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A posteriori error estimates

for hierarchical methods (**)

1 - Introduction

A posteriori error estimates have been largely used in the last years in the nu-
merical resolution of partial differential equations. Such estimates are not only
important to determine the reliability of the method (an algorithm is defined reli-
able when the quantitativity control of error is guaranteed) but also to provide an
adaptive optimization tool of the grid and for this reason they are at the basis of
the local refinement schemes (h and p refinement). The literature on the subject
is vast (see for instance [12], [7], [20], [3]).

In the numerical resolution of physical or technological problems it is possible
that the global accuracy of the numerical approximation is deteriored by local sin-
gularity. An obvious remedy consists in refining the discretization near the critical
regions, that is, to set more grid-points where the solution is less regular.

A priori error estimates are often insufficient and it is been proved the neces-
sity of an error indicator which could be calculated a posteriori through the nu-
merical solution of the problem.

Thanks to the analysis developed in [7], it is proved in this paper that if the
discrete solution of an elliptic boundary value problem is expanded according to a
multilevel decomposition, then its higher level component is an a-posteriori error
indicator.

Let us suppose to solve a problem in a discretization space Vh , corresponding
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to a mesh Th (h is the discretization parameter). If we refine the mesh, that is we
consider a h

–
such that h

–
Eh, we will obtain a new mesh Th

– and thus the discretiza-
tion space will be enriched by the addition of new hierarchical basis functions to
the set of functions already used for Vh. Named Vh

– the new space, we suppose
that Vh

– admits a hierarchical decomposition

Vh
–4Vh5

.
Wh ,

where Wh is a space not necessarily orthogonal to Vh generated by the additional
basis functions (the symbol 5

.
means a direct sum which may not be orthogonal).

Moreover, the error indicator used is simply the component of the solution uh
–�Vh

–

in the space Wh, that is, written uh
– in the form

uh
–4u×h1e×h ,

where u×h is the component of uh
– in Vh and e×h is the component of uh

– in Wh , we ob-
tain estimates of the form

C1NNNu2uhNNNGNNNe×hNNNGC2NNNu2uhNNN ,

where C1, C2D0 are constants of order one.
In this paper three cases are analysed:

– the case of a selfadjoint, positive definite variational form;
– the case of a variational form that is nonselfadjoint and indefinite;
– the case of a modified variational form.

We make the saturation assumption. This states that in energy norm the sol-
ution uh

–�Vh
– constitutes a better approximation to the exact solution u than uh

�Vh . A demonstration in the case of linear finite elements for the stabilized con-
vection-diffusion problem is given in [9].

We also assume the strengthened Cauchy-Schwarz inequality. Such inequali-
ties are widely used in the analysis of iterative methods based on hierarchical fi-
nite element bases ( see for instance [21], [5], [11]) and in the analysis of a posteri-
ori error estimates. A quite number of forms and proofs have been given in the
case of finite elements, corresponding to different uses (see for example [5], [11],
[18]).

In the case of not selfadjoint problems we must add the continuity assump-
tion and the inf-sup condition.

These results are applied to the stabilized convection-diffusion problem in the
last paragraph and they justify the wavelet-based adaptive finite element method
([8]).
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2 - The selfadjoint case

We consider the solution of the selfadjoint variational problem

.
/
´

find u�V such that

a(u , v)4 f (v), (v�V ,

where V is an appropriate Hilbert space, a(Q , Q) is a positive definite bilinear form
and f (Q) is a linear functional. The energy norm associated with a(Q , Q) is denoted
by

NNNuNNN24a(u , u) .

Let Vh%V be a finite dimensional subspace and consider the approximate
problem

.
/
´

find uh�Vh such that

a(uh , vh )4 f (vh ), (vh�Vh .
(2.1)

The solution of (2.1) satisfies the best approximation property

NNNu2uhNNN4 inf
vh�Vh

NNNu2vhNNN.

Now we define a larger space Vh
–, h

–
Eh, that is a space such that Vh%Vh

–%V.
In this space we have the approximate solution uh

– satisfying

a(uh
– , vh

– )4 f (vh
– ) , (vh

–�Vh
–(2.2)

and

NNNu2uh
–NNN4 inf

vh
–�Vh

–
NNNu2vh

–NNN.

The approximate solution uh
– is not computed but it is important in the theor-

etical analysis of the a posteriori error estimate for uh . In particular we assume
that the approximate solution uh

– converges to u more rapidly than uh . This is ex-
pressed in terms of the saturation assumption

NNNu2uh
–NNNGbNNNu2uhNNN(2.3)

where bE1 independent of h.
Now we decompose the space Vh

– in the direct sum of Vh and Wh , where Wh is
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an appropriate supplementary not necessary orthogonal

Vh
–4Vh5

.
Wh .(2.4)

Moreover we assume the strengthened Cauchy-Schwarz inequality for the
decomposition

Na(v , w)NGgNNNvNNN NNNwNNN , (v�Vh , (w�Wh ,(2.5)

where gE1 independent of h.
Now we want estimate the error u2uh by the component of uh

– in Wh . Decom-
pose the approximate solution uh

– as

uh
–4u×h1e×h ,

where u×h�Vh and e×h�Wh . We want determine an estimate of the form

C1NNNu2uhNNNGNNNe×hNNNGC2NNNu2uhNNN ,(2.6)

where C1 , C2D0 are constants independent of h. To make this we consider the
decomposition

Vh
–4Vh5Wh*,(2.7)

where Wh* is the orthogonal space to Vh in Vh
–. By this decomposition we

have

uh
–4PVh

uh
–1PWh* uh

– ,

where PVh
and PWh* indicate the orthogonal projections on Vh and Wh*, respect-

ively. Note that the unicity of the solution leads to

PVh
uh

–4uh .

Infact, set PVh
uh

–4zh , we have

a(zh , vh )4a(uh
– , vh )4 f (vh ), (vh�Vh .

Denoted PWh*
uh

– with eh thus we obtain

eh4uh
–2uh .

After the demonstration of the following lemma, we will formulate an estimate of
the form (2.6).

L e m m a 2.1. Let uh
–�Vh

– be solution of (2.2), with uh
–4u×h1e×h , where u×h
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�Vh and e×h�Wh . Moreover, let eh be the orthogonal projection uh
– in Wh*, where

Wh*%Vh
– is the orthogonal complement of Vh . Then

NNNehNNN2GNNNe×hNNN2G
1

12g 2
NNNehNNN2 .

P r o o f . By the definitions given above we compute

NNNehNNN24NNNuh
–2uhNNN24NNNu×h1e×h2uhNNN24NNN(u×h2uh )1e×hNNN2

4NNNu×h2uhNNN21NNNe×hNNN212a(u×h2uh , e×h )

FNNNu×h2uhNNN21NNNe×hNNN222gNNNu×h2uhNNN NNNe×hNNN

FNNNu×h2uhNNN21NNNe×hNNN222 k 1

2
NNNu×h2uhNNN

21
1

2
g 2NNNe×hNNN

2l4NNNe×hNNN
2 (12g 2 ) .

This proves the right-hand side inequality. The left-hand side one is obtained by
the definitions of Wh and Wh*. r

T h e o r e m 2.2. Let uh
–�Vh

– be the solution of (2.2). Decompose uh
– as

uh
–4uh1eh and uh

–4u×h1e×h , where uh�Vh , eh�Wh*, u×h�Vh , e×h�Wh . We
have

(12b 2 ) NNNu2uhNNN2GNNNe×hNNN2G
1

12g 2
NNNu2uhNNN2 .(2.8)

P r o o f . First we prove that

(12b 2 ) NNNu2uhNNN2GNNNehNNN2GNNNu2uhNNN2 .(2.9)

Considering the left-hand side inequality we have

NNNu2uhNNN24NNN(u2uh
– )1 (uh

–2uh ) NNN24NNNu2uh
–NNN21NNNehNNN21a(u2uh

– , eh )

4NNNu2uh
–NNN21NNNehNNN2Gb 2NNNu2uhNNN21NNNehNNN2 .

and with regard to the right-hand side one

NNNehNNN24a(uh
–2uh , uh

–2uh )4a(u2uh , uh
–2uh )GNNNu2uhNNN NNNehNNN .

Lemma 2.1 implies the (2.8). r
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3 - The nonselfadjoint, indefinite case

Now we want to generalize the results above to the nonselfadjoint and indefi-
nite problem

.
/
´

find u�V such that

A(u , v)4 f (v), (v�V ,

where A(Q , Q) is a bilinear form and f (Q) is a linear functional. The energy norm
NNN QNNN is associated with a positive definite bilinear form a(Q , Q). Let Vh and Vh

– be
two finite-dimensional subspaces of V with Vh%Vh

–. Let us consider the approxi-
mate problems

.
/
´

find uh�Vh such that

A(uh , vh )4 f (vh ), (vh�Vh

(3.1)

and

.
/
´

find uh
–�Vh

– such that

A(uh
– , vh

– )4 f (vh
– ), (vh

–�Vh
– .

(3.2)

We suppose that A(Q , Q) satisfies the continuity condition: )mD0 such
that

NA(u , v)NGmNNNuNNN NNNvNNN , (u , v�V(3.3)

and the inf-sup condition: )n such that

inf
u�S

NNNuNNN41

sup
v�S

NNNvNNNG1

A(u , v)FnD0(3.4)

where S4V, Vh , Vh
– . This ensures that all variational problems considered will

have unique solutions. We suppose that the solutions uh e uh
– converge to u and

that the saturation assumption (2.3) holds. Moreover let Wh and Wh* be defined as
above and assume the strengthened Cauchy-Schwarz inequality (2.5).

To obtain such an estimate as theorem 2.2 for the nonselfadjoint and indefinite
case let us decompose the solution in the following way

uh
–4PVh

uh
–1PWh* uh

–

(note that in this case uh is not equal to PVh
uh

– ) and set

eh4PWh* uh
– .
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We observe that the hypotheses made ensure that the theorem 2.1 holds
whenever uh

–�Vh
– is the solution of (3.2) with uh

–4u×h1e×h , where u×h�Vh and
e×h�Wh (let us remember that in this case PVh

uh
– is not equal to uh). Then we must

prove an estimate of the type (2.9) of theorem 2.2.

L e m m a 3.1. Let uh�Vh and uh
–�Vh

– be solutions of the approximate prob-
lems (3.1) and (3.2), respectively, and suppose for uh and uh

– the saturation as-
sumption (2.3). Then we have

(12b) NNNu2uhNNNGNNNuh
–2uhNNNG (11b) NNNu2uhNNN.(3.5)

P r o o f . Triangle inequality and saturation assumption lead easily to (3.5). In-
fact the left-hand side inequality is given by

NNNu2uhNNNGNNNu2uh
–NNN1NNNuh

–2uhNNNGbNNNu2uhNNN1NNNuh
–2uhNNN

while

NNNuh
–2uhNNNGNNNuh

–2uNNN1NNNuh2uNNNGbNNNu2uhNNN1NNNuh2uNNN

yields to the right-hand side one. r

L e m m a 3.2. Let Vh , Vh
– and Wh be defined as above with Vh

–4Vh5Wh*;
moreover we assume (2.3), (2.5), (3.3), (3.4). Then we have

n 4

m 2 (m1n)2
(12g 2 )(12b)2NNNu2uhNNN2GNNNehNNN2G (11b)2NNNu2uhNNN2 .

P r o o f . We know that

NNNehNNN4NNNuh
–2PVh

uh
–NNNGNNNuh

–2uhNNN .

and then, by right-hand side inequality (3.5),

NNNehNNN2GNNNuh
–2uhNNN2G (11b)2NNNu2uhNNN2 .

To obtain the left-hand side inequality we consider the approximate equa-
tions

A(uh , vh )4 f (vh ), (vh�Vh ,
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and

A(uh
– , vh

– )4 f (vh
– ), (vh

–�Vh
– ,

which implies

A(uh
–2uh , vh )40 , (vh�Vh .(3.6)

Moreover, by definition of eh we have

A(eh , vh
– )4A(uh

–2PVh
uh

– , vh
– ), (vh

–�Vh
– ,(3.7)

and taking vh4vh
–�Vh, and using (3.6), we obtain

A(uh2PVh
uh

– , vh )4A(eh , vh ), (vh�Vh .(3.8)

Then observe that, if v�Vh and w�Wh , with NNNv1wNNN41, we have

14NNNv1wNNN24NNNvNNN21NNNwNNN212a(v , w)

FNNNvNNN21NNNwNNN222gNNNvNNN NNNwNNNF (12g 2 ) NNNwNNN2 .

Thus

NNNwNNN2G
1

12g 2
.(3.9)

Now, applying (3.6), (3.7) and (3.9), we obtain

nNNNuh
–2uhNNNG sup

NNNv1wNNN41
A(uh

–2uh , v1w)4 sup
NNNv1wNNN41

A(uh
–2uh , w)

4 sup
NNNv1wNNN41

]A(uh
–2PVh

uh
– , w)1A(PVh

uh
–2uh , w)(

4 sup
NNNv1wNNN41

]A(eh , w)1A(PVh
uh

–2uh , w)(

G
m

k12g 2
NNNehNNN1

m

k12g 2
NNNuh2PVh

uh
–NNN.

It remains to prove that there )KD0 such that

NNNuh2PVh
uh

–NNNGKNNNehNNN ;
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but, by (3.8), we have

nNNNuh2PVh
uh

–NNNG sup
vh�Vh

NNNvhNNN41

A(uh2PVh
uh

– , vh )4 sup
vh�Vh

NNNvhNNN41

A(eh , vh )GmNNNehNNN .

Thus

NNNehNNN2F
n 4

m 2

12g 2

(m1n)2
NNNuh

–2uhNNN
2

and, using the left-hand side inequality of (3.5), in conclusion we obtain

NNNehNNN2F
n 4

m 2 (m1n)2
(12g 2 )(12b)2NNNu2uhNNN2 . r

T h e o r e m 3. Let uh�Vh and uh
–�Vh

– be solutions of the problems (3.1) and
(3.2), respectively; let e×h be the component of uh

– in Wh . Moreover assume hy-
potheses (2.3), (2.5), (3.3), (3.4). Then we have

n 4

m 2 (m1n)2
(12g 2 )(12b)2NNNu2uhNNN2GNNNe×hNNN2G

(11b)2

12g 2
NNNu2uhNNN

2 .

P r o o f . It follows immediately from lemmas 2.1, 3.2. r

4 - The case of a modified variational form

We consider the variational problem

.
/
´

find u�V such that

A(u , v)4 f (v), (v�V ,

where A(Q , Q) is a bilinear form and f (Q) is a linear functional. We assume the hy-
potheses (3.3), (3.4) with n and m continuity and inf-sup constants, respectively, of
the form A. Let Ah be a bilinear form depending on the discretization parameter
hD0, more precisely

Ah : Vh3VhKR ,

Ah (Q , Q)4A(Q , Q)1d(h) a(Q , Q) ,(4.1)

where d is a non-decreasing function, a(Q , Q) is an inner product satisfying the
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strengthened Cauchy-Schwarz inequality (2.5), and the energy norm is associated
to the inner product. We suppose that Ah satisfies the continuity hypothesis:
(hD0 )m hD0 such that

NAh (uh , vh )NGm hNNNuhNNN NNNvhNNN, (uh , vh�Vh ,

and the inf-sup condition: (hD0, )n hD0 such that

inf
uh�S

NNNuhNNN41

sup
vh�S

NNNvhNNNG1

Ah (uh , vh )Fn h ,

where S4Vh , Vh
– . Now we consider the approximate problem for hD0

.
/
´

find uh�Vh such that

Ah (uh , vh )4 f (vh ), (vh�Vh .
(4.2)

From now on uh and uh
– (with h

–
Eh) will denote the solutions of two approxi-

mate problems as (4.2). We assume that uh and uh
– converge to u and that the

saturation assumption (2.3) holds.
Then, for the problem (4.2), we can formulate a result similar to the one al-

ready proved for the previous cases.

T h e o r e m 4.1. The solution uh�Vh of the problem (4.2) satisfies the follow-
ing a posteriori error estimate

g n h
– n h

2m h
– (n h1m1d(h) )

h2

(12g 2 )(12b)2NNNu2uhNNN
2GNNNe×hNNN

2(4.3)

G
(11b)2

12g 2
NNNu2uhNNN

2 .

P r o o f . First we observe that also in this case the lemma 2.1 and 3.1 hold
(formulated for uh

–�Vh
– solution of the problem (4.2) written for h

–
, with

uh
–4u×h1e×h ). To prove the right-hand side inequality we use the lemmas 2.1 and

3.1. To demonstrate the left-hand side one, we apply (3.9) with v�Vh and w�Wh ,
NNNv1wNNN41; we have

n h
–NNNuh

–2uhNNNG sup
NNNv1wNNN41

Ah
– (uh

–2uh , v1w)

4 sup
NNNv1wNNN41

]Ah
– (uh

–2uh , v)1Ah
– (uh

–2uh , w)(
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4 sup
NNNv1wNNN41

Ah
– (uh

–2uh , v)1 sup
NNNv1wNNN41

Ah
– (uh

–2uh , w)

4 sup
NNNv1wNNN41

]Ah
– (uh

–2PVh
uh

– , v)1Ah
– (PVh

uh
–2uh , v)(

1 sup
NNNv1wNNN41

]Ah
– (uh

–2PVh
uh

– , w)1Ah
– (PVh

uh
–2uh , w)(

E2
m h

–

k12g 2
NNNehNNN12

m h
–

k12g 2
NNNuh2PVh

uh
–NNN.

Then we have to prove that: )KD0 such that

NNNuh2PVh
uh

–NNNGKNNNehNNN .

Let us observe that from problem (4.2) we obtain

Ah
– (uh

– , vh )4Ah (uh , vh ), (vh�Vh .

Then we have

n hNNNuh2PVh
uh

–NNNG sup
NNNvhNNN41

Ah (uh2PVh
uh

– , vh )

4 sup
NNNvhNNN41

]Ah
– (uh

– , vh )2Ah (PVh
uh

– , vh )(4 sup
NNNvhNNN41

]A(uh
– , vh )2A(PVh

uh
– , vh )

1d(h
–

)a(uh
– , vh )2d(h)a(PVh

uh
– , vh )( ,

and being

max ]d(h
–

), d(h)(4d(h) ,

we obtain

n hNNNuh2PVh
uh

–NNNGnNNNehNNN1d(h) sup
NNNvhNNN41

a(uh
–2PVh

uh
– , vh )

GmNNNehNNN1gd(h) NNNuh
–2PVh

uh
–NNN4 (m1gd(h) )NNNehNNN.

This leads to

NNNuh
–2uhNNNG

1

k12g 2

2m h
–

n h
–
g11 m1gd(h)

n h
h NNNehNNN ,
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which implies

n h
– n hk12g 2

2m h
– (n h1m1gd(h) )

NNNuh
–2uhNNNGNNNehNNN.

To conclude the proof we apply to the lemmas 2.1 and 3.1. r

Now we extend the results already proved considering a bilinear form Bh de-
pending on h, more general than the one considered untill now. More precisely let
V, H be appropriate Hilbert spaces with norms NNN QNNN and N QN, respectively, such
that V%H, and let

Bh : Vh3UhKR

be a bilinear form, where Vh and Uh are finite-dimensional subspaces of V and H,
respectively, with

dim Uh4 dim Vh .

Let us consider the variational approximate problem for hD0

.
/
´

find uh�Vh such that

Bh (uh , vh )4 f (vh ), (vh�Uh ,
(4.4)

where f (Q) is a linear functional on H.
Let bh (Q , Q) be an inner product on H and define h-norm the associated

norm

NNNvNNN2
h4bh (v , v) , (v�H .

Let us suppose that, for the decomposition Vh
–4Vh5Wh , the strengthened

Cauchy-Schwarz inequality holds: )g bE1 independent of h such that

Nbh (uh , wh )NGg bNNNuhNNNhNNNwhNNNh , (uh�Vh , (wh�Wh .(4.5)

Moreover we assume verified the saturation assumption: )bE1 independent of h
such that

NNNu2uh
–NNNhGbNNNu2uhNNNh(4.6)

and we hypothese that the bilinear form Bh satisfies the continuity condition in
Vh3Uh : (hD0 )m hD0 such that

NBh (uh , vh )NGm hNNNuhNNNhNNNvhNNNh , (uh�Vh , (vh�Uh ,(4.7)
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and the inf-sup condition: (hD0, )n hD0 such that

n hNNNuhNNNhG sup
vh�Uh

NNNvhNNNh41

Bh (uh , vh ) , (uh�Vh .(4.8)

Then we have

T h e o r e m 4.2. For the solution uh�Vh of the problem (4.4) the a posteriori
error estimate

(4.9) g n h
– n h

2m h
– (n h1m h

– )
h2

(12g b
2 )(12b)2NNNu2uhNNNh

2GNNNe×hNNN
2
hG

(11b)2

12g b
2

NNNu2uhNNN
2
h

holds.

P r o o f . We have, by (4.5),

NNNehNNNh
2GNNNe×hNNNh

2G
1

12g b
2
NNNehNNNh

2 .(4.10)

By triangle inequality and saturation assumption

(12b)2NNNu2uhNNNh
2GNNNuh

–2uhNNNh
2G (11b)2NNNu2uhNNNh

2 .(4.11)

The right-hand side estimate of (4.9) is obtained applying (4.10) and (4.11). To
have the left-hand side inequality the method is the same used in theorem 4.1. In
particular to prove that )KD0 such that

NNNuh2PVh
uh

–NNNhGKNNNehNNNh

we operate in the following way. We observe that

Bh
– (uh

– , vh )4Bh (uh , vh ), (vh�Uh ,

and thus

n hNNNuh2PVh
uh

–NNNhG sup
NNNvhNNNh41

Bh (uh2PVh
uh

– , vh )

4 sup
NNNvhNNNh41

]Bh
– (uh

– , vh )2Bh (PVh
uh

– , vh )(Gm h
–NNNuh

–NNNh2n hNNNPVh
uh

–NNNh

but

max ]m h
– , n h(4m h

– ,



66 ALESSANDRA DE ROSSI [14]

and then we obtain

NNNuh2PVh
uh

–NNNhG
m h

–

n h

NNNuh
–2PVh

uh
–NNNh4

m h
–

n h

NNNehNNNh .

In conclusion we use again the (4.10) and (4.11). r

5 - Examples: the stabilized convection-diffusion problem

We consider the numerical solution of the convection-diffusion equation

.
/
´

2nDu1b Q˜u4 f

u40

in V ,

in ¯V ,
(5.1)

where V is a polygonal region in R2, n is a positive constant coefficient, named dif-

fusion coefficient, b4 b(x)�R2 is a velocity vector, such that
1

2
˜ QbF0.

A weak formulation of (5.1) is:

.
/
´

find u�H0
1 (V) such that

A(u , v)4 ( f , v), (v�H0
1 (V) ,

(5.2)

where H0
1 (V) is the usual subspace of the Sobolev space H 1 (V) whose elements

satisfy the homogeneous Dirichlet boundary condition, and

A(u , v)4�
V

˜u Q (n˜v1bv) dx ,

( f , v)4�
V

fv dx .

The standard Galerkin method is known to be not a satisfying method if the
exact solution is not regular. To remedy this situation we can make use of upwind
discretization methods; such methods modify the bilinear form A(Q , Q) through the
addition of stabilization terms. In the classical artificial diffusion method, the bi-
linear form considered is

Ah : Vh3VhKR ,

Ah (uh , vh )4�
V

˜uh](n1d(h) ) ˜vh1bvh( dx , (uh , vh�Vh(5.3)

where d(h) is the artificial diffusion coefficient depending on the discretization
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parameter h, Vh is a linear finite element space in V%R2 associated with a trian-
gulation Th of the domain V.

Thus, the convection-diffusion problem stabilized with a diffusion term, is

.
/
´

find uh�Vh such that

Ah (uh , vh )4 f (vh ), (vh�Vh

(5.4)

where Ah is furnished by (5.3).
The bilinear form Ah is continue and coercive ([19]). Moreover, set

a(u , v)4 (˜u , ˜v)

with u , v�V and

NNNuNNN24a(u , u)

the strengthened Cauchy-Schwarz inequality holds for finite elements (see for
example [21]) and for unidimensional biorthogonal wavelets ([10]). We observe
that we can write Ah in the form (4.1) where

A(uh , vh )4�
V

]n˜uh ˜vh1bvh( dx , (uh , vh�Vh .

Thus, if we prove the saturation assumption

)aE1 such that NNNu2uh
–NNNGaNNNu2uhNNN(5.5)

for uh�Vh, uh
–�Vh

– solutions of the problem (5.1), with Vh%Vh
– linear finite element

spaces, then we can use for this problem the a posteriori error estimate (5.2)
proved in the theorem 4.1. In [9] the proof of the saturation assumption is given
for unidimensional linear finite elements.

Now we consider the SUPG method for the convection-diffusion problem. The
bilinear form Bh in such a case is

Bh : Vh3UhKR ,

Bh (uh , vh )4 !
T�Th

(2nDuh , vh )T1 (Db uh , vh ) ,

where t T is an opportune positive coefficient, Vh is a linear finite element space in
V%R2 associated with a triangulation Th of the domain V, and

Uh4 mvh�L 2 (V) /)uh�Vh : vh4uh1 !
T�Th

t T Db uh NTn .
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Let

bh (u , v)4n(˜u , ˜v)1 !
T�Th

t T (Db u , Db v)T

be the inner product in H. We know that (4.7) and (4.8) are verified. Moreover, by
theorem 3.2.5 in [4], also (4.5) holds. Thus, if the saturation assumption (4.6) is
verified, we can formulate the a posteriori error estimate (4.9) for the approxi-
mate solution of the convection-diffusion problem stabilized with the SUPG
method. The assumption (4.6) has been proved in [9] for unidimensional linear fi-
nite elements.
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S u m m a r y

This paper contains the proofs of some a posteriori error estimates based on hierar-
chical bases. The author analyzes the case of a selfadjoint and positive definite variation-
al form and afterwards the nonselfadjoint and indefinite one. Moreover the case of a
modified variational form is considered. Some examples are given for stabilized convec-
tion-diffusion equation. The estimates can be apply in the wavelet-based adaptive finite
element method.

* * *


