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ABDESLEM LYAGHFOURI (*)

A unified formulation for the dam problem (**)

1 - Statement of the problem

Let 2 be a bounded, locally Lipschitz, domain in R"” (n =2). Q represents a
porous medium. The boundary I" of £ is denoted by I". Assuming that the flow in
£ has reached a steady state, we are concerned with finding the pressure p of the
fluid and the saturated region of the porous medium, i.e., the subset S of Q where
p>0. Let us first describe the formulation of our problem.

The boundary of S that we denote by 98, is divided into four parts: an impervi-
ous part, I'y, a free boundary, I',, a part covered by the fluid, I"s, and finally a
seepage front, I',, where the fluid flows outside £ but does not remain there in a
significant amount to modify the pressure (see Fig.1).

(*) Institut fiir Angewandte Mathematik der Universitit Ziirich, Winterthurerstr. 190,
CH-8057, Ziirich, Switzerland.
(**) Received June 15, 1998. AMS classification 35 J XX, 76 S 05.
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In the saturated region, the fluid velocity v and its pressure p are related by
the generalized Darcy law

(1.1 v =—ale, Vip+a,))=— alx, Vu)

where x = (%, ..., «,) denotes points in R", u =p + x, is the hydrostatic head
and A: Q X R*—R" is a mapping that satisfies the following assumptions with
some constants ¢ >1 and f=a>0:

12) { the function x+— A(x, £) is measurable Ve R", and

the function &— A(x, &) is continuous for a.e. xe,
for all £e R" and a.e. xe 2
(1.3) ax, &) .= al&]7,
(1.4) |, &) <Bl&]7,
for all £, CeR" and a.e. xeQ
(15) (A, &) —alz, £)).(§-8) =0.

A typical example of nonlinear Darcy’s laws for a homogeneous porous medium
(see [13], [16], [24], [28]) corresponds to the g-Laplacian

Alx, &) = |§]772E.

Now we have the following strong formulation

v =—ax, Vu) in S,
div(v) =0 in S,
u >, inS and u=w, in S¢,

—5.1}6%(%, Y—u) on I,

where 9 = ¢ + x, and ¢ is a nonnegative Lipschitz continuous function in Q, rep-
resenting the exterior pressure on I. $ is a multivalued monotone function and
the goal of this modelisation is to give a unified formulation to the boundary con-
ditions for the dam problem. In the classical formulation of this problem, we have
I'=8,US8,US;, where S; denotes the impervious part of I, S, is the part in con-
tact with the air and S5 = ) sliJs NS3,7¢ the part covered by fluid (see Fig. 1). So if B
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is given by:
Rx {0} for ae. xesi,
1.7 Blw, ) =
{0} xR for ae. xeS,US;.
(R x {0} for a.e. xeS,
(1.8) (resp. B(x,.)=4 {0} xR for a.e. xeS,,
L {(u, B(x, u))/ueR} for ae. wxeSs,

where 5: S3 X R—R is a continuous monotone function with respect to the sec-

ond variable), we are in the case of Dirichlet boundary conditions i.e. p=¢ on

S, U S; (see [3, 4, 5, 6, 8, 11, 13, 27]) (resp. leaky boundary conditions i.e. p = ¢ on

S, and v.v=—fB(x, g —p) on Ss (see [6, 12, 14, 15, 16, 17, 28, 30, 32])).
For $, we assume that

1.9) for a.e. xel, s B(x, s) is a maximal monotone graph of RZ,
1.10) 0eB(x, 0) for a.e. xel,
(1.11) for a.e. xel, D(B(x,.)) is closed.

For ae. xel, let (a(x), b(x)) = Int (D(B(x, .))) where — o <a(x) <0 <b(x)
< + oo, Assumptions (1.10) and (1.11) imply that for a.e. x eI, there exists a
unique pair B;(x, .) and B,(x, .) of maximal monotone graphs in R? such
that

( D(By(x, ) =R,

Bo(x, ) =B(x,.), in (alx), b(x)),

Bo(, ax)) = {a()} x [B(x, alx)), B°(x, a(x) +)],
By, 8) = {(s, B(x, a(@)))},  Vs<alw),

(1.12) 3 By, s) = {(s, B(w, b))}, V¥s>bx),

Bo (2, b)) = {b(x)} x [B° (2, b(x) —), B°(x, b(x))],
D(B,(x, .)) =D(B(x, .)),

B(x,.)=0 in Int (D(B(x, .))),

B =By + By,

where ®° is the minimal section of B and for a.c. xel’, B (x,s_) (resp.
B(x, s,)) is the left (resp. right) limit of ®°(x, ) at s.
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Moreover, we assume that

(1.13)  3H > max (max {zx,,(x’, x,) € 2}, max {y(x), xe'}) such that

[ 188, v~ H) |7 dotw), [ |84(x, ¢@))]* do@) < +
r r

ie. B(.,p—H), B(., ) el ).
Note that (1.13) is satisfied for example if we have
IR, >0, VR =R,, AC; such that By(x, s)c (—Cg, Cr),
Vse (—R, R), for ae. xerl.

Then we have the following weak unified formulation of the Dam problem
(see [2])
 Find (u, g, y) e W-9(2) x L*(Q) X LY (I'), such that:
1)  y@) —u(x)eD(B(x, .)) for ae. xel,
) w=zwx, 0sg<l, g(u—u,) =0 ae in Q,
(iii) p(x) e By(w, w(x) —u(x)) for ae. xel,
< and y(x) <0 for a.e. el such that y(x) =,

(iv) j(a(x, Vu) — gQla, e)).V(E —u) dx = jy.(g — ) do(a),
Q r

(P)

| VEe K= {Ee W' 1(Q)/a(x) < yp(x) — &x) < c(x) for ae. well}

where ¢’ is the conjuguate exponent of ¢ and for a.e. x € I': c(x) = b(x) if ¢p(x) >0
and c(x) = + o if @(x) =0.

In the following paragraph, we establish an existence of a solution of (P). In
the last section we consider the case of unbounded domains.

Remark 1.1. Throughout this paper we denote by |. |, r, (Resp. |.|,) the
usual L"™-norm on I, (Resp. ) and |E| denotes the Lebesgue measure of the
measurable set K. |.|; ; denotes the usual norm of the Sobolev space wht,

2 - The case of bounded domains

2.1 - Existence of a solution

We have
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Theorem 2.1. Assume that ¢ is a nonnegative Lipschitz continuous func-
tion, A satisfies (1.2)-(1.5) and B satisfies (1.9)-(1.13), then there exists a solution
(u, g, y) to problem (P).

For ¢ >0, we introduce the following approximated problem

r Find u,eV such that

Js( |, |97 20, — |, |7 22,).E+ (A, Vu,) — G (u)A(x,e)). VE dx
Q

P) + [eCu] 2 |, |12, dofw)

r

= [(Bitwp —u) + Blwy —u).Edot@),
r

| VEeV= {é’er’q(Q)/é" |r€Lq’(F)} ’

where G,: LI1(Q)—L *(Q) is defined for a.e. xe Q by

0 if v(x) —x,=¢,
2.1) G.(v(x)) =9 1—(v(x)—x,)/e if O0<wv(x)-x,<¢,
1 if  v(x)—2,<0.

B; denotes the Yoshida approximation of ®; for i =1, 2. Note that % is a nonde-

creasing Lipschitz continuous function with respect to the second variable. The

constant of Lipschitz is equal to 1/¢ and by (1.10) and (1.12) we have
Bi(x,0)=0 for ae. xel,

which leads by the monotonicity of $i(x, .) to

2.2) Bi(x,u). u=0 for ae. xel, YueR.

The space V is equipped with the norm |lu|| = |u|, ,+ ||, r YueV. Then we
have

Theorem 2.2. Assume that ¢ is a nonnegative Lipschitz continuous func-
tion, that A satisfies (1.2)-(1.5) and B satisfies (1.9)-(1.12). Then, there exists a
unique solution u, of (P,).
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Proof. First let us define for ueV

Au: V—=R,

E(Au, &) = Je|u|q’2u.§+ Alx, Vu).VEda + Je|u|""2u.§do(9c)
o r

- f(sgi(x, W—u)+ B, v —u)).Edo(x).
r

Then it is clear that the operator A defined by A: u € V— Au is continuous from
V into V'. Moreover as a consequence of the following lemma which is proved in
[18] and the monotonicity of @ and 3B;, one can see easily that A is mono-
tone,

Lemma 23. Assume q>1. There exists u>0 such that for all (x,y)
e (R")? we have

D ifg=2, ule —y|'< (|| 20— y|" 2y, x —y),
i) if1<q<2, ulr—y|*< x|+ |y|P (x| 2x— |y|? 2y, x—y).

Now, we have for ueV
2
(Au, u)= J's|u|q+a(oc, Vu).Vudoanef |u|‘7'do(ac)— > J(Bi(m, ¥ —u).udo(x).
i=1
Q r r

Note that by (2.2) and the Lipschitz continuity of $;(x, .), we have

2.3) j (2, p —u).udo(e) < j B (2, p — ) . pdo()
r

r
1
< ;J|1p—u|.|¢|d0(m)$co+cl [y r-
r

Using (1.3) and (2.3), one can check for some constants c;

(2.4) (Au, uy = co(|u|f, , + |u|d ) —2¢ |u|y, r—2¢, YueV.
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Thus, since ¢, ¢’ >1

(Au, u) _
=4 o

So A is coercive. ®
Next for ve L9(£), we consider the map:

f,: V=R,

Ers Hxn 1972, Edu + fGE(v)a(x, e) . VEdx + jem 19" "2, Edo(a).
Q Q r

It is clear that f, is a continuous linear form on V. Since A is continuous, coercive,
monotone, we deduce (see [26]) that for every v e L7(£) there exists a unique u,
solution of the variational problem

u,eV,

(2.5) {
<Aus7 7/U> = <fu, w>, YweV.

Now, let us consider the map J, defined by: J.: LY(2)—=V, v—u,.
Then one has

i) 3R(e) > 0/7.(B(0, R(¢))) c B(0, R(¢)),
i) J: LY9(Q)—L7Q) is continuous,

where B(0, R(¢)) denotes the closed ball in L9() of center 0 and radius
R(e).
Indeed, note that u, is a suitable test function of (2.5), so:

(26) <Ausv ue) = <fv7 us>'

Using (2.4) and (2.6), we deduce, for some constant R(e) depending on e,
that

e || < Ree) .

So we have : |u,|, o< |u.| < R(¢) and 7,(B(0, R(¢))) c B(0, R(¢)). Moreover
T.(B(0, R(¢))) is bounded in W' () since |u, |, , < [[u.| < R(¢) and thus it is
relatively compact in L9(Q).

ii) Let (v;), be a sequence in L9(2) which converges to v in L9I(Q).

Set uf = 3.(v,) and u, = J.(v). Since uf —u, is a suitable test function for
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(2.5), one has by writting (2.5) for «* and u, and subtracting the equations

@D [(aG, Yub) - a@, Vu)) Vot - u,)
Q

+e(|uf |77 2uk = |u, |77 2u,) (uf —u,) do

+ fe(lu!‘ |7 20k — e |7 %) (u)f — ) do()
r

= f(Gg(vk) —G.() Az, €).V(ut —u,) de
Q

i=2
+ 2 (B, = o) = i@,y —u)).(uf = u) dota).
T

Now we have

| [(Gew)=G.)) ate, o) Yt —u,) de| < [ B]Gelwr) = Gelw) || Vil —u,) | da
Q Q

=7 ( J 'Ge<vk>—Gs<v>|q'dx)“q'.( [ 19t~y raz) .
@ Q

Moreover since ¢’ >1 and 0 < G,(v;,), G.(v) <1 a.e. in Q, one has

|G.(v) = G.(v) |7

, 1
= |G.(vp) — G.() | 71 |G () — G.(v) | < |G (v) — G.(v) | < - |vr = v

which leads by Hoélder’s inequality to

Coe 1 v | QY o\ Ve
(J|G8(vk)—G8(v)|q dac) <— ( j|vk—v|dx) sT( [1oe=| dx) :
Q € Q € Q
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Hence we obtain

@8 | [(G.w) - G.w))ale, ).Vl ~u,) de|
Q

Q 1/q 2 1gq’
< %nuf—mn( [l opras)™.
€ Q
Taking into account (2.8), the fact that ||u* — u.| <2R(e), the monotonicity of
Bi(x, .), A(x, .) and Lemma 2.3, we deduce from (2.7)

Js(|uf |77 20k — Jue |97 %ue) (uf —u,) de < c. v, — 0|7
5

which leads to

2.9) klim J(|u£C |97 2uf — e |7 2w, (u)f —u,) de=0.
— + o
o

Using (2.9) and Lemma 2.3, we deduce that if ¢ =2
uk—u, in LYR).

When 1<¢<2, we set wf=|uf|""?uf and w,= |u,|* *u,, so that wuf

= |wk ¥ 2wk, u,= |w, |7 2w, and (2.9) becomes

kErPx j( [wk 192wk — w, |7 2w,) (wF —w,) de =0
Q

which leads again by Lemma 2.3, since ¢’ >2 to w*—w, in L (2). Now using
the continuity of the operator: L' (2) —L%(Q), w— |w|? ~ 2w, we get u—u, in
L%(9). Hence the continuity of J; holds.

At this step, applying the Schauder fixed point theorem on B(0, R(¢)) (see
[23]), we derive that J, has a fixed point. Thus (P,) has at least one sol-
ution.

Let us now prove the uniqueness of the solution of (P,). Consider u, and u,
two solutions of (P,).

For 6 >0, we define as in [9] a function Ts5: R—R by

s it |s| <o,
T (s) =
O LTS
|5



122 A. LYAGHFOURI [10]

Since T,eC(R) and TjeL*(R), we have YueW'1(Q): TsoueW"i(RQ)
and

(2.10) V(Tsou) =Ts(u) . Vu=x([|u] <0]) Vu.

Set v = u, —u,. Choose T's(v) as a test function for (P,) written for u, and u, .
Subtract the equations, so that

2.11) j(a(x, Vau,) — Az, Y, )) .V(u, —u.) de

Qs

+ Je(|us |97 2w, — |u | %u)).Ts(v) da
Q

+ [ el |7 2= | |7 720 Ty () dota)
r

= j (G.(u,) — G, (u))) Az, €).V(u, — u.) do

Qs
1=2
+ 3 [ (B, w—u) = B,y — ). Ty) doe)
T

where Q= {xeQ/|v(x)| <0d}.
Using the monotonicity of A(x, .), Ts, B (x, .) and Lemma 2.3, we get from
(2.11)

@12)  [e(|u |72, — [/ 1720 Ty (v) do
Q

< j (G, (u,) — G, (u))) Az, €).V(u, —u.) d .

(oK}

But since 2 =0Q,U Q}, where Q5= {xeQ/|v(x)| >0} and Q,N Q2% =0, we
get by using the Lipschitz continuity of G,

(u, —u,
f86(|ue |97 2w, — |u, |q‘2u£’).£—£)dx

Ql |u€_ué” |

po

0
+ faz(|u‘S |97 2, — |, |7 %)) . Ts(u, —u,) de < f |V(u, —u)) |de .
e
Qs

Qs



[11] A UNIFIED FORMULATION FOR THE DAM PROBLEM 123

Using the monotonicity of 7 and w— |w|? 2w, we get:
2.13) [ e 17200 = el 7720 (e < ﬁz [ 1V =) |de.
€
QY Qs

Letting 6 —0 in (2.13), we get

[ e 17720, = o 7720, |dw =0
Q

which leads to u,=u, ae. in Q. =
Let us now show that our sequence (u,) is uniformly bounded in L *(£).
Lemma 24. Let u, be a solution of (P,) and let €,>0 such that
(2.14) H = max (max {¢(+x,,(x’, ©,) € Q}, max {y(x), xel}),

where H 1is the nonnegative constant given by (1.13). Then we have for any
e (09 & 0)

(2.15) e, <u,<H a.e i Q.

Proof. i) Since (u,— H)" is a suitable test function for (P,), we have

@16)  [a@, Vu). Vo, — H)* + e fu, |2, = |, |77 22,) (0, — H)* do
Q

[ e |7 20, = |, |72, (u — H)* do(a)
r

i=2
= [G.(u) A, &) .V, —H) " da + 3 [ i@, p —u) . — H)* do(w).
1) =1y
Note that by (2.14), one has for e (0, ;) and u,(x) = H: u,(x) = H=¢,+x,
=e+x, for ae. xe and then by (2.1) G,(u.(x)) =0. So
2.17 G, (u,) A(x, e).Vu,—H)* =0 ae. in Q.
Using (2.2), (2.14) and the monotonicity of $i(x, .), one has

218  Bi(x, y —uNu, —H)* <B(x, H—u)u,—H)* <0 for ae. xel.
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Then we deduce from (1.3), (2.14)-(2.18) and Lemma 2.3

[eClue |7~ 20, = |H|7"2H) (u, = H)* + | V(u, — H)* [7de <0
Q

which leads to (u,— H)" =0 and u,<H a.e. in Q.

ii) We denote by (.)~ the negative part of a function. Then & = (u, — «,,)” is a
test function for (P,) and one has

2.19) ja(gc, Vo)V, — @) + (|, |72, — |2, |7 22,) (u, — @) du
Q

+ J'S(|us |q’72us - |xn |q’72xn)-(us - xn)7 dO’(DC)
r

i=2

= JGS(ME) Az, e).V(u, — x,) " dx + > J{Bf(ac, Y —u, ) (U, — x,)” do(x).
i=1
Q r

Using (2.1), one has

fGe(ue) Az, e).V(u, —x,) de= — j G, (u,) A(x, e) . V(u, —x,) dx
Q

QN [u. <yl

- _ j A, e).V(u, —x,) de .

QN [u, <l

Moreover using (2.2) and the monotonicity of $:{(x, .), one has also

[ B,y — ud, — w,)" dotw) = [ B(@, ©, - w)o, ~ )" dot)
r r

= J 815(90; Ly, — u’s)(xn - us) dO(QC) =0.

rnfu,<w,]

Then we obtain from (2.19):

(a(%‘, Vue) - (il(x, Vxn))~(vus - Vgcn)

QN [u, <]

+e(|u, |97 2 u, — |, |7 %,) (0, — x,) de

+ J e(u, |9 2w, — |, |7 " 2a,) .(u, — x,) do(x) <O.

r'nu, <wx,]
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Using (1.5) and Lemma 2.3, we conclude from the last inequality that «, = x, a.e.
in Q. =

Now we give an a priori estimate for Vu,.
Lemma 2.5. Under assumptions of Lemma 2.4, we have for any €e(0, €,)

2.20) [1vu, |rde<c,

Q

where C is a constant independent of e.

Proof. Note that u, — vy is a suitable test function for (P,). Then we get by
(2.2)

IS( |us |q72us_ |xn |(I72xn)'(u£_w)+(a(9€v Vus)_Gs(us)a(x; 6))V(%6—¢) d
Q

+ JS("?/LS |q’_2us - |xn |q’_2xn)'(u£ - 1/)) dO’(ﬂC)
r

= j(:gi(x, W —u) + B, Y —u,)).(u, — y) do(a) <0
r

which leads to

2.21) j Ala,Vur,). Vi, dz< f A, Vu,). Vo de— j e[| 72— |0, | 720, (o, —1p) v
Q Q

Q

+ ng(us)a(ac, e).V(u, — ) dw — fE(Iug |7 2w, — |, |92, (u, — y) do(w).
Q

r

By (1.4) and Hélder’s inequality, we have:

@22 |[aw@, Vu) Vyde| s,B( [ 192, |qu)”§".( j|vw|qu)”q,
Q Q Q

@23) | [G.(w) ale, €., — ) de | sﬂ|g|w( [ 1va, |qu)”q+ﬁj 1V |da .
Q Q Q
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Using (1.3), (2.15), (2.21)-(2.23), we derive for some constant ¢ >0
c 1/q 1/q’
@28) [ |Vu|7de< —(1+ ( j|wg|qu) + ( J|Vu8|qu) )
Q a Q Q

Hence we get (2.20) from (2.24) since ¢, ¢'>1. =

Proof of Theorem 2.1. The proof will consist in passing to the limit, when &
goes to 0, in (P,). First remark that G, (u,) is uniformly bounded (0 < G, (u,) <1,
see (2.1)) and u, is bounded in W' %(Q) by (2.15) and (2.20), thus one has for
some constant C independent of &

|G.(u,) |, <C, |2 |1, < C, |alx, Vu,) |, <C.

So, due to the Rellich theorem and the complete continuity of the trace operator,
there exist a subsequence e,, ue WH9(Q), ge L9 (2) and Qyel? (R) such
that

(2.25) G, (u,,)—g in L7(Q),

(2.26) wu,,—u in Wb aQ), u,,—u in L9(Q) and a.e. in 2,
(2.27) u,,—u in LY(I) and a.e. on I.

(2.28) A, Vu,,) —@, in LI(Q).

Moreover by (2.15), one has
(2.29) Yy-Hsy—u, sy—u,=¢ ae in Q.

Using (2.29) and the monotonicity of ®3+(x, .), we get for a.e. xel (see [T],
Proposition 1.1 page 42)

| Bs:(x, y —u,,) | < max (|By(x, v — H)|, | B2, @) |)

from which we deduce by (1.13), for some constant C

Bk (w, Y —u,,) | r<sC.
Then we deduce that there exists y e L (I') such that
(2.30) Bk (e, Y —u,, ) —yeL? (D).

We are going to show that (u, g, y) is a solution of (P).
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Since the set K; = {ve W"9(Q)/wv=zx, ae. in Q} is weakly closed and U,
e K;, u is in this set so that

(2.31) u=x, ae. in Q.

Next, the set K,={velL?(2)/0<v<1 ae in Q} is also weakly closed in
L7 (R), and thus

(2.32) 0<sg<1 ae. in Q.

Since G, (u, (®))=1-H, (u, (x)—2x,) with H, (s) =min(s*/e,, 1), one has

ngk(ugk).(ugk—x,z) de= f (1-H,, (u, (®)~2,)). (u,, () —2x,) de
Q

QN[0su (@) —a,Ser]

and

osj@gmgmm—%JMssﬂgL
Q
which leads by (2.25)-(2.26) to

k— +
Q

0= lim QA%QUM—%)szgW—%JM.
Q
So by (2.31)-(2.32), we get
(2.33) g.(u—x,) =0 a.e. in Q.
Now since we have for a.e. x el such that
Y =1x,, Bk (e, Y —u,,) = Bk, x, —u,) <0,
we deduce that

(2.34) y(x) <0 for a.e. xel such that vy =uw,.

Moreover one has y —u,,—vy —u in L/(I") and B3 (x, ¥ —u,,)—y in L7(I).
Then (see [7], Lemma 1.3, page 42) we have

(2.35) y(x) e By, w(x) —u(x)) for ae. xel.

Note that since y — u,, is a test function for (P,,), Bi*(x, .) is nondecreasing and
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due to (2.15) and (2.20), we derive for some nonnegative constant C

0< jaaik(x, ¥ —u.,).(p —u,,) do(a) < C
r

which can be written since for a.e. x e I', Vi e D(B): i (x, u) = (1/e,) ((uw —b)™*
—(a—u)*), with the convention that if a= — o (resp. b= + ), one has
(a—u)* =0 (resp. (u—>b)*=0)

0< j(min(zp — ., —a, 0) +max(y —u,, — b, 0)).(y —u,,) do(x) <&, C
r

and then by letting k— + o, we obtain by (2.27), (2.29) and the Lebesgue
theorem

f(min(w—u—a, 0) +max(y —u—b, 0)).( —u) do(z) =0 .
r

Since a <0 <b a.e. in I, one has
min(y —u—a,0)(y —u)=0 and max(y —u—05b,0).(y —u)=0 ae. on I
which leads to
as<y—-—u<b ae onl.
Hence we get
(w—u)x)eD(R(x,.)) for ae. xel.

Thus (P) i), ii) and iii) follow. Let us prove (P) iv). First note that any element of
WbL4(Q) is a test function of (P.,). Let £eK and note that

(2.36) Bik(x, Y —u,, ) (E—u,)=0 ae in .
Indeed one has

‘%ik(xy 1/) - /M/sk) (5 - ufk)

1 1
=—W-u,~0".(E-u,)- —(a—(W—-u,))" (E—u,).
Ep €k

Since y —&=a ae. in I, then E~u, <y —u,,—a and —(a— (¥ —u,))"
(E-u)=z(a-W-u,))" (a—(p—u,)) =0 ae in I.
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Let us distinguish two cases
-y >u,. By definition ¢c=b6 and yp —&<b. So £=vy —b which leads
to
(W=, =) (E—u,) = —u,—b)" (y—u,—0b)=0.

- 9 =x,: In this case (y —u,, —b)" = (x, —u,,—b)" =0 since u,, —x,=0
and b=0.

It follows then from (2.36)
2.37) j (a(@, Vu,,) - G, (u,,) Az, €)). V(& - u,,)
Q
+ep(fue, |97 2u,, — |2, |7 %n,) . (E—u,,) do

+ J'ek(lufk |q’72u€k = |, |q’72xn)_(§_u%) do(x)
r

> jaggk(x, ¥ —u.,).(E—u,,) do(x).
r

To pass to the limit, we will need the following lemma
Lemma 2.6. We have

(2.38) ja(x, Vu).VEde = jao(x).vgdx, VEe WL 1(Q).
Q Q

Proof. Since ueK, we deduce from (2.37) by taking &=u

@39 [a@, Vu,) Vu, de< [ae, Vu,,) Vuds
Q Q
- Jsk( |u€k |q72u£k - |xn |q72xn)'(usk - u) dx
Q
- fe,c(|ugk |7 2w, — @, |9 %w®,) (u,, — u) do(x)
r

+ [ G, A, €)Y, —u) do
Q

+ J{B“z"f(ac, Y —u,,).(u,, —u) do(x).
r
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By (2.28) we have

k— +

(2.40) lim [, Vu,).Vuds = [a,.Vuda.
Q Q

According to (2.26)-(2.27) and since u,, is bounded uniformly, the second and
third terms in the right hand side of (2.39) converge to 0 when k— + «. From
(2.27) and (2.30), we have

2.41) lim [ 5, v =), — w) dota) = 0.
r

Now one can write

@42)  [G,, () ale, ).V, —u) do
Q

- stk(uH) A, e).Vu,, —x,) dv — ngk(ugk) alx, e).Vu —x,) de .
Q Q

By (2.25) and (2.33), the second term in the right hand side of (2.42) converges to
0 when k— + . For the first term, note that

(2.43) stk(%ek) Ax, e).V(u,, —x,) de = Ja(ac, e). Vo, dx
Q Q

Ugp, — T
with v, = f (1-H,,(s)) ds. Moreover since |v,(x)| <¢; for a.e. xeQ and
0
| vk |1, ¢ < C for some constant C > 0, it is not difficult to see that v,— 0 weakly in

WL 4(Q) and then we obtain from (2.42)-(2.43)

(2.44) lim G, (u.,) Az, e).V(u,, —u)de=0.

k— + o
Q

Combining (2.39)-(2.41) and (2.44), we conclude that

(2.45) im j A, Vu,,).Vu,, dz < j Ay (). Vaudz .
Q Q



[19] A UNIFIED FORMULATION FOR THE DAM PROBLEM 131
Let now ve Wh4(Q). By (1.5), we have

[(aG, vu.,) - at, v0)) Y, ~v) de=0,  VkeN
Q

and

@46) [ A, Vu,) Vu, do — [, Vu,,) Vode
Q Q

- ja(x, V0).V(u,, —v) dr=0, VkeN.
Q

Passing to the limsup in (2.46) and taking into account (2.26), (2.28) and (2.45), we
get

jao(x) Vaudx — jao(x).wdx - ja(x, Vo) .V(u —v) dz =0
Q Q Q

or

(2.47) j(ao(x) — Az, Vv)).V(u —v) de = 0.
Q

If we choose v =u + A& with Ee Wh9(Q) and 1[0, 1], in (2.47), we obtain by
letting 1 go to 0 and using (1.2), (1.4) and the Lebesgue theorem

j(ao(x) — Qx, Vu)).VEdr =0 .
o

Thus we have proved (2.38). =

Let us now finish the proof of Theorem 2.1. Consider &= in (2.38), we
get

(2.48) j A, V). Vude = j Ay (@) Ve dic .
Q Q

Using (2.45) and (2.48), we obtain

(2.49) im j ac, Vu,,).Vu,, dr < f ale, Vu) . Vudz.
Qo Q
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Now we have

(2.50) f((il(ac, Vu,,) — ale, Vu)).V(u,, —u) de= fa(ac, Vu,,).Vu,, de
Q Q

- [ at, Yu) .Vu, de - [ (at, Vu,,) - ale, V) Vude.
Q Q

Combining (2.26), (2.28), (2.48)-(2.50) and the monotonicity of A(x, .), we get

2.51) lim j ac, Vu,,).Vu,, do = [ Az, Vu).Vudz.
k— +
Q Q

Letting k go to + o in (2.37) and using (2.25)-(2.28), (2.30), (2.38), (2.44), (2.51)
and the fact that ., is uniformly bounded, we get

j(a(x, Vu) — gQla, e)) . V(E —u) dx = jy.(g — ) do(x).
Q r

This achieves the proof of Theorem 2.1. =

2.2 - Some properties of the solutions

Proposition 2.7. Let (u, g, v) be a solution of (P). Then we have
(2.52) Osu—x,<c+h—uxw, a.e. in Q
where ¢ is some nonnegative constant and h is such that

(2.53) h > max (max {zx,,(x', x,) € Q}, max {y(x), xel}).

Proof. i) Since u— (w—h)" is a suitable test function for (P), we have

(2.54) f((ﬁl(oc, Vu) — gAx, €)).V(u — h)* de < fy(u — k)" do(x).
Q r

Note that by (P) ii) and (2.53) one has gA(x, ¢).V(u —h)* =0 a.e. in Q and by
the monotonicity of B,(x, .) and (2.53) y(u — k)" <0 a.e. in I'. Then we deduce
from (1.3) and (2.54)

[alVu-m* rd<0

Q
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which leads to V(u — k)" =0 a.e. in . Thus (u — k)" = ¢ for some nonnegative
constant ¢ and the result follows. =

Proposition 2.8. Let (u, g, y) be a solution of (P). Then we have in the
distributional sense

(2.55) div (A(x, Vu) —ga(x, e)) =0.

Proof. Let £e (). Taking +&+u as a test function for (P), we get
(2.55). =

Remark 2.9. i) We deduce from (2.55) (see [20, 31]) that u e C2.“(Q) for
some ae(0,1) and then [u >x,] is an open set.
il) We also deduce from (2.55) and (P) ii) that div (@Q(x, Vo)) =0 in
@' ([u > x,]) i.e. u is @-harmonic in [« > x,]. So if @ is sufficiently smooth (for
example if A(x, ¢) = |§|"’2§ with ¢ > 1), then (see [19, 25]) uw e CL.” ([u > w,])
for some y e (0, 1).

3 - The case of unbounded domains

Let £ be an unbounded domain in R" (n = 2) whose boundary I"is locally Lip-
schitz. Q represents an unbounded porous medium. Assuming that the flow in Q
has reached a steady state, we look for the pressure p of the fluid and the saturat-
ed region S of Q. We suppose that QcR" ' x (-, H), HeR.

As in the bounded case and with the same notations, we have the following
strong formulation

2 =—ae,Vu) in S,
div(v)=0 in S,

u>x, inS and u=2x, in S¢

3.1)

—3.1/&(6(90,1/}—%) on I,

where v = ¢ + x, and ¢ is a nonnegative Lipschitz continuous function in Q rep-
resenting the pressure on I. We assume that we have

3.2) dH'eR such that maxy(x)<H',

re

A: 2 x R"—R" is a mapping that satisfies (1.2)-(1.5). B is a multivalued function
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that satisfies (1.9)-(1.12). Moreover, we assume that
83) 3IH,>H,H' such that &, v —H,), 8., ¢)eLL(I).
Note that (3.3) is satisfied for example if one has
3R, >0, VR = R,, AC; such that $,(x, s)c (—Cg, Cp),
Vse(—R,R), for ae xel.

Now set for a.e. x el : c(x) = b(x) if @(x) >0 and c(x) = + o if g(x) =0. Then
the weak unified formulation is the following:

- Find (u, g, y) e Wh9(2) x L= () x L (I, such that

i) y@)—ux)eD(B(x,.)) for ae xzel,

i) u=x,, 0=sg=<1, g(u—wx,)=0 ae. in 2,

(iii) y(x) e Bao(2, w(x) —u(x)) for ae. xel

(Po) and y(x) <0 for a.e. xel such that y(x) =x,,

(iv) J((ﬁl(m, Vu) — gQlz, e)).V(E —u) dx = jy.(g —u) do(x),
Q r

VEe K(u) = {Ee W, 9(2)/supp (£ — u) is bounded

and a(x) < y(x) — &(x) <c(x) for ae. xel},

where supp £ denotes the support of the function &.

In [22] G. Gilardi and D. Kroner considered the problem of an unbounded dam
with Linear Darcy’s law and Dirichlet boundary conditions on the bottoms of the
reservoirs. They obtained a result of existence of a solution by regularization. In
[14] we imposed a leaky boundary condition and we obtained a solution as a
monotone limit of a sequence of solutions for bounded subdomains. Here we es-
tablish an existence of a solution as a limit of a sequence of solutions for bounded
subdomains.

3.1 - Euxistence of a solution of (P,)

In this paragraph, we introduce an auxilliary problem (P,) on a truncated do-
main and we establish an existence of a solution of this problem.
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Let »>1 and let ¢,e M(R") be such that for some positive constant m

0<¢,<1, |V&,|<m, &,=1in B(0,r—1),

¢,=0 in R"\B(0, ), &,=¢, Vrsr'.

Set 2, =QNB0,r),=02,N32,I=02,NQ2,¢,=¢,andy,=¢,+x,,
where B(0, r) is the ball of R" of center 0 and radius 7.
Let us define & for >0, by

B(x,.) =R, .) for ae. wxel,,
Bx,.)={0} xR for ae. wel),

then it is clear that $ satisfies (1.9)-(1.12) on 9Q,. In particular for a.e.
xel),

By, ) =RBw, .)={0} xR and By(x,.)=Rx{0}.
Thus by (3.3), B satisfies also (1.13). For a.e. x€3Q,, we set:
c.(x)=0(x) if o, (x)>0 and ¢ (x)=+o if ¢,(x)=0.

Using the results of the previous section, we know that there exists a solution
(%, 9y, v,) for the following problem

 Find (u,, g,, 7,) e WH9(Q,) x L*(2,) x LY (3R,), such that
i v, (@) —u(x)eD(Bx,.)) for ae. xedQ,,
i w,=z«,, 0<g.<1, ¢..(u,—2,)=0 ae in 2,
(iii) y,(x) e B, v, () —u,(x)) for ae. xedQ,,
and y,(x) <0 for a.e. xedQ, such that v, .(x) =2,

(iv) J(a(x,VuT)—gra(x, €)). V(& —u,) de = Iyr.(é—ur) do(x),
Q,

32,

t VéekK, = {&ervq(Qr)/a(x) <y, (x) = &(x) <c.(x) for ae. xedR,},
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as a limit when ¢—0 of the solution of the following approximated problem

( Find u, ,eV,={veW"%Q,)/v,50,eL?(82,)} such that

fe( |2e, o |97 20, — |2, |9 2,) & + (A, Vu,, ) — Ge(u,, ,)A(x, €)).VEdw

Q,
(Pg”'") 3 + J 8(|us,1‘ |q,72us,r_ |xn |q/729€n).gd0'($)
02,
- J’ (Ei(ﬂc’WV—ue,a*)'i'Eé(x’V)r_us,?'))'gda(x)’ VSEVT
L 0Q,

which satisfies for ¢ small enough
(3.4) T, S U, < Hy a.e. in Q,.
In particular

Bi(x, ) = Bi(x, .) for a.e. xel,, i=1,2,

— u —
Ri(xe, u) = —, Bs(x, u) =0 for a.e. xel'),, YueR.
e

Remark 3.1. 1) Since for a.e. x eI}, we have D(B(x, .)) = {0}, we deduce
from (P,) i) that w,=vy,=w, on I,.

ii) Since ¢,=0, v,=w, and ¢,= + o on [}, the condition a(x) <y ,(x)
—&(x) < c,(x) for a.e. x e I} is equivalent to 0 < x, — &(x) for a.e. xel, or & <ux,
on I;.

iii) For any £eK,, we have

Jy,,. (€ —u,) do(x) = jy (E—1,) do(x) =0
I T

since on I',, E<w, by ii) and y,<0 by (P,) iii).
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iv) It follows then from i), ii) and iii) that any solution (u,, g,, y,) of (P,) is
such that (u,, g., ¥, r,) is a solution of the following problem

( Find (u,, g, y,) e WH9(Q,)x L=(,)x LY (I',), such that

i) wu,=x, on I', and vy ,(x) —u,(x) e D(H(x, .)) for ae. xel,,
i) .=z, 0<g,<1, g,..(u,—x,)=0 ae. in Q,,

iii) y.,.(x) e By(x, v, (@) —u(x)) for ae. xel,

(P,)
1 and y,(x) <0 for a.e. xel', such that v, .(¢) =x,,

i) [ (ac, Vu,) —g,a, €)).V(E —u,) dv = jy,“(g—ur) do(x),
Q, r.

VEeK, = {Ee W 1(Q,)/a(x) S y . (x) — &) < c.(2)
for a.e. xel', and &(x) <w, for ae. xel),}.

Remark 3.2. i) In the remainder of this paper, we only consider solutions
(%, 9y, v,) of (P,) obtained as a limit when £¢—0, of

(ug, ry Ga(ug, 74)7 ‘(Bé(x7 1/) r ue, r) ) .

ii) For any solution (u,, g,, v,) of (P,), we shall extend respectively u, and
g, into 2\Q, by x, and 1. We also extend y, into I'\I", by #3(., ¢,) and still de-
notes by u,, g, and y, these extensions.
Then we deduce from (3.4) that

(3.5) x, <u, < H; a.e. in Q,

(3.6) |y, ()| < max (|B3(x, @,)]|, |BS(x, v, —H)|) for ae. xel.
3.2 - Existence of a solution of (P.)
We are now able to state our existence result.

Theorem 3.1. Assume that A satisfies (1.2)-(1.5), $ satisfies (1.9)-(1.12)
and (3.3). Then there exists a solution to (P.).

Proof. Let 0 >0 and let us first prove that for >0 we have |u, |1 4 o,
< ¢(0), where ¢(p) is a constant depending on ¢ only. Consider £, , ; which we de-
note by ¢ for simplicity. Since {%(u, ,— v ,) is a suitable test function for the
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problem (P, ,), we have by (2.2)

J’8(|%£’T |q72ue,r_ |xn |Q72xn)-§q(ue,r_ 1/)7) da
Q.

+ [ a, Vu, ) = G.(u, ) Alw, €)Y (0w, , —v,)) do
Q

»

+ f g(lus,rlq’_zus,’r_ |xn |q’_2x72)'cq(us,r_w» do(x)
39,

= | @i,y =)+ B, v, -, ) £, — ) doa) <O

39,

Taking into account the fact that =0on I',=382,N Qc B0, r), B = B on I,
supp £cB(0,0+1), ¥,=v on B(0,0+1) for r>>p, the above inequality
becomes

3.7 j e[ty o |9 2 U, — |1, |9 22,). 8%y, — ) da

QQ+1

+ f (ae, Vu, ) — G (u,,,) Alx, €)) . V(9 (u,, ,—y)) de

Qo+1
+ j et |72, — |2, |7 22,).Cu,,, — ) do(x) 0.

rg+1
Using (3.5), it is clear that the first and third integrals of (3.7) are bounded by a
constant depending only on ¢. This leads to

J (ae, Vu, ) — G (u, ) Alx, e)). V(5 (u,, ,—y)) de < c,(0)
Qg+1

which can be written

(3.8) J' gralx, Vu,,,).Vu,, de < ¢, (o) — J' q¢? tu, Az, Vu, ,).Vide

Q441 Q441

+ qua(x, Vu,,,). Vi dz + quq’lwa(ac,Vug‘T).VCdx

Q441 Q41
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+ j G, (u,,,) Alx, €).Vu, ,dv

Qg+1

+ jqz;Q*l(ug,r—zp)Gg(ug,,.)a(x, e).Veda — j £1G, (u,, ,) A, €).Vy da.

Ro+1 Qo1

Using (1.4), (3.5) and the Holder inequality, we derive easily for some constants
Ci(Q)

\ quq*uwa(a@, Vum).Vde’sq,BJ lu, |6V, , |7 | VE|du

Qp+1 Qo+1

sqmﬁ( J |ug,,-|qdw)”q( J |CVue,r|de)W<cz<g>( J |z;w€,,.|qu)”"’,
Q

Q541 o+1 Qo1

- j gqa(x,ww).vwdx|sﬁj |EVa, , |97 | V| de

Q541 Q441

S63(9)( J |€Vus,r |qu)1/q'7

QQ+1

| JqC"’lwa(x,Vu&r).VCdac‘$qm,8J |§Vu£yr|q*1_|1p|dx

Qo+1 Qo+1

Sc4(g)( [ |§w8,,g|qu)”q',

Q441

| | a7 =) Gl ) Ale, ©) Vede | <gmB [ (Ju,, | +]]) de<es(o),

Q441 Qo41

. ‘ jg‘le(ué.,,,)(?{(x,e).Vum.dm‘$ﬂJ' |CVu£y,|dx$c6(Q)( [ |§Vuw|qu)uq
Q

Qg+1 QQ+1 o+1

\ j £1G, (u,, ) A, e).vwdx|sﬂj |Vy|de < (o),

Qg+1 -Qg+1

Moreover by (1.3), we have

1
j |EVu,,, |7de = J'§‘1|Vu5,,,|"dx$— j;qa(x, Vu, ).V, de.
a

QQ+1 QQ+1 ‘QQ+1
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So we deduce from (3.8) and the above inequalities, for some constant c,

U, ,|Tdr=c, Uy xl/,+ Ug x1/+ .
tVa,,, |7dx <e, tva,, |7da) EVa,, , |7de) " +1
Q Q

2541

o+1 0+1

From this follows, since ¢, q¢' >1

J |CVu, , |Tde <c,.

Qo+1

Hence for some constant also denoted by c,

[ 1Vu.,, [1de= [ |eVu, , |1de< [ |EVu, , |7dx<c,.
Q Q

4 0 Qo+1
Now, since one has when ¢—0
Vu, ,—Vu, in LUL,),

we have

( [ |Vu,,|qu)”"snm ionf( [ |Vu£,,,|qu)”"
0 -

Q

4 4

and

J |Vu, |1dx < c,.

20

Since u, is locally uniformly bounded, this implies:
3.9) |, |14, 0, S c(0).

Now, by the reflexivity of W' 9(2,), L (2,), L' (I',) and Rellich’s theorem,
there exists a subsequence (u2, g2, y¢,) such that:

wl—u® weakly in Wh9(Q,), wul—u? strongly in LY(2,),
ul—u® ae. in Q,
ac., Vug) —ag weakly in L7(R,),

g2—g? weakly in L7(R,),
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ul—u®  strongly in L(I,), ul—u ae. in I',,
y%,—y? weakly in L9(I,),

where (12, A§, 9¢, y?) e Wh1(Q,) x LI'(2,) X LY (2 ,) x LY (T',).
By a diagonal process there exist a subsequence also denoted by (u,,, .., ¥ )
and (u, Ay, g, y) € Wk 9(2) X L. (2) X L.(2) x Li.(I') such that:

( u,—u weakly in W,9(2),  w, —>u strongly in L.(2),
U, —>u% a.e. in Q,

ac., Vu, ) —@, weakly in L{.(Q),

(3.10) ! g,—g strongly in L{.(2),

9, —g weakly in Lj.(Q),

u,,—u  strongly in Li.(I),  w,—u ae. in I,

7, —y weakly in Lg.(I).

From (P,,) we have for ¢ > 0 fixed and 7,>>0 by taking into account the fact that
Y, =y in B(0, o)

Up, Z Xy G (U, —,) =0, 0<g,<1ae in Q,
Y(a) —u,, () e D(B(x, .))  for ae. xel,,
V(@) € B, (w) —u, (x)) for ae. wel,,
yrn(@)<0 for a.e. xel, such that y(x)=u,,
from which we derive by (3.10) for any ¢ >0
U= X, g(u—uw,) =0, 0sgs<1ae in Q,,
Y(e) —u(x) e D(B(x, .)) for ae. xel,
y(x) € By (a, Y(w) —u(x)) for ae. wxel,,

y(@)<0 for ae. xel, such that y(x)=uw,,
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and thus
w=zw,, ¢g.(u—x,)=0, 0<g<l1ae in Q,
w(x) —u(x) e D(H(x, .)) for ae. xel,

(3.11)
y(x) e By(, Y(x) —u(x)) for ae. xel,

y(x) <0 for a.e. xel such that y(x) =x,.
To pass to the limit, we shall need the following lemma:

Lemma 3.2. We have

3.12) VYo>0, j Ale, Vu).VEda

2,

= jao(x).vgdx VEe WD 9(Q) such that supp(£)cQ,,
2,

k—+ o

(3.13) lim oa(x, Vu,,).Vu,, de= f@a(ac, Vu).Vude, VOe®d(R"), 6=0.
Q Q

Proof. Let ¢ >0 and let 8 € ®(R") such that 6 =0 in R"\B(0, ¢ + 1) and
6 = 0. Without loss of generality, we can assume that 0 <0 <1.

Note that for r,>>o, {=0u+ (1 - 0) u, =u, — 6(u, —u) is a test function
for (P,,). Indeed

Yo — =,y + O, — O
=0y, —u)+ 1 -0)y, —u,)
=0y —u)+A-0)(y, —u,)+ 0y, —y)
=0y —uw)+ (1 -0)y, —u,)

since 6 =0 in R"\B(0, o + 1) and y,, — = 01in B(0, ¢ + 1). Moreover for a.e. x
el’,,, we have

0(x) a(r) < 0(x)(y — u)(x) < 0(x) c(x) = O0(x) ¢, (x)
and

(1-6)(x) a(w) < (1 = ) @)y, —u, ) (@) < (1—-0)w)c, ()
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SO
a(x) < (y,, — @) <c, (2).

Then one has

f (axe, Vu,,) — g, Ax, )).V(0(u,, —u)) de < J ¥, 0w, —u) do(x)
QQ+1 Fg+1
which can be written

@14 | 6a@, Vu,).Vu,des< | 6at, Vu,) . Vude

Q441 441

- J(um—u)a(oc,Vuyk).VdewL J.gyka(ﬂc, e).V(0(u, —u)) dx

QQ+1 -Qg+1
+ j ¥ 0Cu,, — u) do(ix),
rg+1
Note that

J g, A, €).V(O(u,, —u)) de= J 9., Az, e).V(0(u,, —x,)) dr

Q411 Qo+1
- f 9, Ax, ). V(6w —w,)) de = — j g, Ax, e).V(0(u —x,)) de
Q41 Qo+1

since g, (u, —x,) =0 a.e. in Q,. By (3.10), we have

lim jg,%a(m, e).V(0(u—1x,)) do = jga(x,e).V(e(u—xn))dx:o
— + o
Qo+1 Qo+1

since by (3.11) g(u —x,) =0 a.e. in 2. So

(3.15) lim f g, Ax, e).V(6(u, —x,)) de=0.
— +
Qo41

Also by (3.10) and (3.14)-(3.15), we conclude that

(3.16) im j 0A(x, Vu,,).Vu, de < j 0, () .V dae .

Qo+1 Q541
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Let now ve W 9(R). By (1.5), we have
[ ocat, vu,) - ag, ¥)) Y, —v) dw=0, VkeN
Qp+1

and

3.17) oAz, Vu,,).Vu, dx — oa(x, Vu, ).Vodx
k k k

Q441 441

- [ oat, v). V@, - v de =0, VkeN.
Qg+1

Passing to the limsup in (3.17) and taking into account (3.10) and (3.16), we
get

j 0, (x) . Vo dze — j 0, (x) . Vo do — j 0a(x, Vo) .V(u —v) dz =0
Q441 Q541 Q541
or

(3.18) j 0(ay(x) — Az, V).V —v) de =0.

Qo+1

If we choose v = u = A& with £e WiL,9(2) and 1 € [0, 1] in (3.18), we obtain by let-
ting 4 go to 0 and using (1.2), (1.4) and the Lebesgue theorem

(3.19) j 0(Ay(x) — Az, Vu)).VEde = 0.
Qo+1
If moreover, one takes 6 such that 6 =1 in B(0, ¢) and & as in Lemma 3.2, we

obtain

j (@y(x) — Qlx, V). VEdw =0

20

which is (3.12).
Let us now prove (3.13). Take &=u in (3.19), we get

(3.20) j 0A(x, Vu) .V da = j 0, (x) .V dz .
Q Q2
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Using (3.16) and (3.20), we obtain

(3.21) fim [ 6, Vu,) Vu, de < [6a(, Vu) Vuda .
Q Q

Now we have

8.22)  [6a, Vu,).Vu, de = [0(ale, Vo) - A, Yu)).V(u, - u) de
Q Q

+ [oate, vu).Vu, de + [6(ale, Yu,) - e, Vo)) Vude
Q Q

Combining (3.10), (3.20)-(3.22) and the monotonicity of A(x, .), we get

lim [ 6a, Vu,).Vu, dz = j 0a(x, Vu) Vude. m
Q

k— +

Let us now complete the proof of Theorem 3.1. Choose & € K(«). Then for some
0>0 and for 7, large enough we have: supp(§ —u)cQ,cQ, . Let 6 ®R")
such that

0<6<1, 6=1in B(0,0), 6=0 in R"\B(0, 0 +1).

Set {=05+(1-0)u,=u, +6(&—u,) and let us verify that {eK,. We
have

WT/C_ gsz_urk_ 9§+ B/M/’l‘k
=0 =85+ A =0)(y, —u,)+ 0, — )
=0y -8+ A -0y, —u,)

since =0 in R"\B(0, 0 +1) and ¥, —vy =0 in B(0, o +1). Then we have

j (A, Vu,) — g, A, €)).V(0(E —u,)) de = fymﬂ(é—um)da(ac),

2541 Ty

letting k— + oo, we get by (3.10) and Lemma 3.2

j (Qlx, V) — galzx, €)).V(O(E —u)) do = jy.e(g—u)da(x).

Qg+1 rg+1
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But since 6 =1 in 2, and supp(§ —u)Cc,, we obtain

which is

j (ax, Vu) — gax, ) .V(E —u) dz = jy.(g — ) do(z)
o r

4 4

j(a(x, Vu) — gQla, €)) . V(E —u) dx = jy.(g — ) do()
Q r

and (u, g, y) is a solution of (P,). =

Remark 3.5. Since for any £e (), u + & is a well test function for (P, ),
it is clear that the results of Proposition 2.8 and Remark 2.9 remain true. Hence
ueC*(RQ) for some ae(0,1) and the set [u >x,] is open. Moreover u is
@-harmonic in [u>x,] and if A is sufficiently smooth, we would have
ueCL.”([u>x,]) for some ye (0, 1).
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Abstract

In this paper we propose a unified formulation for the stationary dam problem that

wmcludes the cases of linear or nonlinear Darcy’s laws and Divichlet or leaky boundary
conditions via the theory of maximal monotone graphs. We prove an existence of a sol-
ution both for bounded or unbounded domains.
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