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DANIELE GO U T H I E R (*)

CR-structures on SOg (M) (**)

1 - Introduction

The geometry of an orientable Riemannian manifold (M , g) may be studied in
the terms of its linear bundle or, more precisely, via the bundle of the positive or-
thogonal frames P»4SOg (M).

Remind that P is a parallelisable manifold. Thus, we may consider the canoni-
cal parallelism submitted to the Levi-Civita connection of (M , g). with respect to
this connection, we have the splitting

Tu P4Hu P5Fu P ,

where Hu P (resp. Fu P) is identificated with Rm (resp. a[ (m)), cf. (3).
Since the Lie-algebra a[ (m) is endowed with suitable CR-structures (the

c-normal ones, as defined in (2)), we introduce an almost-CR-structure (CP , J) on
P submitted to the above splitting. Let us recall the classical definition of a
CR-structure:

D e f i n i t i o n 1.1. A CR-structure on a given smooth manifold P is a pair
(CP , J) such that

1. CP is an even-dimensional subbundle of TP;
2. the linear map J : CPKCP is such that J 242Id;
3. for any X, Y sections of CP, [JX , Y]1 [X , JY] is a section of CP;

(*) S.I.S.S.A., Via Beirut 2-4, 34014 Trieste, Italia.
(**) Received March 21, 1998. AMS classification 32 C 16, 22 E 10, 53 C 20.
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4. the Nijenhuis tensor

NJ (X , Y) »4 [JX , JY]2 [X , Y]2J( [JX , Y]1 [X , JY] )

vanishes identically.

The fourth condition is said to be the condition of integrability of (CP , J). We
speak of an almost-CR-structure (CP , J) when the tensor NJ does not vanish
identically: i.e. when (CP , J) is not integrable. A natural question is the study of
its integrability in dependence on the differential geometry of the manifold,
[AHR], [WE].

Thus we are interested in the integrability of our almost-CR-structures on the
principal bundle P4SOg (M). In particular, we look for conditions involving the
curvature of the Riemannian manifold (M , g) ). The main result obtained, Theo-
rem 4.4, assures that

T h e o r e m 1 . 2 The almost-CR-structures, as constructed in Sections 3 and 4,
are integrable if and only if the manifold (M , g) has constant sectional
curvature.

Notice that the construction of the almost-CR-structures defined in Section 3
and 4 depends on the algebraic properties of the Lie-algebra a[ (m) of the struc-
ture group SO(m). Thus, Section 2 is devoted to the description of a[ (m), giving
the classical splittings

a[ (m11)4a[ (m)5Rm ,

a[ (2n)4c(n)5a(n).

Via these decompositions, we divide our study in the four cases m44n ,
4n11, 4n12, 4n13.

In Section 2, the nonexistence of Lie-CR-structures (1) is proved for a[ (m).
Moreover, the c-normal CR-structures are introduced, together with a character-
ization of them (Proposition 2.5).

The first part of Section 3 recalls the main notations on the principal bundle
P4SOg (M). Furthermore, after the exposition of a result of Pacini on the 4n-di-

(1) Such special CR-structures are defined on Lie-groups as the ones with respect to
which both the right and the left translations are CR-maps. In the terms of the Lie-algebra
S, they are determined by an ideal ]’S and a map J : ]K] such that J 242Id and
J adX4adX J , (X�S.
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mensional case, proved in [PA], the even-dimensional case is completed with the
study of m44n12.

Finally Section 4 provides an algebraic condition on the curvature equivalent
to the integrability of J in the odd-case. Moreover, we conclude with an example
of manifols whose curvature satisfies such a condition.

Manifolds and maps will be CQ. The Lie-algebra of a Lie-group G is denoted
with S. The direct sum of linear spaces is given by 5, while the one of Lie-alge-
bras by U: thus, SUT means that [X , Y] vanishes for any X in S and Y in T.
Moreover, we often omit the point on which a map or a vector is defined: so, if x is
in Rm, Bx denotes the element B(u)x of Hu P.

2. - Levi-flat CR-structures on a[ (m)

The structure group SO(m) of the principal bundle P4SOg (M) may be re-
garded as its vertical fiber. Moreover, the Levi-Civita connection of M determines
the horizontal distribution HP and we have that Hu PCRm, Fu PCa[ (m).

The algebraic properties of a[ (m) »4]M�gl (m , R) /M t1M40( shall sug-
gest the definition of a suitable family of almost-CR-structures on P. First of all
we recall two classical splittings of a[ (m). Hence, we investigate the existence of
CR-structures on a[ (m) submitted to these splittings. Thus, we start with the
study of this semisimple Lie algebra.

The characterizing condition M t1M40 implies that the generic element is of
the form

M4 gM1

2v t

v

0
h ,

with M1 in a[ (m21) and v in Rm21. Consequentely, the dimension of a[ (m) is
m(m21) /2 and a[ (m) splits as

a[ (m)4a[ (m21)5Rm21 .(1)

The Lie-product defines the following relations involving the previous decomposi-
tion (1)

[M , N]a[ (m)4 [M , N]a[ (m21) ,

[M , v]4Mv ,

[u , v]4vu t2uv t ,

(M , N�a[ (m21)

(M�a[(m21), v�Rm21

(u , v�Rm21 .
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Notice that the splitting (1) and the involutive map

a gM1

2v t

v

0
h4 gM1

v t

2v

0
h .

produce the orthogonal symmetric Lie-algebra (a[ (m), a ), which corresponds to
the globally symmetric space

S m214SO(m) /SO(m21) .

Whenever m is even (: m42n), consider the element of a[ (2n)

J04 g 0

2I

I

0
h .

Then, the generic matrix M in a[ (2n) may be written as M4U1S where
U4M2J0 MJ0 /2 and S4M1J0 MJ0 /2 .

Consequentely, a[ (2n) splits as

a[ (2n)4c(n)5a(n) ,(2)

with

c(n)4]U�a[ (2n) /UJ04J0 U( ,

a(n)4]S�a[ (2n) /SJ042J0 S( .

Alternatively, the subspaces c(n) and a(n) may be seen as

c(n)4 {gA
B

2B

A
h NA�a[ (n), B4B t} ,

a(n)4 {gA
B

2B

A
h NA , B�a[ (n)} .

Moreover, c(n) is a real subalgebra of a[ (2n), [c(n), a(n) ]’a(n), and
[a(n), a(n) ]’c(n).

Furthermore, the Lie algebra c(n) is compact, its center is RJ0 and its derived
algebra is

ac(n) »4 {gA
B

2B

A
h�c(n) /tr B40} .
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Via the splittings (1) and (2), we obtain a suitable decomposition of each
a[ (m):

a[ (4n)4c(2n)5a(2n)�X4U1S ,

a[ (4n11)4c(2n)5a(2n)5R4n�X4U1S1v ,

a[ (4n12)4RJ05au(2n11)5a(2n11)�X4xJ01U1S ,

a[ (4n13)4RJ05au(2n11)5a(2n11)5R4n12�X4xJ01U1S1v .

R e m a r k 2.1. Finally, the equation [u , v]4vu t2uv t implies that

[R2n , R2n ]’a[ (2n) .

Moreover, the rank of [u , v] is 0, when u and v are linearly dependent, or 2,
when they are independent. Thus, [u , v] is different from J0. In particular, the
subspace [R2n , R2n ] is contained in ac(n)5a(n).

The datum of a CR-structure (] , J) on a real Lie-algebra S0 is totally equiva-
lent to a left invariant CR-structure on the corresponding Lie group G0 . Further-
more, (] , J) is Levi-flat in the case that ] is a subalgebra of S0 ; while it is a Lie-
CR-structure (LCR-structure) when ] is an ideal and adx J4J adx , for any x in
S0 .

Moreover, we speak of an (almost-)complex structure J when ] coincides with
S0 . When the further condition adx J4J adx is satisfied, J is said to be biinvari-
ant. A description of these structures is given by Snow in the reductive case,
[SN].

A known result of Morimoto assures that any even-dimensional reductive Lie-
algebra admits infinitely many complex structures, [MO]. Thus, both c(2n) and
c0 (2n11) admit complex structures. Hence, the set of Levi-flat CR-structures
LfCR (a[ (m) ) is not empty, even if neither c(2n) nor ac(2n11) admit biinvari-
ant complex structures. In fact, let J be a biinvariant one and g a biinvariant met-
ric on c(2n). A direct computation shows that c(2n) should be abelian, which is
false. Furthermore, they do not admit LCR-structures, [GO]. The same fact
holds for ac(2n11).

In the following, we shall select a family of Levi-flat CR-structures compatible
with the splittings given in the present Section.

First of all, let us prove the
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P r o p o s i t i o n 2.2. The semisimple Lie-algebra a[ (m) does not admit LCR-
structures.

P r o o f . In the even-dimensional case m42n, let (] , F) be in
LCR (a[ (2n) ). Since

[J0 , FM]4F[J0 , M]40 , (M�]Oc ,

we have that F maps ]Oc into itself. Thus, ]Oc must vanish, otherwise
(]Oc , FN]Oc ) should be an LCR-structure of c.

Take now an element M in ]Oa, then

2J0 M4 [J0 , M]

is in ]Oa. In particular, this implies that ] is contained in a. In fact, let
M4U1S be the generic element of ], then

24S4 [J0 , 2J0 S]4 [J0 , [J0 , M] ]

is in ] and U vanishes. Finally, since ] is an ideal contained in ], it is abelian.
Hence, ] vanishes, too.

Let us conclude with the odd-dimensional case: m42n11. For any (] , F)
�LCR (a[ (2n11) ), with the same argument than in the even-case, we prove
that ]Oc vanishes.

Then consider the element M4U1S1v�] and compute

[J0 , [J0 , M] ]4 [J0 , 2J0 S1J0 v]424S2v

hence

[J0 , M24S2v]4 [J0 , U23S]426J0 S

is in ]. Consequentely, v and U are in ], too. In conclusion U vanishes and
M4S1v.

In order to conclude the proof of Proposition 2.2, we need the following
technical

L e m m a 2.3. In correspondence of a nonvanishing element v of R2n, there
exists a proper subspace E in R2n such that [v , e] is in c(n), for all e in E. More-
over, [v , e] is nonvanishing, for almost every e�E. }

Now, observe that [M , e]4Se1 [v , e] is an element of ]; hence [v , e] is in
a(n) and, by Lemma 2.3, v vanishes. Thus, ] is contained in a and it is an abelian
ideal, which is false. r
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Even if there are no LCR-structures, Morimoto’s result assures that there are
CR-structures on a[ (m) according with the

D e f i n i t i o n 2.4. An almost complex structure F on a[ (4n) (respectively
on a[ (4n11)) is said to be c-normal if there exists a complex structure j on
c(2n) such that FX4 jU1J0 i S (resp. FX4 jU1J0 i S1J0 v).

Obviously, the definition extends even to the other cases: an almost-
CR-structure F on a[ (4n12) (resp. on a[ (4n13)) is c-normal if there
exists a complex structure j on ac(2n11) such that FX4 jU1J0 i S (risp.
FX4 jU1J0 i S1J0 v).

Notice that a CR-structure c-normal on a[ (4n12) is Levi-flat (as the re-
striction to c05a of a CR-structure c-normal on a[ (4n13)).

Let us conclude the Section with an useful characterization of the c-normality,
whose proof consists in an algebraic computation.

P r o p o s i t i o n 2.5. An c-normal almost-CR-structure F is integrable. Vice
versa, if F is integrable, then F is c-normal if and only if

1. Fc’c ;
2. Fa’a ;
3. [J0 , A]4F(A)1J0 F(A)J0 , (A�a[ (m);
41 . FR4n’R4n, in the case m44n11;
42 . FR4n12’R4n12, in the case m44n13. r

3. - The geometrical situation

Let (M , g) be an m-dimensional orientable Riemannian manifold. Consider
the principal bundle P4SOg (M) of the positive orthonormal frames on M. Let
p : PKM denote the smooth canonical projection.

The action of SO(m) on P induces an injection s : a[ (m)KH(P): xO x *. If x
is in a[ (m), and u in P, then x *u 4s(x)(u) is the tangent vector at t40 to the
curve g(t)4u exp (tx). Obviously, s(x)(u) is an element of the vertical subspace
of Tu P, Fu P4Tu p21 p(u) )4Ker p*(u). Thus, the map

t u : a[ (m)KFu P : xO x *(u)

is an isomorphism.
Take now the Levi-Civita connection G induced by g on P4SOg (M). By defi-

nition, G consists in the datum of an SO(m)-invariant subbundle HP of TP such
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that TP4HP5FP. In particular, for every u�P,

Tu P4Hu P5Fu P�X4X h1X v

and

Hua P4 (Ra )* Hu , a�SO(m) .

Let v(u): Tu PKa[ (m): XO t u
21 (X v ) be the connection 1-form defined by G.

Then,

1. v(u) X vanishes if and only if X is contained in Hu P;
2. vx *4x , (x�a[ (m);
3. v(u) i t(u)4u(u), where u is the canonical 1-form on SO(m), determined

setting ux4x, for any x of a[ (m); hence u(u) is the map Hu PKRm :
XOu 21 (p*(X) ), where the element u�SOg (M) may be seen as a positive
isometry

u : (Rm , geuc )K (Tp(u) M , gp(u) ) .

Finally, consider the map B : RmKHP defined choosing B(u) j as the unique
element of Hu P such that

p*(B(u) j )4uj .

Then,

u(u) B(j)4j .

Since SOg (M) is parallelisable, consider a bases (ei ) of Rm and one (e j ) of a[ (m).
Then B(u) »4 (B(u) ei , e j*) is the canonical parallelism of SOg (M) determined by
G. In these terms, we shall construct a CR-structure on SOg (M) whose integrabil-
ity is determined by the Riemannian geometry of (M , g).

In order to do this, let us return to the splitting

Tu P4Hu P5Fu P(3)

where Fu P is isomorphic to a[ (m) via t u and Hu P is isomorphic to Rm via u(u).
Suppose J1 (resp. J2 ) be a CR-structure on HP (resp. FP) and define the
almost-CR-structure

J»4J15J2 .

Notice that in the present paper we are interested in giving geometrical condi-
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tions on (M , g) which are equivalent to the fact that J is a CR-structure. The re-
sults are obtained in correspondence of a suitable choice of J1 and J2 .

Now, we proceed to define both J1 and J2 . Take a maximal even-dimensional
subspace E2n of Rm : E coincides with Rm when m42n and it is an hyperplane
when m42n11. Let (e1 R e2n ) be a bases of E and set

J0 ei4en1 i , J0 en1 i42ei , iGn .

Consider the subbundle EP’HP such that Eu P»4B(u) S4Span (B(u)ei ). Of
course, when m is even, EP coincides with HP.

Then, define J1 (u): Eu PKEu P as

J1 (u) »4B(u) i J0 i u(u) .

It is clear that J1
242id.

In an analogous way, let F be a c-normal CR-structure on a[ (m). Notice that
F is really a complex structure for m44n , 4n11, while it is a CR-structure of
codimension one for m44n12, 4n13. More precisely F is defined either on
ac(2n)5a(2n) or on ac(2n)5a(2n)5R4n12, in these last cases. Take, now,
the subbundle KP, where Ku P»4t u W and W is the subspace on which F is defined.
Finally, the CR-structure J2 is given setting

J2 (u) »4t u i F i t u
21 .

P r o p o s i t i o n 3.1. The pair (KP , J2 ) defines a CR-structure, that is an al-
most CR-structure such that NJ2

vanishes identically.

In fact, NJ2
coincides with NF .

R e m a r k 3.2. Since we want to focus our attention on the dependence on J0

and on F we denote J2 as F*, J1 as J0 and J as JF :

JF4J05F*.

In conclusion of the present Section, let us study the even-dimensional cases.
The results on 4n-dimensional manifolds have been obtained by Pacini, in
[PA].

T h e o r e m 3.3. When nD1 and m44n, the complex structure JF is inte-
grable if and only if M has costant sectional curvature.

Since the proof is the same in both the even-dimensional cases: m44n ,
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4n12, it is developed for m44n12 (the computations for m44n are exposed in
detail in [PA]); the following lemmas are useful preliminaries to Theorem 3.6.

L e m m a 3.4. For all a�gl (4n) and x�R4n,

[a *, B[u] x]4B[u](ax) ,

[B[u]x , B[u] y] is vertical . }

L e m m a 3.5. Since F is c-normal, then NJF
vanishes on the mixed pairs,

(Bx , a *). Also the vice versa is true. }

Let F be an c-normal CR-structure on a[ (4n12). Then F is defined on the
ideal W4c05a. The corresponding structure

J»4J0*5F*

on SOg (M) is given on the subbundle HP5KP. Since [B(u)x , B(u) y] is con-
tained in Fu P, HP5KP is involutive if and only if [B(u) x , B(u) y]cJ0* ,
(x , y�R4n12 . Otherwise, such a condition is satisfied, as a consequence of Re-
mark 2.1. Moreover the condition

[x , y]2 [JF x , JF y]�HP5KP ,(4)

is always satisfied, (x , y�HP5KP. In order to see if JF is a CR-structure we
have to verify that

NJF
f0 .(5)

Such a condition is satisfied by any pair of vertical elements. Furthermore, it is
true even for mixed pairs, since F is c-normal (Lemma 3.5).

Finally, we have that the Nijenhuis tensor vanishes on the pairs of horizontal
elements if and only if K(u)4lId. In fact, there is the

T h e o r e m 3.6. Let (M , g) be a Riemannian orientable m-dimensional
manifold, with m44n12. Then, the structure (HP5KP , J) is integrable if
and only if (M , g) has constant sectional curvature.

P r o o f . First of all define

K(u): R
2

RmKa[ (m): xRyOV(u)(Bx , By)



49CR-STRUCTURES ON SOg (M)[11]

where V is the 2-form of curvature. Then,

vNJ (Bx , By)422K ((x1 iJ0 x)R (y1 iJ0 y) )

and hence NJ vanishes identically on the horizontal vectors if and only if

Ker K(u)*R
0, 2

J0
(Rm ).

– Let us suppose J integrable. Since Im R
0, 2

J0
(Rm )4Re R

0, 2

J0
(Rm ), we have

that

[F , ad (g 21 ) ] K(u) gRe R
0, 2

J0
(Rm )h4]0( ,

for all u in P and g in U(2n11).

Moreover, Re R
0, 2

J0
(R4n ) corresponds to a(2n) in the canonical identification of

R
2

(R4n ) with a[ (4n); thus, (u�P, (a�SO(4n),

K(u) ad (a) a(2n11)’ad (a) a(2n11) .

Furthermore, SO(m)KAut a[ (m): aO ad (a) is an irreducible representation.
Hence, since Span ]ad (a)a(2n): a�SO(4n)( is SO(4n)-invariant, it is

Span ]ad (a)a(2n): a�SO(4n)(4a[ (4n) ;

then take the orthogonal projection p(a): a[ (4n)Kad (a)a(2n).
Finally, notice that K(u) is symmetric. Then ad (a)a(2n11) is K(u)-invariant

if and only if [p(a), K(u) ]40. By Schur’s lemma, K(u)4l Id1mH, where
H 242Id. Since K(u) is symmetric and H is not diagonalizable, m vanishes. So,
we deduce that K(u)4lId, that means that (M , g) has constant sectional
curvature.

– Vice versa, let K(u)4lId. Then an easy computation shows that

K(u)(a1 ib)40 , (a , b�a(2n11) .

and hence, Ker K(u)*R
0, 2

J0
(R4n ). Thus, NJ vanishes identically. r

Theorem 3.6 implies that the integrability of (HP5KP , J) does not depend
on the choice of the c-normal structure F. Thus, we may take jU»4J0 i U and
FM4J0 i M. The same fact will be true in the odd cases.
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4. - The odd cases

Whenever m44n11, the vertical fiber Fu P has dimension 2n(4n11),
while Hu P is odd-dimensional. Thus, in correspondence of the hyperplane
Eh4Spanich (ei )’R4n11, define E h

u P as B(u) Eh ; then E h P5FP is an even-
dimensional subbundle. On such a subbundle set

Jh4J05F*.

Remark that, given x , y vertical, the element [x , y]2 [Jh x , Jh y] is in FP and
x , y satisfy NJh

(x , y)40 (cf. Proposition 3.1). Thus, the study of the integrability
of Jh reduces to the horizontal and mixed pairs.

First of all, let us prove that

[x , y]2 [Jh x , Jh y]�E h P5FP ,(6)

for all nonvertical x , y in E h P5FP.

L e m m a 4.1. For all a�a[ (m) and x�Su P, Bu (F(a) x )1Bu (aJ0 x)
�Eu P.

Set a4 gU1S

2v t

v

0
h and F(a)4 gjU1J0 S

v t J0

J0 v

0
h. Then, the proof consists in

computing

F(a) gx
0
h1agJ0 x

0
h4 g(jU1J0 i S) x1 (U1S) J0 x

v t J0 x2v t J0 x
h . r

Thanks to Lemma 3.4, Lemma 4.1 means that the condition (6) is satisfied for
mixed pairs. Moreover, by an analogous computation, the c-normality of F im-
plies that NJh

(a *, B(u) x ) is always zero.
In the following, we shall consider just pairs of horizontal elements. Since,

u[Bx , By] vanishes, for all x , y, [Bx , By] is an element of FP. Hence, the condi-
tion (6) is satisfied even in the horizontal case.

The map K(u): R
2

RmKa[ (m): xRyOV(u)(Bx , By) is useful to character-

ize the integrability of Jh . In fact NJh
vanishes identically if and only if

K(u) ((x1 iJ0 x)R (y1 iJ0 y) )f0 .

Thus, Jh is integrable if and only if Ker K(u)*R
0, 2

J0
Eh . The same argument of The-

orem 3.6 assures that
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P r o p o s i t i o n 4.2. The almost-CR-structure Jh is integrable if and only if

K[u]4lId on R
0, 2

J0
Eh .

A geometrical result about this situation is given in the terms of all the Jh. In
fact, we have the

T h e o r e m 4.3. In the above hypothesis, (M , g) is a Riemannian manifold
with constant sectional curvature if and only if all the almost CR-structures Jh

(h41, R , 4n11) are integrable.

The other odd-case, corresponding to m44n13, has the same characteriza-
tion. In fact, consider the subbundle EP5KP, where Eu is the image via B(u) of
an hyperplane and Ku P corresponds to W4c05a. For any c-normal CR-struc-
ture F, the sum J05F defines an almost-CR-structure. This fact is a conse-
quence of Lemmas 2.1, 3.4 and 4.1.

Finally, Theorem 4.3 is true even in this case.
Notice that in the even cases, the maximal even-dimensional linear subspace of

R2n is unique and coincides with R2n itself. Thus, we may give a statement which
does not depend on the dimension of M.

T h e o r e m 4.4. Let (M , g) be an m-dimensional (mD4) Riemannian man-
ifold. Take the almost CR-structures on P4SOg (M) of the form

E h P5KP , Jh4J05F*.

(in the even-dimensional case Jh is unique, in the odd there are m). Then, the
sectional curvature of (M , g) is constant if and only if all the Jh are inte-
grable.
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A b s t r a c t

Let (M , g) be an m-dimensional orientable riemannian manifold. A family of al-
most-CR-structures is constructed on the principal bundle SOg (M). Their integrability is
studied, obtaining that it is equivalent to (M , g) being of constant sectional curvature
(Theorem 4.4).
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