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On the construction of a class
of weakly divisible nearrings (*%*)

1 - Introduction

Weakly divisible nearrings (wd-nearrings) are first defined and studied in [2].
Among the zerosymmetric wd-nearrings on the cyclic group (Z,., +), p prime,
the class 91 of those wd-nearrings in which pZ,. is the ideal of all the nilpotent
elements is characterized and a construction method is provided in [1]. Precisely,
if G is a cyclic group of prime power order p” and ® is an arbitrary subgroup of
Aut (G), all the wd-nearrings of JIC are constructible starting from the pair (G, ®)
and from the representatives of orbits of ® selected in the following way: if p’
7 <m, is the maximal power of p such that any two elements of two orbits belong
to the same coset of p’Z, this belonging must also be preserved between the
representatives.

Too many computations are necessary to verify if the above condition holds,
even if a computer is used. Therefore, in this paper, using an account of the orbits
of an automorphism group of (Z,., +) and calling two orbits p-equivalent, when
their elements belong to the same cosets of pZ,., we prove that the previous con-
dition is automatically guaranteed iff the selected representatives of p-equivalent
orbits belong to the same coset of pZyn — if p# 2 or p =2 and ® is generated by
g— (1 +2"""yg — otherwise they belong to the same coset of 4 7. Clearly, it is
very easy to select the representatives fulfilling this last condition.

(*) Dipartimento di Elettronica per I’Automazione, Facolta di Ingegneria dell’Universi-
ta degli Studi di Brescia, Via Branze 38, 1-25123 Brescia, Italy.
(**) Received May 5, 1998. AMS classification 16 Y 30. Work carried out on behalf of
Italian M.U.R.S.T.
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2 - Preliminaries and notations

For details about nearrings we refer to the texts by Pilz [6] and Clay [4].
Throughout this paper we always consider left zerosymmetric nearrings. We here
summarize the results, terminology and notations from [1] used in the following.
At first we recall:

Definition 1. A nearring N is weakly divisible (wd-nearring) if, for each
x, y belonging to N, there exists an element ze N such that xz=y or yz =uw.

Definition 2. Let «» be multiplication (modm). A Clay function is a
Sfunction & mapping 7., n itself and fulfilling the following condition:

a(a)-7(b) = w(a-7(d)) for each a, beZ,,.

Hereinafter «-» will be omitted and, when it will be necessary, a will denote
the residue class (mod p™) containing a e Z.

In [3] it is proved that every nearring whose additive group is finite and cyclic
arises from a Clay function. In [1] those Clay functions defining wd-nearrings on
(Zyn, +), whose ideal of all the nilpotent elements coincides with pZ,., are inves-
tigated. We summarize the construction method of such wd-nearrings here and
emphasize that all wd-nearrings of this class are constructed in this way.

To begin with, we need a pair of groups (G, ®) where G equals (Z,., +) and
® is an arbitrary subgroup of Aut (G). Hereinafter, K denotes the set Z,. \pZ,,».
For all the orbits ®(k), k € K, select representatives ¢, such that the following
condition holds:

Condition 1. Ife,—e,¢piZy (j<n), then x —y ¢piZym, for all xe P(a)
and for all y e ().

Fix one of the selected representatives, call it e and denote ¢, the element of
@ such that ¢,(e,) = 2. Consider the map given by the following:

Definition 3. For every aeZ,. define:

N 0 ifa=0
(@) = { . . :
P Qe f a=kp" with ke”Z, (k,p)=1 and 0 <r<n
When the fixed representatives fulfill Condition 1, such a map = is a Clay function,
therefore it defines a multiplication «*» on Z,. by x*y = n(x) y.
The structure N = (Z,», +, *) is a wd-nearring whose set of the nilpotent
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elements coincides with pZ,. (Th. 2 of [1]). Moreover, any such wd-nearring can
be constructed by the method described above (Th. 3 of [1]).

Now, we are going to describe a method for choosing the representatives of
the orbits included in K so that Condition 1 is automatically guaranteed. To our
purpose we will use the following:

Definition 4. Let G be a group. Let H< G and ® < Aut(G). For each or-
bit ®(g), g € G, the set of the cosets of H which contain elements of ®(g) is called
H-class of ®(g), denoted by [P(g)]y.

Definition 5. Let G be a group. Let H<G and ® < Aut(G). Two orbits
O(g) and P(g'), g9,9 €@, are called H-equivalent if [®(g)]g = [DP(9')]x.

To simplify our notations, when H is cyclic we identify H with its generator &
and, so, we essentially say h-class (or h-equivalent) and write [®(g)],.

3 - Case p=2

In this section G denotes the additive group of integers (mod p") with p = 2
and ® a subgroup of Aut (G). It is well known that |Aut(G)|=(p —1) p" ! and
if the order of ® is tp”, with (p, t) =1, then ® equals the direct product 7 x ®,,
where 7T is a fixed point free automorphism group of order ¢ and
O, ={a,:g—wglr=bp" "+1, 0<b<p”—1} has order p" (see [4] Chap-
ter 2).

Proposition 1. Let G = (Z,, +) with p #2.
) If B, and By are distinct automorphisms of G whose orders divide
p—1, then B1(k) — B2(k) ¢ pZy,», for all keK;
() if o1 and ¢ 5 are automorphisms of G of orders p” and p”, r<h, ve-
spectively, then ¢ (k) — ¢ o(k) ep™ "Z,n, for all ke K.

(1) Suppose f,(k)—B2(k) epZ,, for some keK. Then p" 'B,(k)
=p" 1By(k), so (Bz1B1)(p" k) =p" 'k, but this is excluded because other-
wise p"” 1k should be a fixed point of S518;.

(2) Tt is well known that ¢ ; and ¢, are determined by elements of the form
bp" " +1, 0<b<p”"—1. Thus, for all ke K, we have ¢;(k) = (b;p" "+ 1)k
and ¢ 5(k) = (byp™ "+ 1) k for suitable b; and b,, hence ¢ (k) — ¢ (k) belongs
to p" " Zy W



106 A. BENINI and F. MORINI [4]

Corollary 1. Let G = (Z,, +), with p=2, and ® =T X &, < Aut(G) of
order tp", where t divides p — 1.

(1) For every k e K, two elements of ®(k) belong to the same coset of pZ,»
iff they belong to the same coset of p" =" Zu;

2) every orbit ®(k), k € K, is the union of t distinct cosets of p"~"Z,,n. Pre-
t
cisely, ®(k)= _Ul(ﬂq;a(k)+p”’thn), where T={B1, ..., B} and aed,.

(1) Let x, y € ®(k), that is x = Ba(k) and y = Ba(k), where 8,BeT and
a, a € ®,. Suppose x —y e pZ,. By Proposition 1(2) a(k) = a(k) + p" g, for
some geZ,», and hence Ba(k)—B(a(k) +p"~"g) = Balk) — Balk) — B(p" " g)
belongs to pZ,.. But, by Proposition 1(1), fa(k) — fa(k) e pZ,» if and only if
B =PB. Now, we can conclude that © —y = B(ak) —ak)) ep” " Z,n.

(2) Suppose x = ;a(k) where @ € @), and ;€ T. Then, by Proposition 1(2),
Bialk) — Bialk) = Bi(ak) —a(k)) ep” " Z,». It follows that ®(k) is included in

t

t
Z.l:Jl(ﬁioz(lc) +p" " Z,n). Since |P(k)|= |i91(ﬂia(k) +p" "Z,)| the proof is
concluded. =

Clearly, from Corollary 1 there is always exactly one orbit having a fixed

p"~-class.

Example 1. Take G= (Zy, +) and @D <Aut(G) generated by the
automorphism a,: g—4¢g of order 21. Using the notations of Corollary 1, ®
equals T x®;, where T=(ag)={idg, ai, azx} and D, = (as)
= {idg, a9, g3, 015, A6, Ay, Aog}. Hence, in this case, n =2, h =1, t =3 and
the orbits of K are:

We can observe that in each of these orbits the elements can be gathered in three
distinct cosets of 77Z,. Precisely, ®(1) is the union of the following cosets:

’LdG(i) + 7Z49 = i +7Z49,
alg(i) + 7Z49 = ig +7Z49 = Z +7Z49,
ago(i) + 7Z49 = 3\0 +7Z49 = é +7Z49.

Similarly, ®(3) is the union of (3 +7Zy), (5 +7Z49) and (6 +7Zy9). Thus [@(1)];
# [<I>(§)]7, that is CIJ(T) and <I>(§) are not T-equivalent.
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Proposition 2. Let G = (Zy, +), with p#2, and ® =T x &, < Aut(G) of
order tp", where t divides p — 1.

(1) The set {[d)(k)]p |k e K} of all the p-classes under ® determines a par-
tition of (Zyn [pZyn)* containing s = (p — 1)/t blocks;

(2) im K there are (p—1)/t =s orbits non p-equivalent pairwise;

(3) there are exactly p" "1
mn K

orbits p-equivalent to each orbit of @ included

(1) We show that distinct blocks are disjoint. Suppose [®(k)], N [®(])], = 0.
From Corollary 1, there exist 8, f,e T such that 8,(k) + pZ,.= B (1) + pZy,n,
that is f1(k) — B2(1) € pZ,». Consequently, B(f,(k)) —B(S2(])) € pZ,», for any
peT, thus [®(k)], = [®(])],. Again from Corollary 1, [®(k)], contains exactly ¢
different elements, hence the partition determined by all the p-classes contains
exactly (p —1)/t =s blocks.

(2) From (1), in K there are s distinet orbits having disjoint p-classes to
each other.

(3) By Proposition 2(1) two orbits ®(I), ®(k) are p-equivalent if and
only if ®)N(k+pZ,) #0. Let BeT, ae®,, a(l)=bp" "I+1. Then
(Ba)(l) e k + pZ, if and only if Bop™ "+ 1) - k e pZ,». By Proposition 1 8 is
unique, hence there are p" choices for b which in turn shows that
| &) N (k +pZ,n) | =p" Sinee |k + pZ,«| =p" ' it now follows that there are
p" "1 orbits ®(I) which are p-equivalent to ®(k). =

Proposition 3. Let G = (Z,n, +), with p #2, and ® =T X &), < Aut (G) of
order tp", where t divides p — 1. Let ®(k), ®(1) be distinct p-equivalent orbits of
® such that k — leijpn, (J <n). Two elements of (k) and P(I), respectively,
belong to the same coset of pZ, iff they belong to the same coset of p’Z,n.

By Corollary 1(2) k+ p"~"7Z,. is included in ®(k) and, by the hypothesis,
le®(k) and lek + p'Zy,n, thus j<n—h.

Let xe ®(k) and ye ®(l). Suppose ¢ is the automorphism of & such
that o@)=k If wx-yepZ,» then ¢(x)—¢(y)epZ,~. Hence
o(y) — 1= (k=1 — (¢x) — @y)) € pZ,». Therefore, it follows ¢(y) —lep’Zy,n
(Corollary 1(1)).  Thus  ¢(y)— @) =g(y) —k= (@) -1)+(1—-k)ep'Z,.. =

The next example shows all the notations and the results presented in this
section.
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Example 2. Take G = (Zs, +), T = {idg, —idg} and ®, = (asy). Thus,
®=Tx D, is of order 2-7%. Here n=>5, h=2, t =2, s =3. Therefore, there
are s=3 orbits non 7-equivalent, for instance @(i), <I>(§) and <I>(§), infact
(D)= {1+7Zp, 6+TZ5}, [®@)]r= {2477, 5+TZp}, [®B)]y={3+7Zm,
4 +77%. Moreover, there are p”~"~!'=17% orbits T-equivalent to ®(1), ®(2)
and ®(3) respectively. Using [7] it is possible to verify these results and we
can also observe that, for example, <I>(T) and @(5()) are 7-equivalent and such that
1-50e7 Zs, thus, for all xe ®(1) and for all AS ®(50), x — y € 77 implies
x —yeTZs (see Proposition 3).

4 - Case p=2

Let now G = (Zg:, +) and ® < Aut(G) of order 2". The following cases are
possible (see [5], Chap. 4)(}):
A) P=(a,ipry={a: e—kx|k=1 +02" " 0<sb<2'—1) with 0<h<n-1;

B) ®=(a_ 1,90 1)={apv—ke|k=(-1P+b2""" 0<b<2' —1}
with 0 <h<n-—1;

(C) q):<a1+2nfh+l, _ldG>: {ak: xﬁkx|k: i(1+b27l_}l+l), O$b$2h_1—1}
with 0 <h<sn-1

Case (A). The orbits in K are described by the following:

Proposition 4. Let G = (Zon, +) and let @ be a subgroup of Aut (G) hav-
g form (A). In K:
(1) all the orbits of ® are 2-equivalent pairwise;
(2) every orbit of ® equals a coset of 2" " Zun;

3) if ©k), ®(l) are distinct orbits such that k and | belong to the same
coset of 2/7., (j <n), then two elements of ®(k) and ®(1), respectively, belong to
that same coset.

Immediately (1) follows by the definition of 2-equivalent orbits, while the proof

() Here id; denotes the identity map of G and —id; is defined by x— —x.
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of (2) and (3) is analogous to the case p # 2, because of the form of the elements
of . =

Cases (B) and (C). The orbits in K are now described by the following:

Proposition 5. Let G = (Zon, +) and let © be a nontrivial subgroup of
Aut (G) having form (B) or (C). In K:

1) all the orbits of ® are 4-equivalent pairwise;

(2) let d(k), D(1) be distinct orbits such that k —1e2/70.(1 <j<n). Two
elements of ®(k) and (1), respectively, belong to the same coset of 4 Zyn iff they
belong to the same coset of 2/7.sn.

(1) It is clear because of the form of elements of ®.

(2) Let |®| = 2" and let x e ®(k) and ye ®(l) such that x —yedZy. If j =2,
the statement is clear. Furthermore, since the coset k + 2"~ "*177,. contains 2" !
elements and it is included in ®(k), it is sufficient to consider 2 <j<mn —h + 1.
From the structure of @ we only have two possibilities.

The first one is k =, | = y € 2" " 7. C 2/ 7. By the hypothesis k — [ € 2/ 7.,
we derive that kxa— (l+xy)=+*xFy+ (k—1)e2/Zy, and in any case
x—ye2Zm.

Otherwise k=x,lFye2" "7y. Analogously, we obtain *wx+ye2/7Z.
Keeping in mind that x—yedZ, we have x+axedZy, but this is
false. =

5 - Conclusion

We are now able to prove a necessary and sufficient condition about the choice
of the representatives of the orbits so that sz of Definition 3 can be a Clay
function.

Theorem 1. Let G = (Z,., +), p any prime, let ® be a subgroup of Aut (G)
and 7 as i Definition 3. Condition 1 is fulfilled iff the selected representatives
of p-equivalent orbits in K belong:

{to the same coset of pZ,n if p#2 or p=2 and ® = (a,y-1),

to the same coset of 470  otherwise .

Suppose that Condition 1 is satisfied, that is 7z of Definition 3 is a Clay function
by Prop. 8 of [1].



110 A. BENINI and F. MORINI [8]

Assume p#2 or p=2 and ® = (&, 1)

Let e, and ¢, be the selected representatives of two p-equivalent orbits in K
and let ke @(e;), k' € D(e; ) such that k — k' e pZ,.. Clearly, p" '(k—k') =0,
thus the element a =¢ " Vkp" lequalsa’'=e " Vk’'p" 1 Since 7 is a func-
tion, we have m(a) =m(a’), that is e @ Vp" 1o, D) =e " Vp" g, Q.
From the last equality ¢,(1)— ¢, (1) is in pZ,., thus e/ (@,1)— ¢ (1))

=ekr(pk(12—k’eprn. Consequently, ekrfak(i)—ekqok(i) =ekr(pk(1)—k
=(ep @) —k')+ (k' —k)epZ,. . Since @(1)¢pZ,., it follows e, —e,
Eprn.

Assume p=2 and ® =(a 1 ,9-1) or ® =(ay,o-n+1, —idg).

Since all the orbits have the same 4-class, any two of them contain respectively
elements which belong to the same coset of 47Z,., hence Condition 1 implies that
all representatives of the orbits belong to the same coset of 47Z,..

We can now turn to the converse. Suppose p # 2 and ®(k), ®(k') are two
distinet orbits in K. If ®(k) and ®(k') are p-equivalent then e, — e, e pZ,..
Thus, by Proposition 3, x — yeijpn, for some x e ®(k) and y e ®(k'), implies
er— e Ep'inn and Condition 1 is fulfilled. If ®(k) and ®(k') are not p-equiva-
lent, then there are not any x e ®(k), y € ®(k') such that & — y e pZ,» (Proposi-
tion 2(1)) and so Condition 1 clearly holds. Finally, if p =2 the converse arises
analogously from Propositions 4(3) and 5(2). =

An application of the above theorem is shown in the following:

Example 3. Take G=(Zy, +) and &= (a5)={idg, a, as}-
The T7-class of ®(1), ®Q@), ®@), ®E®), ®O), ®1A6) and DY) is
{1+7%49,2 +TZ49, 4 +TZ4}. The T-class of ®B), ®6), ©(12), P(13), (19),
®(24) and D(26) is {§ + 7749, 54779, 6 +7749}. Thus, in K there are s =2 or-
bits non 7-equivalent, for instance <I>(i) and <I>(§). There are exactly 7 orbits 7-
equivalent to ®(1) and by Theorem 1 their representatives must be chosen in the
same coset of 7Z,9: choose ig, ﬁ, Z, 416, 55, §§, 28. There are exactly 7 orbits 7-
equivalent to <I>(§) and, for the same reason, their representatives have to be se-
lected in the same coset of 77Z,9: choose 3,10, 17, 18, 37, 24, 45. Fix arbitrarily e
=46 among the selected representatives and define:

0 ifa=0

(@) ={
TQr(e™) if a=k7 with (k,7)=1 and 0<r<n

Because of the choice of the representatives, Theorem 1 and Prop. 8 [1] guarantee
that s is a Clay function and the structure (Zyy, +, * ), where « * » is defined by
x*y=um(x)y, turns out a wd-nearring with @ =77,,.
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Abstract

A nearring N is called weakly divisible (wd-nearring) if, for each x,ye N, there

exists an element z e N such that xz =y or yz = x. A method to generate all the zerosym-
metric wd-nearrings on the cyclic group (Z,», +) whose set of the nilpotent elements
equals pZyn ts already known. In this paper we give an account of the orbits of a sub-
group of the automorphism group of (Z,», +) to provide the guide for improving the con-
struction method of such wd-nearrings.



