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S. MA N C I N I and S. TO T A R O (*)

Solutions of the Vlasov equation in a slab

with source terms on the boundaries (**)

1 - Introduction

In this paper we study the evolution of a system of particles with mass m and
charge q, not subject to scattering and moving in a one dimensional bounded re-
gion under the influence of a constant electric field E. We also assume that there
are sources of particles at the boundaries of the region. This problem is modeled
by the Vlasov equation. Thus, this study may be applied in semiconductors
physics when considering a time scale much shorter than the mean time between
two consecutive scattering events (see [7]).

Our study is based on techniques of analysis for elliptic operators and on the
theory of semigroups of linear and affine operators. By means of this kind of ap-
proach we are able not only to prove existence and uniqueness of the solution of
the problem, but also to write its explicit form and consider its approxima-
tions.

It is worth observing that Bardos ([1]) and Beals and Protopopescu ([4]) have
studied this kind of problem too. The former assumes bounded coefficients for
general linear differential equations and solves them by trajectories methods. He
also establishes some results on numerical approximations. Bardos studies the
problem only for a bounded range of velocity, whereas in our paper the velocity v
varies over the whole space R. The latter study the Boltzmann equation for semi-
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conductors by means of trajectories methods, too. Even if their statements are
given under general assumptions, they prove the generation of a semigroup only
in the case of dissipative conditions on the boundary and without sources terms.
Moreover, the solution we find is different and in some sense more general than
the one found by Beals and Protopopescu by means of the trajectories methods
because we use abstract techniques.

In section 2 we describe the model and we define the functional space and the
operator At that we need to write the abstract form of our problem. We also recall
the definition of affine operator and we give the general abstract form of the sol-
utions both in the time dependent and time independent boundary source cases
([2] and [3]). Successively, we introduce a sequence of operators which approxi-
mate the operator At and we prove convergence theorems for the sequence of op-
erators that we have defined.

In section 3 we prove the fundamental theorem of this paper the generation of
a strongly continuous contraction semigroup by using the sequence of operators
defined in section 2. The proof of the theorem is based on a paper by Lunardi and
Vespri ([6]) about the generation of strongly continuous contraction semigroups
by elliptic operators with unbounded coefficients. Following [6] and by means of
duality arguments we prove also that this theorem holds in L p spaces with
1GpEQ.

In section 4 we show that the assumptions of the approximation theorem due
to Trotter ([9]) are fulfilled by the sequence of operators defined in section 2.
Hence, we are able to state the convergence of the semigroups generated by the
sequence of operators to the semigroup which gives the solution of an abstract
form of our problem.

Finally, in section 5 we give the explicit form of the solution of the problem
and we show that it is possible to consider also its approximations, as done by
Bardos in [1].

2 - The problem

We study the evolution of a system of charged particles, with mass m and
charge q, moving in a slab under the influence of a constant electric field E. More-
over, we assume that there is some kind of particle injection at the boundaries of
the slab. As we disregard scattering events, the problem is modeled by the follow-
ing Vlasov equation:

¯u

¯t
1v

¯u

¯x
1a

¯u

¯v
40 ,(1)
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where a4qE/m is constant and u4u(x , v , t) represents the density of the parti-
cles which at time t are in a position x� [2b , 1b] and have velocity v�R.

The initial and boundary conditions needed to solve this problem read as
follows:

u(x , v , 0 )4u0 (x , v) , x� [2b , 1b] , v�R ,(2)

and

.
/
´

u(2b , v , t)4q1 (v , t) ,

u(1b , v , t)4q2 (v , t) ,

vD0, tF0 ,

vE0, tF0 ,
(3)

where the non negative functions q1 (v , t) and q2 (v , t) represent sources of parti-
cles at the boundaries x42b and x41b, respectively.

In order to write the problem in an abstract form, we introduce the set
V4 [2b , 1b]3R and we consider the Banach space X4L 2 (V), endowed with
the usual L 2 norm, V f V24V f V for f�X.

Moreover, let us define the operator:

At f42 v
¯f

¯x
2a

¯f

¯v
,(4)

with domain and range:

D(At )4 mf�X , v
¯f

¯x
�X ,

¯f

¯v
�X , f satisfies (3)n ,

R(At )%X .

(5)

We remark that At is a nonlinear time dependent operator because of the non-
homogeneous boundary conditions which appear in the definition of its domain.
Furthermore, the source q1 (Q , t)�L 2 (0 , 1Q) for every tF0 and analogously
q2 (Q , t)�L 2 (2Q , 0 ) for every tF0.

The abstract form of problem (1), (2) and (3) reads as follows:

.
/
´

du(t)

dt
4At u(t) , tD0

u(0)4u0�D(A0 ) ,

(6)

where u(Q , Q , t) is now a function defined on [0 , 1Q) with values in X.
In order to prove that (6) has a unique strongly continuous solution, we shall
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consider the following auxiliary linear operator L:

Lf42 v
¯f

¯x
2a

¯f

¯v
,(7)

with domain and range:

D(L)4 mf�X , v
¯f

¯x
�X ,

¯f

¯v
�X , f(x , v)N¯V40n ,

R(L)%X .

(8)

It is easy to prove that At is an affine operator associated to L. In fact,

f12 f2�D(L), (f1 , f2�D(At ) ,

At ( f1g)4At f1Lg , (f�D(At ), g�D(L) ,
(9)

(see [2], [3] for details and for (10)-(13)).
We remark that the physical meaning of the operator L has no relevance. As a

matter of fact, we need it in order to apply the theory of affine operators, to prove
that the problem (6) has a unique solution and to derive its explicit form.

In fact, if we prove that the operator L is the generator of a semigroup T(t),
then the solution of the Cauchy problem (6), in the case of time independent
sources q1 and q2 , can be written as follows:

u(t)4u01�
0

t

T(s) At u0 ds ,(10)

where we recall that u0�D(At ).
Moreover, if there exists a function p4p(x , v)�D(At ) such that At p40, then

(10) simplifies to:

u(t)4p1T(t)(u02p) .(11)

On the other hand, if the source terms q1 (t) and q2 (t) are time dependent, then
the solution of problem (6) can be written as follows:

u(t)4p(t)1T(t)[u02p(0) ]1�
0

t

T(t2s)[At p(s)2p 8 (s) ] ds ,(12)

where p(t)4p(Q , Q , t) is a function from V3 [0 , t0 ) in X, (t0G1Q) such that
p(t)�D(At ). Furthermore, if p(t) is such that At p(s)2p 8 (s)40, where p 8 is a



37SOLUTIONS OF THE VLASOV EQUATION IN A SLAB...[5]

strong derivative, then (12) becomes:

u(t)4p(t)1T(t)[u02p(0) ] .(13)

We shall give an example of the function p in the case of time independent sources
q1 and q2 in section 5.

By using (9) and the choice axiom, it is possible to prove that every affine op-
erator At associated to a linear operator L has the representation

D(At )4p(t)1D(L) ,(14)

where p(t) is a suitable function belonging to D(At ).
The representation (14) is not unique because we might have D(At )4p(t)

1D(L) as well as D(At )4p1 (t)1D(L) for some other function p1 (t). However, it
can be proved that this fact does not affect all the results we have quoted.

Moreover, if the operator L, which At is affine to, is such that its closure L
generates a strongly continuous semigroup, we can define AAt , an extension of At ,
in the following way

D(AAt )4p(t)1D(L)4] f�X , f4p(t)1 f0 , f0�D(L)(
(15)

AAt f4At p(t)1Lf0

where p(t) is the function used to represent At by means of (14).
Thus, we can apply formulas (10), (11), (12), (13), where now T(t) is the semi-

group generated by L and the abstract evolution problem is (6) with At replaced
by AAt .

We now consider the following sequence of linear operators Ln which approxi-
mate L. For every n�N:

Ln f4
k

n
Df1Lf4

1

n
Df1Lf ,(16)

with domain and range:

D(Ln )4D(L)O ] f�X , Df�X , f (x , v)N¯V40( ,

R(Ln )%X ,
(17)

where D is to be considered with respect to x and v, and where k is a dimensional
constant which for simplicity we consider equal to 1.

Let us now define also the operators At , n which are the affine operators asso-
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ciated to Ln and which approximate the operator At . For every n�N:

At , n f4
1

n
Df1At f ,(18)

with domain and range:

D(At , n )4D(At )O ] f�X , Df�X , f satisfies (3)( ,

R(At , n )%X .
(19)

It is worth to remark that D4D(Ln ) and Dt4D(At , n ) are independent of n.
The following two lemmas hold:

L e m m a 2.1. Let L and Ln be defined by (7) and (16), then we have:

lim
nKQ

VLn f2Lf V40 (f�D4D(Ln )%D(L) .

P r o o f . For every f�D, we have:

VLn f2Lf V4 V

1

n
Df1Lf2LfV4

1

n
VDf V ,

which tends to 0 as n goes to Q. r

L e m m a 2.2. Let At and At , n be defined by (4) and (18), then for every
tF0:

lim
nKQ

VAt , n f2At f V40 (f�D(At , n )%D(At ) .

P r o o f . As in the previous lemma, the proof follows from the definition of
D(At , n ). r

3 - Generation of the semigroup

In this section we prove the generation of a strongly continuous semigroup of
contractions by the operator Ln by using the techniques of [6]. By using this re-
sult, it will follow that the closure of the linear operator L, L is the generator of a
strongly continuous semigroup of contractions (i.e. L�G(1, 0; X), [5] and [8]).
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T h e o r e m 3.1. The operator Ln defined by (16), (17) is the generator of a
strongly continuous semigroup of contractions, that is Ln� G(1 , 0 ; X).

P r o o f . The proof is a rather simplified version of the proofs of [6] with
V4Rn. We give it here for sake of completeness. Let us fix n�N and consider
the following bilinear form associated to the operator Ln :

a×( f , W)4 aLn f , Wb42
1

n
�

2b

1b

�
R

g ¯f

¯x

¯W

¯x
1

¯f

¯v

¯W

¯v
h dx dv

1 �
2b

1b

�
R

g2v
¯f

¯x
2a

¯f

¯v
h W dx dv

(20)

for every f4 f (x , v)�D(Ln ) and W4W(x , v)�W 1, 2
0 (V)%D(Ln ).

As W0
1, 2 (V) is dense in X, for every f�D(Ln ) the map WO a×( f , W) can be ex-

tended with continuity to X in such a way that there exists one and only one h�X
such that a×( f , W)4 ah , Wb; thus a×( f , W)40 (W if and only if f40. It follows that,
for every lD0 and for every g�X, f�D(Ln ) is a solution of the resolvent
equation:

lf2Ln f4g ,(21)

if and only if for every W�W0
1, 2 (V) we have:

1

n
�

2b

1b

�
R

g ¯f

¯x

¯W

¯x
1

¯f

¯v

¯W

¯v
h dx dv

1 �
2b

1b

�
R

gv ¯f

¯x
1a

¯f

¯v
1lfh W dx dv4 �

2b

1b

�
R

gW dx dv .

(22)

Following [6], we now approximate v�R by means of some bounded vm as fol-
lows, given m�N:

vm4
.
/
´

v

mv

NvN

if NvNGm

otherwise .
(23)

If we define the bilinear form a×m ( fm , W) as the bilinear form a×( f , W) (20) in which
v is replaced by vm , then a×m is continue and coercive on H 1 (V)4W 1, 2 (V).

Moreover, replacing in equation (21) v by vm and Ln by Ln , m , where Ln , m is
defined as Ln with v replaced by vm and D(Ln , m )4D(Ln ), we have that the resol-
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vent equation:

lfm2Ln , m fm4g ,

thanks to the Lax-Millgram theorem, has a unique solution fm�D(Ln , m ) for every
g�X, where fm are the solutions corresponding to the problem with the truncated
velocities vm . Therefore, replacing W with the solution fm in (22), we obtain:

1

n
�

2b

1b

�
R

g ¯fm

¯x

¯fm

¯x
1

¯fm

¯v

¯fm

¯v
h dx dv

1 �
2b

1b

�
R

gvm
¯fm

¯x
1a

¯fm

¯v
1lfmh fm dx dv4 �

2b

1b

�
R

gfm dx dv .

(24)

Since fm must belong to D(Ln , m ), we have from (24):

1

n
V˜fm V

21lV fm V

2GVgV V fm V .(25)

Following the same arguments of [6] it is possible to prove that, being fm equi-
bounded functions in H 1 (V), they converge weakly to f, which is the solution of
(21). Therefore we also have:

1

n
V˜f V21lV f V2GVgV V f V ,(26)

from which we get:

V f VG
1

l
VgV ,(27)

which is the well known Hille-Yosida estimate. Thus, Ln� G(1 , 0 ; X). r

We remark that by the same techniques of [6] it is possible to prove the gener-
ation of a strongly continuous contraction semigroup also when the coefficients of
the first order derivatives appearing in the definition of Ln are unbounded func-
tions of x and v with not more than linear growth at Q.

It is also possible to prove that Ln generates a strongly continuous contraction
semigroup in L p (V) with pD2. On the other hand, in L Q (V) there is not genera-
tion of semigroup because the domain is not dense in X, even if estimate (27) still
holds (see [6]).

Nevertheless, by using estimate (27) in L Q (V) we are able to state that Ln
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generate a strongly continuous semigroup also in L 1 (V). This fact has a precise
physical meaning because in L 1 (V) the norm of the density function u(x , v , t)
gives the total number of particles present at time t in the region V. Hence, from
the generation of a strongly continuous contraction semigroup, follows that it is
possible to have bounds of the total number of particles which are in V at time t
by means of the total number of particles which are in V at time 0, Vu0 V.

Define the linear operator Ln ; 1 :

Ln ; 1 f4
1

n
Df1Lf (f�L 1 (V)

D(Ln ; 1 )4D(L)O ] f�L 1 (V), Df�L 1 (V), f (x , v)N¯V40( ,(28)

R(Ln ; 1 )%L 1 (V) .

we remark that Ln ; 1 f4Ln f, where now in the definition of D(Ln ) the space X is
L 1 (V).

T h e o r e m 3.2. The operator Ln ; 1 defined as in (28) is the generator of a
strongly continuous semigroup of contractions, i.e. Ln ; 1� G(1 , 0 ; L 1 (V) ).

P r o o f . Define the dual operator of Ln ; 1 , Ln*, as follows:

Ln* f4
1

n
Df2Lf ,(29)

with domain and range:

D(Ln*)4D(L)O ] f�L Q (V), Df�L Q (V)( ,

R(Ln*)%L Q (V) .
(30)

We remark that in definition (30) the space X in D(L) is L Q (V).
By the same procedure used to show that equation (21) has a solution in

L p (V) we can prove that the equation lf2Ln* f4g has a solution f in L Q (V) for
every g�L Q (V) and that estimate (27) holds (see [6]).

Let h�L 1 (V) and, for every lD0, consider the following resolvent equation
for the operator Ln ; 1 :

lw2Ln ; 1 w4h .(31)

If h�C Q
0 (V), by using again the results of [6], there exists a unique solution
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w�C Q
0 (V) of the resolvent equation (31). Thus, we have the existence of the

solution of (31) in L 1 (V), because C Q
0 (V) is dense in L 1 (V). If f is the solution of

lf2Ln* f4g, by means of duality arguments we have:

VwV14 sup
g�LQ (V), V gVQG1

�
2b

1b

�
R

wg dx dv

4 �
2b

1b

�
R

w(l2Ln*) f dx dv

4 �
2b

1b

�
R

(l2Ln , 1 ) wf dx dv

4 �
2b

1b

�
R

hf dx dv

GVhV1 V f VQ

GVhV1
1

l
VgVQG

1

l
VhV1 ,

which is the Hille-Yosida estimate in L 1 (V). r

We remark that every statement that we shall prove holds in L p (V) spaces
for every p such that 1GpEQ.

4 - Convergence of the semigroup generated by Ln

In order to prove the convergence of the semigroup generated by Ln to the
semigroup generated by the closure L of L, we first prove the lemmas be-
low.

L e m m a 4.1. The resolvent sequence ]R(l , Ln )( strongly converges as n
goes to Q for any given lD0.

P r o o f . Let eD0 be fixed, f�D and n, m�N such that nDm. Given any
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lD0, since D(Ln )4D does not depend on n, we have:

V(lI2Ln )21 f2 (lI2Lm )21 f V

4V(lI2Ln )21 [ f2 (lI2Ln )(lI2Lm )21 f ]V

G
1

l
V[ (lI2Lm )2 (lI2Ln ) ](lI2Lm )21 f V

4
1

l
V(lI2Lm2lI1Ln )(lI2Lm )21 f V

4
1

l
V(lI2Lm )21 (Ln2Lm ) f V

G
1

l

1

l
VLn f2Lm f VE

e

l 2
,

where the last inequality holds because ]Ln f ( is convergent in a Banach space
(as proved in Lemma 2.1), and so it is a Cauchy sequence. Hence, it follows that
]R(l , Ln ) f ( is a Cauchy sequence, and therefore it converges if f�D. Since D is
dense in X and the resolvent operator R(l , Ln ) are uniformily bounded, this re-
sult holds for any f�X. r

L e m m a 4.2. The operator (I2aLn )21 , where aD0, strongly converges to
the identity operator I as aK01 , uniformly with respect to n.

P r o o f . By taking into account estimate (27), we have for every f�D4D(Ln):

V(I2aLn )21 f2 f V

4V(I2aLn )21 [ f2 (I2aLn ) f ]V

GV(I2aLn )21
V V f2 f1aLn f V

4 Vka g I

a
2Lnhl21

V VaLn f V
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4 V

1

a
g 1

a
I2Lnh21

V VaLn f V

G
1

a
aVaLn f V4a gV 1

n
Df V1VLf VhGa(VDf V1VLf V) ,

which approaches 0 as aK01, uniformly in n�N. Since D is dense in X, the
above result holds for every f�X. r

T h e o r e m 4.1. The closure L of the operator L generates a strongly contin-
uous semigroup of contractions in X. Moreover, for every tF0, we have:

lim
nKQ

Vexp (tLn ) f2exp (tL) f V40 (f�X ,

and the above limit is uniform in t for t in bounded intervals.

P r o o f . From Lemma 4.1 and 4.2, it follows that there exists an operator L×

such that L×� G(1 , 0 ; X) and the semigroup generated by Ln , exp (tLn ), strongly
converges to the semigroup exp (tL×) generated by L×, (see [5] and [9]).

If we prove that (lI2L) D is dense in X for a fixed lD0, we can apply a the-
orem of [8], (Theorem 4.5, page 88) and have that L×4L.

Thus, let lD0 be fixed, let g4 g(x , v)�C4C0
Q (V) and define the following

function

(32)

f (x, v)

41
1

a
exp g 2lv

a
h�
2g

v

g gx2 v 2

2a
1

v 82

2a
, v 8h exp g lv 8

a
h dv 8, vE0

f (x, v)

42
1

a
exp g 2lv

a
h�

v

1g

g gx2 v 2

2a
1

v 82

2a
, v 8h exp g lv 8

a
h dv 8, vD0 ,

where g4o2aNx1b2
v 2

2a
N . It is easy to see that f �D and

(lI2L) f 4g .(33)

Thus, (lI2L) D&C and (lI2L) D is dense in X because C has this proper-
ty. r
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5 - Approximation and solution

In section 4 we have proved that the linear operator L generates a strongly
continuous semigroup of contractions.

On the other hand, the operator At is an affine operator associated to the oper-
ator L, so it is possible to define an extension AAt of At , such that AAt is affine to L,
see (15). Then, relations (9) holds for the operator L and AAt and we can use (10)
and (13).

For example, in the time independent source case, the solution of problem (6)
with AAt in place of At is given by

u(t)4p1exp (tL)(u02p) .(34)

It follows, from Theorem 4.1, that exp (tLn ) approximates exp (tL). Hence,
given p such that At p40, if we find a sequence ]pn(%D(At , n ) converging to p,
we have that the following sequence

un (t)4pn1exp (tLn )(u02pn )(35)

converges to the solution (34). A similar result can be proved in the time depen-
dent source case.

As regards the explicit form of the function p appearing in (11) we have the
following proposition:

P r o p o s i t i o n 5.1. In the time independent sources case, if q14q1 (Q)
�C 1 (0 , Q)OL 2 (0 , Q) and if q24q2 (Q)�C 1 (2Q , 0 )OL 2 (2Q , 0 ), then the
solution of (6) is written explicitly as in (34), where p is given by

p(x , v)4
.
/
´

q1 (k2aN2x2b1v 2 /2aN) if vD0

q2 (2k2a(2x1b1v 2 /2a)) if vE0 .
(36)

P r o o f . It is easy to check that the function p(x , v) given by (36) satisfies the
equation At p40. This can be done by using the following transformations:

.
/
´

x×4Nx1b2v 2 /2aN

v×4v
(37)
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for vD0, and

.
/
´

x×4x2b2v 2 /2a

v×4v
(38)

for vE0.
We consider only the case vD0 with x1b2v 2 /2aF0, the cases vD0 with

x1b2v 2 /2aG0 and vE0 are analogous. With the above change of variables,
defining F(x×, v×)4p(x×2b1v×2 /2a , v×), equation At p40 reads as follows:

a
¯F

¯v×
40 ,(39)

with boundary condition:

F(2v 2 /2a , v)4q1 (v) , vD0 .

By integrating (39) with respect to v× and considering the boundary condition and
the change of variable (37) we have that the function p(x , v) solution of At p40 is
given by (36). We remark that p(x , v)�D(At ) owing to the regularity assump-
tions made on q1 and q2 . r
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A b s t r a c t

We consider the one-dimensional Vlasov equation in a slab with source terms on the
boundaries. The study is based on techniques of analysis for elliptic operators and on the
theory of semigroups of linear and affine operators. Existence and uniqueness of the sol-
ution of the problem are proved and an approximation to this solution is also
given.

* * *


