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L. A-M. HANNA (%)

A note on the matrix representations of the Lie algebras L]
for quantized Hamiltonians where rs = 0 (**)

1 - Introduction

The Lie-algebraic decomposition formulas of Baker, Campbell, Hausdorff and
Zassenhaus [9] and their matrix representations, were used by Steinberg in his
method to solve certain types of linear partial differential equations [8]. The re-
quired matrix representations must be faithful and of low-dimension. Recently,
the method has been used to derive solutions of the Schrodinger’s wave equations
for the Hamiltonian model of coupled quantized harmonic oscillators of the
form [7], H=K,+ MK, + K_), Ae R* (the set of nonzero real numbers) is the
coupling parameter, and the Lie algebras L, generated by the three operators K,
K.; r,seR with [K,, K_]1=sK,, [Ky, K.1=*rK..

All considered matrix representations should satisfy the physical require-
ments namely, K_ = K| (7 is used for Hermitian conjugation), K, is real and diag-
onal and (K, + K_) is real.

For r=1, s =2 the model corresponds to two-level optical atom model, while
for r=1, s = — 2 it corresponds to light amplifier model. When »s # 0, it was
proved in [5], that L, has faithful matrix representations only if rs > 0. When
rs =0, we show that L{ has three faithful matrix representations of dimension 3,
as the least dimension. But L§, s=0 and L, » =0 have none.

Unless otherwise stated, 0 is the zero matrix of appropriate size, I, is the
identity matrix of order k, N={1,2,...,n}, while X=[x;], Y=[y;] and
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Z =[0;2;] are m X n representation matrices for K, ,K_ and K, respectively.
Thus, z;eR, y; = acl; = Tj;, where 0 ; is the Kronecker delta; 7, je N. Obviously
for a faithful representation

1) AZ+uX +vY=0

is only satisfied by A =u=v=0.
The defining relations of L, are: [K,, K_]=sK,, [K,, K_.1=—-rK_, or

2) [K.,K_1=sK,, [Ky,K.1=7K,.
Hence from (2)
3) (X, Y] =sZ,[Z, X] =rX

and for 7, je N, we have

4) w2y —z;—1r)=0,
n .
(5) $O iR = Z (xil 901; - xi‘l '%'lj) ,
=1
(6) Sziizl21(|xil|2_|xli|2)-

Lemma 1. Forany p, qe N, let 0 = (pq) be a permutation on N that is ap-
plied to the rows as well as to the columns of X, Y and Z, then the resulting ma-
trices X', Y' and Z', respectively are also representation matrices for K, , K_
and K,, respectively.

Proof. Let P be the elementary matrix, obtained by applying o to the rows
of I,. Since P=P '=P" X'=P 'XP,Y' =P 'YP and Z' =P "' ZP. Also,
the physical properties are satisfied by X',Y' and Z'. m

Remark 1. Using Lemma 1, the matrix Z can be rearranged as
Z =diag(a1,,, asyl,, ..., a,1,,), with different a s, 1 =1, 2, ...¢; te N. If Z is
singular, we take a;=0.

2 - Faithful matrix representations for Lg, s =0

Lemma 2. The matrices X, Y and Z consist of diagonal blocks of equal cor-
responding sizes.
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Proof. Ifz; and z; are from different diagonal blocks, then from (4) as =0
we have x;=x;=0. =

Theorem 3. Lg, s#0, has no faithful matrixz representations.

Proof. From (1), Z#0. So, let a,1,, = al,, #0. From Lemma 2 the first di-
agonal block of X has order m. Using (6), we have

m m n m m

ams = 2 sz = 2 2 (|og|? = || = 2 2 (Jag|®— o) =0,
i=1 i=11=1 i=110=1

but ams=0. =

3 - Faithful matrix representations for L°, =0

Lemma 4. X and Y are real matrices whose diagonal elements are all
zeros.

Proof. The following results are immediate from (4) when » = 0.

(7) If 90”¢0, then Zii—ZJjZ’V‘,
(8) If x’lj = 0, then xji =0.
©) x; =0, for i=1,2,...,n.

Since X + Y is real, then for ¢, jeN, x; + T is real, but from (8) x; and xj;
cannot both be nonzero. Then x; must be real. m
We note from (6) and Lemma 4, as s =0, that

(10) Dai= 2 af.
=1 =1

Lemma 5. If X has m zero rows (or columns), where 0 <m <mn, then L
has a representation of dimension (n —m).

Proof. If the i-th row of X is a zero row, then from (10) the i-th column of X
must be a zero column, and vice versa. Use Lemma 1 so that, X = diag(X', 0),
Y=diag(Y’,0) and Z=diag(Z',Z"), where, X'=[x;], Y’ =X'" and
Z'=[0;2;] are (n—m)X (n—m) matrices, and X' has no zero rows or
columns. For ¢,j=1, 2, ...,(n —m); x; = x; and from (3) and (10) we have rx;

n—m n

n n—m L — M

= Wi %y — Ly 04 2y) = Wiy — X 04 2y) =T 0= i -
SO qzgwy— x50 2) = > (dyzha) —ald,2)) =re; and D, x)2= > /2
=1 / S A ! I ) = =1
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Hence, [Z', X']=7X"and [X', Y'] = 0. Therefore, X', Y' and Z' are represen-
tation matrices for K,, K and K, respectively. =

Remark 2. We use Lemma 5 to eliminate all zero rows and zero columns of
X. Thus, if X #0 then it can be considered that X has no zero row or zero
column.

Theorem 6. The nontrivial matric representations of L. are not faithful
and of the form X=Y =0 and Z is a nonzero real diagonal matrix.

Proof. Case 1: If n=1, then X=Y =2, =0, from Lemma 4.

Case 2: If n =2, then from (10) 2 = x5 and from (8) either x;, or xy is zero.
Thus X=Y= 0.

Case 3: For n = 3, suppose that X # 0 and has k nonzero elements. Then from
89 n<k<®n®-n)/2. From Remark 2, for each ie N choose an x; # 0. Then
from (7), we have z;; — z;; = r or equivalently, ¢;; — ¢; = 1, where ¢, = z;/r; =1, j.
After this, the proof follows the same lines as that of Theorem 3.1 of [4], where it
was proved that the system of equations c; —c; =1, is inconsistent.

In all cases, for a nontrivial representation Z is a nonzero real diagonal
matrix. ®

4 - Faithful matrix representations for L.

Lemma 7. L¢ has no faithful matrixz representations of dimension 2.

Proof. Suppose that X = [a
c v

tion matrices for K,, K_ and K, respectively, where a, b,c, deC; u, veR.
Since X + Y is real and from (3) as »=s=0, we have:

b U
al Y=X"and Z = 0 are representa-

(11) b+¢=real,
12) |b|2=|c|2 and ¢a—d)=b@-ad),
(13) bv—u)=0.

From (11) and (12), we have either ¢c=5b or ¢= —b.

It can be shown, using (12-13), when ¢=b=0 or ¢= — b =0 that (1) has a
nontrivial solution in 4, 4 and v. Hence the representation is not faithful. Also, if
c=b#0or c=—0b#0, then from (13), as Z =0, we have u =v = [, for some
leR*. It can be shown, using (12), that (1) has a nontrivial solution. =
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Theorem 8. L¢ has three types of faithful matrixz representations of di-
mension 3, as the least dimension, namely:

type 1: Z=uly, u=0, X =diag(a, b, c), 4,#0,

type 2: Z =diag(u, u, v), X =diag(a, b, ¢), 4,#0,

type 3: Z = diag(u, v, w), X =diag(a, b, ¢), 430,
where,

1 a @ u a U a a
A=11 b b|, Ady=|u b b|, Az3=|v b bf;
1 ¢ ¢ v ¢ ¢ w ¢ C

for a, b, ceC and different u, v, weR Y=X"=X.

Proof. Since r =0, in view of (4), Lemma 2 is also applicable to L. Thus we
have the following three cases.

Case 1: Let Z=ul;#0 and let A, B=A" and C = Z, be 3 X 3 representation
matrices for K, , K_ and K, respectively. Since AA"=A"A, A is a normal ma-
trix. Hence, A = U'DU for some unitary matrix U and a complex diagonal ma-
trix D. Since A+ AT is real, U'(D + D) U=R for some real matrix R. But
U™(D + D) U is a Hermitian matrix, therefore, R is symmetric and consequently,
has real eigenvalues. Also, D+ D = URU" is a real diagonal matrix. Hence,
U can be chosen as a real matrix since its columns consist of the eigen vectors of
R. Therefore, U=0 for some orthogonal matrix O. Hence, A=0 "1DO,
B=07"1DO and C =0 ~'ul;0. Obviously, this representation is conjugate to the
representation X = D = diag(a, b, ¢), Y=D and Z = ul; which in view of (1) is
faithful if A4, =0.

Case 2: Let Z =diag(u, u,v), let A,B=A" and C=2Z, be 3 x3 repre-
sentation matrices for K,, K and K, respectively. From Lemma 2,
A=diag(A’, ¢), A’ is a 2 X 2 matrix. Since AA"=ATA,A’A""=A"TA"’, and as
A+A'isreal, A’ + A'"is also real. With a similar argument for A’ instead of A
as in Case 1, we find that A’ =0'"'D"’ O’ for some orthogonal matrix O’ and di-
agonal matrix D' = diag(a, b). Let O =diag(0O’, 1), and D =diag (D', ¢), then
we have A=0 "1DO,B=0"'D0 and C =0 "' ZO0, since O is an orthogonal ma-
trix. Clearly, this representation is conjugate to the representation X =D
=diag(a, b, ¢), Y=D and Z = diag (u, u, v) which in view of (1) is faithful if
Ay #0.
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Case 3: If Z = diag (u, v, w), then from Lemma 2, X is a complex diagonal ma-
trix. So, let X =diag(a, b, ¢) which from (1), is faithful if A3=0. =
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Abstract

Comnsider the Lie algebras L;: [K,, K_1=sK,, [Ky, K.]1= *vK.; r,seR, K;is a
Hermitian operator and K_ = KI. In [4], [5] the faithful matrix representations of L}
and ° L; were discussed for vs # 0. In this note we consider the case rs = 0. We prove that
L has three types of faithful 3-dimensional representations, as the least dimension,
while L§, s =0 and L., » =0 have none.



