
is a realistic value for the fringe spacing [7]. In all simulations, 16 energy groups
(n =15) are used to resolve the velocity distribution of the gas.

6.1 - Small laser intensity

Now we consider the case of small laser intensities. As mentioned above, small
intensities result in a cosine like distribution of the excited particles. Therefore,
we start our simulations with cosine like deviations from thermal equilibrium.

To implement these initial conditions, we first prepare a state of total thermal
equilibrium. This means that all fluxes j; are set to zero and the numbers ¢ ; re-
flect a Maxwellian for temperature 7 and mass m given by

(54) @i, t=0)~ue "D

To implement the effect of the de-excitation concentrated in the center of the
interval, we alter the total thermal equilibrium. Taking into account 16 different
speeds, we move particles from the highly occupied low energy groups 1 and 2 to
the high energy groups 7, and 7, + 1 in the tail of the Maxwellian (e.g. 7, = 11).
This is done in such a way that the spatial variation of the distortion has the
shape of a cosine function. In the context of the implicit finite difference scheme,
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the change has the form

@i, t=0)<—q; (x,t=0)+Acos(x) ¢,(x,t=0),

(55)

@i+1(x, t=0)<— @, 1(x, t=0)+Acos(x) py(x,t=0),

(56)
(67)
(68)

@1(x,t=0)«— (1-A)cos(x) ¢(x,t=0),
@olx,t=0)<«— (1 —A)cos(x) ps(x,t=0).

The parameter A controls the departure from equilibrium. In the Fourier

transform picture, this corresponds to the following set of changes in the coeffi-

cients a:

af(t=0) < af?(t=0) + Aaf"(t=0),
af®*D(t=0) < afo*V(t=0) + Aa® (t =0),

(59)

(60)
(61)

afV(t=0)<— (1-A)af’t=0),

aPt=0)<— (1—A) a@t=0).

(62)

To illustrate the departure from thermal equilibrium, Fig. 1 shows the ratio of

the distribution function to the global Maxwellian in the center of the fringe spac-

ing. For Fig.1, the time evolution resulting from this initial condition with
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involving the energy groups ¢ =11 and ¢ = 12 at approx. 0.18 eV results from the initial
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Fig. 2. — Temporal evolution of the density oscillations in the center of a fringe spacing.
The curves labelled by M are calculated with the Fourier expansion of the P; equations
including spatial frequencies from 0 to M. OS denotes the operator splitting results for 100
spatial knots. The major parameters of the calculations are 7=293 K, A=0.01, p
=0.1 bar. Only M =2 actually improves the calculation.

A = 0.01 has been calculated with the Fourier expansion method. Because of the
small Maxwellian tail, small deviations from global equilibrium can be seen best at
high energy groups. In Fig. 1, one can thus observe the temporal oscillations of
the damped wave only for high energy groups.

The particle density in the center of the fringe spacing can be obtained by
summing up all the densities corresponding to the various energy groups. This
quantity is plotted in Fig.2 for the same initial condition.

6.2 - Accuracy of the Fourier expansion

The numerical results plotted in Fig. 2 illustrate that higher spatial frequen-
cies are rarely generated by the collision terms. Physically, this can be traced
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particle density calculated with the Fourier expansion of the P; equations at T =293 K, A
=0.01, p =0.1 bar.

back to the diffusive character of the relaxation process with its tendency to at-
tenuate spatial variations of the distribution function. The initial condition as
sketched above, is implemented using only the first two Fourier moments. Taking
into account one further moment (as”) suffices to calculate the evolution of the
gas. No noticeable improvement can be observed when considering additional mo-
ments. This can also be seen in Fig. 3, where the logarithm of the absolute value
of different Fourier coefficients is plotted.

As a reference, the results of the operator splitting algorithm are also plotted
in Fig. 2. In the upper graph showing the first 75 ns of the evolution, all curves
virtually coincide. Magnifying the local extrema around 5.5 ns and 12.6 ns, one ob-
serves the slight differences of the curves and a slightly different frequency of the
operator splitting results. We attribute the major part of the difference to the er-
ror introduced by the operator splitting method.

6.3 - High laser intensities

When exciting acoustic waves with a two beam interference pattern, it may oc-
cur that the excitation has not the shape of a simple cosine function. This is due to
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saturation phenomena resulting from the nonlinear reaction of the absorption of

the gas for strong intensities. In an extreme case, the initial distribution can re-
semble to a rectangular box. This can be modeled by taking into account more
Fourier coefficients, say k... The initial condition for the implicit finite difference
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Fig. 4. — Solution of the P; equations at 7 =293 K, A =0.01, p=0.1 bar for initial
conditions resulting from pronounced saturation phenomena (k.. =5). The upper plot
shows the density variations whereas energy variations are plotted in the lower graph. The
mass and the collisional cross section of the gas particles correspond to N,.



[21] P, APPROXIMATION OF THE NONLINEAR SEMI-CONTINUOQUS... 179

scheme then reads

(63) @i, t=0)«— ¢, (x,t=0)+A; cos(kx) ¢,(x,t=0),
(64) @i1(@, t=0)<— @, (2, t=0)+A; cos (k) gy, t=0),
(65) @12, t=0) <« @ (x, t=0) - Acos(kx) ¢ ,(x,t=0),
(66) @, t=0)<—q@y(x,t=0)— A cos(kx) py(x,t=0),

with A, = (-1)*"V2Ag9,/k for k=1, 3, ..., kpa. The symbol g, denotes the
Gibbs damping coefficient for the frequency k. For k.. =5 the g,’s are given by
the set {1.00, 0.90, 0.68, 0.42, 0.19, 0.05}, respectively. The equivalent initial condi-
tions in the Fourier transform formalism read as

(67) ™ (t=0) < afV(t=0)+A,alV(t=0),
(68) afo*V(t=0)«—atV(t=0)+A,aPt=0),
(69) agV(t=0) < ag”(t=0) - A,aV(t=0),
(70) alPt=0)<—aPt=0)-A,aPt=0).

The temporal evolution of the wave resulting from these initial conditions is il-
lustrated in Fig. 4, where we plot the density and kinetic energy density of the
gas versus position and time. We remark that after one mere period the wave al-
ready seems harmonic. This strong damping of the higher spatial frequencies is
seen best in Fig. 5, where the spatial Fourier moments of density and energy den-
sity are plotted versus time. The higher spatial frequencies of the initial condition
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Fig. 5. — Solution of the P; equations at 7'= 293 K, A = 0.01, p = 0.1 bar for a box-like (k,,
=5) initial energy distribution. The left plot shows the odd cosine-coefficients of the
density whereas cosine-coefficients of the energy density are plotted at the r.h.s.. Even
coefficients do practically not occur. The amplitude of the third coefficient is multiplied by 5
and that of the fifth coefficient by 25.
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die out very soon leaving a strongly damped harmonic stationary acoustic
wave.

Again, it is observed that only one additional spatial frequency k. +1 is
needed to obtain accurate numerical results. No noticeable difference between the
results of the operator splitting algorithm and those of the Fourier algorithm
have been observed as long as k., + 1 frequencies are included.

7 - Conclusion

The P, approximation of the distribution function is applied to a nonlinear se-
mi-continuous Boltzmann equation. Conservation properties (mass, momentum
and energy) are explicitly shown. An H-Theorem is provided for the spatially ho-
mogeneous case. Considering a one dimensional geometry, a Fourier transforma-
tion is carried out and shown not to spoil mass, momentum and energy
conservation.

Relaxation phenomena triggered by spatially inhomogeneous deviations of the
initial condition from a Maxwellian are studied numerically. The evolution approx-
imated with the ODE resulting from a Fourier expansion is compared with the
evolution obtained by applying the fractional step method combined with an im-
plicit finite differencing scheme.

The extension of the presented numerical schemes to a P; formalism including
several different species of particles as well as the interaction with a laser field is
matter of current research activities.
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Abstract

The aim of this paper is to provide and discuss a full velocity discretization of the
nonlinear Boltzmann equation governing the evolution of a rarefied single-atomic gas.
Based on a semi-continuous version of the Boltzmann equation, a truncated expansion of
the angular dependence of the distribution function in terms of spherical harmonics is
westigated. For Maxwellian molecules this procedure yields a coupled set of nonlinear
partial differential equations, denoted as P,-multigroup approximation. As a conse-
quence of a detailed balance relation, the conservation of particle number, total momen-
tum and energy is established. A Fourier expansion in real space is carried out. In spite
of the monlinearity of the collision term, this further approximation yields a set of cou-
pled ODE consistent with all three conservation equations. The obtained Pi-multigroup
equations are applied to one-dimensional relaxation problems. This ansatz proves effi-
cient for the study of stationary acoustic waves occurring, for instance, in degenerate
Sfour wave mixing (DFWM) experiments.



