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FERENC MATYAS (*)

On a bound for the zeros of polynomials
defined by special linear recurrences of order & (**)

1 - Introduction

Let k=2 be an integer. The polynomial sequence of order k {G%(ac)} is de-
fined for every n =2 by the recursion

1 G,(x) =Pi(x) G,_1(x) + Py(x) G, _o(x) + ... + P.(x) G, _ (),

where P;(x) (1 <i<k)and G;(v) (2—k<j<1) are given polynomials with com-
plex coefficients and P,(x) G;(x) is not equal to the zeropolynomial. If it is
necessary then we will use the formula

Gn(x) = GWL(PI('%')y PZ(:)C)7 teey Pk(x)’ GZ*k(w)y G3*k(x)7 ceey Gl(x))-

Recently, some papers have been publicated on the zeros of polynomials de-
fined by second order linear recursions, that is, when k¥ =2 in (1). These results
are in close relation with the well-known Fibonacci-polynomials G, (x, 1, 0, 1) [4]
and the Chebyshev-polynomials G, (22, —1, 0, 1). For example, M. N. S. Swamy
([8], [9]) and R. André-Jeannin ([2], [3]) have proved explicit formulae for the ze-
ros of polynomials G,(x+2, —1,1,x+¢) and G,(x+p, —q, 1, c+p= \/a),
where peR, geR™ and t =1, 2, 3. Similar, but not explicit, results have been
proved in [6] for the polynomials G,(P;(x), Ps>(x), 0, 1), G,(P;(x), q, ¢y, ¢;) and
G, (P;(x), q, ¢, cp(x) + e), where q, ¢, ¢, ¢, ecC.
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Using another method, P. E. Ricci [7] has given a common upper bound
for the absolute values of zeros of polynomials G,(x, 1,1, x + 1), namely if
G,(x,1,1,2+1)=0 then |x| <2. We generalized his result in [5], and
afterwards it was proved in [6] that if z was a zero of the polynomial
G,(ax+b,q', c,dx+e) with some n =1, then

1
2) |z| < m(max(|ac\/q’| + |ae —bd|, 21d Vg )+ |bd|),
a

where a, b, c,d,e,q'€eC and aq'cd = 0.

G. B. Djordjevic [1] has proved an explicit formula for the polynomials
G,(x+p,0, —q,0,0,1) (p, qeR, qg#0), that is, for the terms of a third order
Morgan—Voyce-type polynomial sequence, but that is not a suitable formula even
to determine the zeros of these very special polynomials.

The purpose of this paper is to investigate the zeros of polynomials

Gn(px+ q, 0’ 0; LR O’ €, Ag_, A3, -+ Uo, 7/l:)c—+_$‘)7

where p, q,7,5,0;eC (2-k<j<0),pr=0,e=1o0r e= —1. We are going to
construct a common upper bound for the absolute values of zeros of above polyno-
mials, which does not depend on .

The following theorem will be proved.

Theorem. Let k=2 be an integer, p, q,7r,s,0;eC(2—k<j<0), e=1or
e=—1 pr=0. With some n=1 and x =z complex number, if

G,(pr+q,0,0,...,0,e,ay_ 4, A3 _p, ...y A, Y2 +5) =0

then

1 0
el < (max(Ips=ral + o] 3 Jasl 21r1) + Iral ).

|pr|

It is obvious, that from the above Theorem one can get (2) if k=2 and
q' = =1.
2 - Auxiliary results
To prove our Theorem we need some lemmas.

Lemma 1. Let G,(x) be defined by (1), and let k=2. Then, for every
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n=2—k and ceC\{0},

Gy_p(x)  Gz_p(w) G, (x)

(3) Gn(x) = CG; Pl(x)7 ceey Pk(m)7 .
Cc Cc Cc

Proof. It is obvious that (3) holds for every 2 —k <n < 1. Let us suppose
that (3) holds for n —k,n+1—-k, ..., n—1if n=2. By (1) and our induction

hipothesis we have

Gn(x) = Pl(x) Gn—l(x) + P2(90) Gn—Z(x) + ...+ P}c(x) Gn—k(x)
=Pi(x) cGy_1(x) + Py(x) G, _2(x) + ... + Pp(x) cGyy_ ()
=c(P1(w) Gy 1(x) + Py(x) Gy _2(x) + ... + Pp(w) G,y (x)) = cG; ().

So, (3) holds for every n=2—k.

Now, let {Gn(oc)} be a polynomial sequence satisfying the conditions of the
Theorem. Then, substituting

@) y=pr+q (x=u),
p
we have
G,(pr+q,0,0,...,0,e, ay_4, Ug_p, -y Qg, YL+ S)
®) r rq — PS
:Gn(yaoyoa'”yoyeaaQkaa3k7'”7a/0’ —?J_ q p )a
p p

which can be easily verified.
For n =2 —k, applying Lemma 1, we have

Gn(y7 07 07 ceey 0; 67 ag_k, a3—k7 ceey (],0, iy_ ’V‘q_pS )
p p

(6)

P

= —G;/:(ya 0, 0, ceny O, €y, U _ |y Ag_fy «..y Uy, y—a)’

p

where
% /y‘q—ps

(M a;= 2-k=sj=<0) and a= .
r
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The following step is to determine a matrix A, with the characteristic polyno-
mial G, (y, 0,0, ...,0, €, do_j, Ag_jy -ry Oy Y — Q).

Let us consider the n X n matrix A, = (a;, ;) where a; ;=a, a; ;= ej“aj,k
(2<j<k), aj,1;=6 (1<jsn—1), tj,,-1=¢""1 (2<j<n+1-k) and
the other entries are equal to 0. That is,

(a  eday_p etag_, ... lay, 0 0 ... 0 0

&3 0 0 gh+t 0 0
(8) A4,=10 &3 0 0 gh+t 0 0

0 0 0 0 0 0 e 0]
where e= —1if e=—1 and e= —1 if e=1.

We prove that the matrix A, has the expected property.

Lemma 2. For every n =1, the characteristic polynomial of A,, is the poly-
nomial G;(y) :G;(y7 0) 0’ (RN 07 €, Ao, A3k ---5 Aoy Y — a)-

Proof. Denote the characteristic polynomial of matrix A, by f,(y). It is
known that f, (y) = det (yI, — A,), where I, is the n X n unit matrix. Because of
the entries of matrix A,, we need to separate the proof into the cases 1 <n <k
and n > k.

First we consider the case 1 <n < k. Then, for n=1 fi(y) = det (yI, —A,)
=y—a=G;(y). If n=2 or 3, then we have

3
y—o —ea,y_

fly) = 5 yz =yly—a)—eba, ,
—¢

yGi(y) +eGs_ 1 (y) = G (y)

and
y—a —etay, —elag_y
L) =| —¢ Y 0
0 —g3 Yy

=ufa(y) —e'az_,eb =yGs (y) — e2az_ 1, = yGs (y) + eG5_(y) = G5 (y).

Suppose that f,_;(y) =G;_;(y) (j=1,2,3) holds for an integer n, where
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4 <n <k. Then, developing the determinant
det (yln - An)

n n+1

y—a —eayy —elazy & Qy_1-r —E€ Ay —k
—¢? Y 0 0 0
=] 0 —g? Y 0 0
0 0 0 —&? Y

with respect to the last column, we have

f;z(y) =det(yIn_An) =yﬁz—l(y) - (_1)n+18n+lan—k(_g3)n71

=yG; () + (=1 et 2a, =yGr (y) +eG 1 (y) = G (y).

That is, Lemma 2 holds for every =, if 1 <n <k.
Now, we shall deal with the case n>k. If n=k + 1 then

y—a —eay_, —etag_y —ef la, 0
—¢3 Y 0 0 —ghtl
fivri)=1] 0 —¢? y 0 0
0 0 0 —&3 Y
y—a —&eay_, —elag_y —efa 4 0
—83 Y 0 —8k+1
=yf(y) +e*| 0 —&? y 0 0
0 0 0 —¢&3 0

177

Developing successively the resulting determinants with respect to their last row,

we have

— 0
fomr) =ufia+ 1Y

g3 gkl
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=yGi(y) — ¥ 3" 1y — ) = yGi (y) + eG{ (y) = G4 1 ().

Let us suppose that f,_;(y) =G,_;(y) (1<j<k) holds for an integer
n =k + 2. In this case, by (8),

Yy—a _83a2_k _€k+1a0 0 0 0

—g3 Yy 0 —ef+tl 0 0

=1 0 - L 0 0 —&t .0
0 0 0 0 0 —edy
y—a —elay_y —eftlay, 0 0 0
—63 Y 0 _8k+1 0 0
=yfu1(y) +e*| 0 —¢b 0 0 0 0
0 0 0 0 -3 0

Now, develop successively the resulting determinants with respect to their last
row. Then one can get the following equalities:

L) =y 1)+ (=" £ (y)
=yGy_1(y) — G, () =yG,_1(y) + €G,_ 1, (y) = G (y).

This completes the proof of Lemma 2.

3 - Proof of the Theorem

Using our lemmas the Theorem can already be proved. According to (5), (6)

and (7)

G?z(px+q7 07 0’ ceey 07 €, 2, Ag—f, ---, Qo, Tx—{—s)

KG;(?/’ 0) 0’ [EER) 07 €y, Aoy Ag_fy --vy Aoy, Y — a)

p

holds for every n = 2 — k. Since, by Lemma 2, G, (y) is the characteristic polyno-
mial of matrix A,, therefore the zeros of polynomial G,; are equal to the eigenval-
ues of matrix 4,. Applying the Gershgorin’s theorem, we have that these eigen-
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values can be found in the set C; U C,, where

0
Ci={w:0weC, lo—a|s X |aj|J
=2k

and
Co={w:wel, |o| <2}.

These sets C; and C, are called Gershgorin circles (It is sufficient to consider only
these two Gershgorin circles, because the other ones are parts of the set C; or
C,.) Thus, if a complex number y = ¢ is a zero of the polynomial G, (y) with some
n=1, then

0
9) |Q|Smax(|a|+AE_k|aj|,2).

Applying (7), we have

— 0 .
(10) |Q|Smax(M+ s 1 ,2)
|7 j=2=k |7

and hence, by (4), the following inequality can be obtained for any zero x = z(z
= (0 —q)/p) of the polynomial G, (x).

S — 7 0 |pay
(Ip i, 3 | ]|,2+|q|
o< lelrlal T _
7] ]
0
(max (1ps =gl + o3 Ja] 2]r) + |ral ).
|| j=2=k

The proof of the Theorem is complete.
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Abstract

Let k=2 be an integer, while let G;j(x) =a;eC (2—k<j<0) and pr+q, Gy(x) =rc+s
be given polynomials of x with complex coefficients, where pr#=0. For n =2 the sequence
{G,(x)} is defined by the following recursion of order k.

G,(x) = (px+ q)G, _1(x) + eG, _(x), where e=1 or e= —1.
We prove that the absolute values of the zeros of polynomials G,(x) (n=1) have a com-

mon upper bound, which depends only on a; (2—k<j<0), p, q, r and s. Namely, if G,(z)
=0 for a zeC with some n=1 then

2] <

0
(max(|ps—rq| +pl X aj|,2|r|)+ |7"q|).
|pr| j=2=k

This result extends and generalizes some earlier results presented in [5], [6] and [7] for the
case k=2.



