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CR-structures on SO,(M) (**)

1 - Introduction

The geometry of an orientable Riemannian manifold (M, g) may be studied in
the terms of its linear bundle or, more precisely, via the bundle of the positive or-
thogonal frames P :=SO,(M).

Remind that P is a parallelisable manifold. Thus, we may consider the canoni-
cal parallelism submitted to the Levi-Civita connection of (M, g). with respect to
this connection, we have the splitting

T,P=H,P®F,P,

where H,P (resp. F,P) is identificated with R™ (resp. 30 (m)), cf. (3).

Since the Lie-algebra So(m) is endowed with suitable CR-structures (the
1-normal ones, as defined in (2)), we introduce an almost-CR-structure (CP, J) on
P submitted to the above splitting. Let us recall the classical definition of a
CR-structure:

Definition 1.1. A CR-structure on a given smooth manifold P is a pair
(CP, J) such that

1. CP is an even-dimensional subbundle of TP;
2. the linear map J: CP—CP is such that J*= —1Id,;
3. for any X, Y sections of CP, [JX, Y]+ [X, JY] is a section of CP;

(*) S.I.S.S.A., Via Beirut 2-4, 34014 Trieste, Italia.
(**) Received March 21, 1998. AMS classification 32 C 16, 22 E 10, 53 C 20.
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4. the Nijenhuis tensor
N;(X, Y) :=[JX, JY] - [X, Y] - J(JX, Y]+ [X, JY])

vanishes identically.

The fourth condition is said to be the condition of integrability of (CP, J). We
speak of an almost-CR-structure (CP, J) when the tensor N; does not vanish
identically: i.e. when (CP, J) is not integrable. A natural question is the study of
its integrability in dependence on the differential geometry of the manifold,
[AHR], [WE].

Thus we are interested in the integrability of our almost-CR-structures on the
principal bundle P =S0,(M). In particular, we look for conditions involving the
curvature of the Riemannian manifold (44, ¢)). The main result obtained, Theo-
rem 4.4, assures that

Theorem 1.2 The almost-CR-structures, as constructed in Sections 3 and 4,
are integrable if and only if the manifold (M, g) has constant sectional
curvature.

Notice that the construction of the almost-CR-structures defined in Section 3
and 4 depends on the algebraic properties of the Lie-algebra $o (m) of the struc-
ture group SO(m). Thus, Section 2 is devoted to the description of S0 (m), giving
the classical splittings

so(m+1)=30(m)HR™,
30(2n) =u(n) @ s(n).

Via these decompositions, we divide our study in the four cases m =4n,
dn+1,4n+2, 4n+ 3.

In Section 2, the nonexistence of Lie-CR-structures (!) is proved for $o (m).
Moreover, the 1--normal CR-structures are introduced, together with a character-
ization of them (Proposition 2.5).

The first part of Section 3 recalls the main notations on the principal bundle
P =80,(M). Furthermore, after the exposition of a result of Pacini on the 47%-di-

() Such special CR-structures are defined on Lie-groups as the ones with respect to
which both the right and the left translations are CR-maps. In the terms of the Lie-algebra
a, they are determined by an ideal pcg and a map J: p—p such that J2= —Id and
Jady =adyJ, VX eq.
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mensional case, proved in [PA], the even-dimensional case is completed with the
study of m =4n + 2.

Finally Section 4 provides an algebraic condition on the curvature equivalent
to the integrability of J in the odd-case. Moreover, we conclude with an example
of manifols whose curvature satisfies such a condition.

Manifolds and maps will be ©¢*. The Lie-algebra of a Lie-group G is denoted
with g. The direct sum of linear spaces is given by @, while the one of Lie-alge-
bras by ©: thus, g©0) means that [X, Y] vanishes for any X in g and Y in §.
Moreover, we often omit the point on which a map or a vector is defined: so, if x is
in R™, Bx denotes the element B(u)x of H,P.

2. - Levi-flat CR-structures on 3o (m)

The structure group SO(m) of the principal bundle P =S0,(M) may be re-
garded as its vertical fiber. Moreover, the Levi-Civita connection of M determines
the horizontal distribution HP and we have that H,P=R"™, F,P =30 (m).

The algebraic properties of 30 (m) := {M egl(m, R)/M"'+ M =0} shall sug-
gest the definition of a suitable family of almost-CR-structures on P. First of all
we recall two classical splittings of 5o (m). Hence, we investigate the existence of
CR-structures on $o (m) submitted to these splittings. Thus, we start with the
study of this semisimple Lie algebra.

The characterizing condition M+ M = 0 implies that the generic element is of
the form

M, w
=5 o)

-t 0

with M, in %0 (m — 1) and v in R™ 1. Consequentely, the dimension of 30 (m) is
m(m —1)/2 and s0 (m) splits as

¢} 30(m)=380(m—1)DR™ 1.

The Lie-product defines the following relations involving the previous decomposi-
tion (1)

[M, Nlsyowy =M, Nlsyou_1), VYM,Neso(m—1)

(M, v] = Mv, VMeso(m—1), veR"!

[u, v] =vu' — uvt, Yu, veR™ L
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Notice that the splitting (1) and the involutive map

( M, v) (M T - v)

a = .

-v' 0 vt 0

produce the orthogonal symmetric Lie-algebra (30 (m), a), which corresponds to
the globally symmetric space

S™=1=80(m)/SO(m —1).

Whenever m is even (: m =2n), consider the element of 30(2n)

5l

JO = .

-1 0

Then, the generic matrix M in 30(2n) may be written as M = U + S where

U=M-JyMJy/2 and S=M +JyMJ,/2.
Consequentely, $0(2n) splits as

2) 30(2n) =un)ds(n),

with
u(n) = {Ueso(2n)/UJy=J,U},
3(n) = {Seso(2n)/SJy= —J,S}.

Alternatively, the subspaces 1(n) and $(n) may be seen as

1(n) (A _B) /A 50 (n), B = B!
= €S ’ = ’
B A

) A -B i
s(n) = [( )/A,Bego(n)].
B A

Moreover, u(n) is a real subalgebra of so(2n), [u(nr), 3(r)]c3$(n), and
[5(n), 5(n)] c1u(n).

Furthermore, the Lie algebra 11(%) is compact, its center is RJ,, and its derived
algebra is

,, A -—-B
su(n) = ( ) elu(n)/trB = 0}.
[ B A
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Via the splittings (1) and (2), we obtain a suitable decomposition of each
50 (m):

30(4n) =u2n)P32n)3X=U+S,
s0(dn+ 1) =u2n)®32n) BR">3X=U+S+v,
30(4n+2)=RJ,®su2n+1)Bs2n+1)s3X=aJ,+ U+S,

s0(4n+3)=RJ;@su2n+1)®32n+1)OR" 23X =S+ U+S +v.

Remark 2.1. Finally, the equation [u, v] =vu'—uv® implies that
[R", R®"]c30(2n).

Moreover, the rank of [u, v] is 0, when u and v are linearly dependent, or 2,
when they are independent. Thus, [u, v] is different from Jo. In particular, the
subspace [R%", R®"] is contained in 3u(n) @ 3(n).

The datum of a CR-structure (p, J) on a real Lie-algebra g, is totally equiva-
lent to a left invariant CR-structure on the corresponding Lie group G,. Further-
more, (p, J) is Levi-flat in the case that p is a subalgebra of g,; while it is a Lie-
CR-structure (LCR-structure) when p is an ideal and ad,J =J ad,, for any « in
Go-

Moreover, we speak of an (almost-)complex structure J when p coincides with
go. When the further condition ad,J = J ad,, is satisfied, J is said to be biinvari-
ant. A description of these structures is given by Snow in the reductive case,
[SN].

A known result of Morimoto assures that any even-dimensional reductive Lie-
algebra admits infinitely many complex structures, [MO]. Thus, both 1u(2%) and
1y(2n + 1) admit complex structures. Hence, the set of Levi-flat CR-structures
LfCR (30 (m)) is not empty, even if neither 11(2%) nor 31(27 + 1) admit biinvari-
ant complex structures. In fact, let J be a biinvariant one and ¢ a biinvariant met-
ric on u(2n). A direct computation shows that 11(2%) should be abelian, which is
false. Furthermore, they do not admit LCR-structures, [GO]. The same fact
holds for su(2n +1).

In the following, we shall select a family of Levi-flat CR-structures compatible
with the splittings given in the present Section.

First of all, let us prove the
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Proposition 2.2. The semisimple Lie-algebra 3o (m) does not admit LCR-
structures.

Proof. In the even-dimensional case m=2n, let (p, ®) be in
LCR (30(2n)). Since

[Jo, PM] = D[Jy, M]=0, VMepnu,

we have that @ maps pNu into itself. Thus, p N u must vanish, otherwise
(bNu, @|,n,) should be an LCR-structure of u.
Take now an element M in p N3, then

2JoM = [Jy, M1

is in pN 3. In particular, this implies that p is contained in 5. In fact, let
M = U+ S be the generic element of p, then

=48 =[Jy, 24,81 = [Jy,[Jy, M]1]

is in p and U vanishes. Finally, since p is an ideal contained in p, it is abelian.
Hence, p vanishes, too.

Let us conclude with the odd-dimensional case: m =2n + 1. For any (p, @)
e LCR (30(2n + 1)), with the same argument than in the even-case, we prove
that p N u vanishes.

Then consider the element M =U+ S +vep and compute

[Jo,[Jo, M]1] = [Jo, 2J,S +Jgv] = =4S —v
hence
[Jo, M —4S —v] =[Jy, U—-3S]=—6J,8

is in p. Consequentely, v and U are in p, too. In conclusion U vanishes and
M=S+w.

In order to conclude the proof of Proposition 2.2, we need the following
technical

Lemma 2.3. In correspondence of a nonvanishing element v of R*", there
exists a proper subspace E in R®" such that [v, e] is in u(n), for all e in E. More-
over, [v, e] is nonvanishing, for almost every ec k. &

Now, observe that [M, e] = Se + [v, e] is an element of p; hence [v, ¢] is in
3(n) and, by Lemma 2.3, v vanishes. Thus, p is contained in $ and it is an abelian
ideal, which is false. =
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Even if there are no LCR-structures, Morimoto’s result assures that there are
CR-structures on $o(m) according with the

Definition 2.4. An almost complex structure @ on 30(4n) (respectively
on 30(4n + 1)) is said to be u-normal if theve exists a complex structure j on
w(2n) such that ®X =jU+JyoS (resp. ®X=jU+ JyoS + Jyv).

Obviously, the definition extends even to the other cases: an almost-
CR-structure @ on 30(4n +2) (resp. on 30(4n+3)) is u-normal if there
exists a complex structure j on Su(2n + 1) such that @X =jU+ JyoS (risp.
DX =jU+JyoS + Jyv).

Notice that a CR-structure u-normal on $o(4n + 2) is Levi-flat (as the re-
striction to 11, 3 of a CR-structure iu-normal on 30 (4n + 3)).

Let us conclude the Section with an useful characterization of the 1-normality,
whose proof consists in an algebraic computation.

Proposition 2.,5. An u-normal almost-CR-structure @ is integrable. Vice
versa, if @ is integrable, then @ is u-normal if and only if

1. ducu;

2. d3C3;

3. [Jy, Al = DPA) + J, P(A)J,, VA € 30 (m);

4,. ®RY"cR*, in the case m=4n +1;

4y, PR T2CR*" 2 in the case m=4n+3. =

3. - The geometrical situation

Let (M, g) be an m-dimensional orientable Riemannian manifold. Consider
the principal bundle P = SO,(M) of the positive orthonormal frames on M. Let
m: P—M denote the smooth canonical projection.

The action of SO(m) on P induces an injection o: 30 (m) — I(P): x—a*. If x
is in 80 (m), and u in P, then x,* = o(x)(u) is the tangent vector at £ =0 to the
curve y(t) = u exp (tx). Obviously, a(x)(u) is an element of the vertical subspace
of T,P, F,P=T,n *n(u)) = Kerm,(u). Thus, the map

T,:%0(m)—F,P:x—x*(u)

is an isomorphism.
Take now the Levi-Civita connection I" induced by g on P = SO,(M). By defi-
nition, I consists in the datum of an SO(m)-invariant subbundle HP of TP such
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that TP = HP ® FP. In particular, for every u e P,
T,P=H,P®F,P>3X=X"+X"
and

Huap = (Ra)*Hu’ aeSO(m).

Let w(u): T,P— 30 (m): X1, (X") be the connection 1-form defined by I
Then,

1. w(u) X vanishes if and only if X is contained in H, P;

2. wx*=ux, Vredo(m)

3. w(u) ot(u) = 6(u), where 6 is the canonical 1-form on SO(m), determined
setting 6x =w, for any x of So(m); hence 6(u) is the map H,P—R"™:
X—u Y(7,.(X)), where the element ueSO,(M) may be seen as a positive
isometry

u: (Rm; geuc) - (Trz(u)M’ gn(u)) .

Finally, consider the map B: R™— HP defined choosing B(u) & as the unique
element of H,P such that

75 (Bu) &) = u& .
Then,
O(u) B(§) =§ .

Since SO, (M) is parallelisable, consider a bases (¢;) of R™ and one (¢;) of 50 (m).
Then ®B(u) := (B(u) e;, ) is the canonical parallelism of SO, (M) determined by
I'. In these terms, we shall construct a CR-structure on SO, (M) whose integrabil-
ity is determined by the Riemannian geometry of (M, g).

In order to do this, let us return to the splitting

3 TuP:HuP@FuP

where F, P is isomorphic to 30 (m) via 7, and H,, P is isomorphic to R™ via 6(u).
Suppose J; (resp. J5) be a CR-structure on HP (resp. FP) and define the
almost-CR-structure

J::Jlean.

Notice that in the present paper we are interested in giving geometrical condi-
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tions on (M, g) which are equivalent to the fact that J is a CR-structure. The re-
sults are obtained in correspondence of a suitable choice of J; and J.

Now, we proceed to define both J; and J,. Take a maximal even-dimensional
subspace E;, of R™: E coincides with R™ when m =27 and it is an hyperplane
when m =2n+ 1. Let (e;...e5,) be a bases of £ and set

Joei= e, Joe,i= —e, 1SN,

Consider the subbundle EPc HP such that E, P := B(u) S = Span (B(u)e;). Of
course, when m is even, EP coincides with HP.
Then, define J,(u): E,P—FE,P as

Ji(u) :=Bu) odyo0(u).

It is clear that JZ= —id.

In an analogous way, let @ be a 1t-normal CR-structure on o (7). Notice that
@ is really a complex structure for m =4n, 4n + 1, while it is a CR-structure of
codimension one for m =4n + 2, 4n + 3. More precisely @ is defined either on
31(21r) D 3(2n) or on 3U(2n) D 3(2n) DR 2 in these last cases. Take, now,
the subbundle KP, where K, P :=7,f and f is the subspace on which @ is defined.
Finally, the CR-structure J, is given setting

Jo(u) i=1,0Po1, .
Proposition 3.1. The pair (KP, J,) defines a CR-structure, that is an al-
most CR-structure such that Nj, vanishes identically.
In fact, N,, coincides with N,.

Remark 3.2. Since we want to focus our attention on the dependence on J,
and on @ we denote J, as @*, J, as Jy and J as Jg:

Jq;:e]o@(p*.

In conclusion of the present Section, let us study the even-dimensional cases.
The results on 4n-dimensional manifolds have been obtained by Pacini, in
[PA]

Theorem 3.3. When n>1 and m =4n, the complex structure Jq is inte-
grable if and only if M has costant sectional curvature.

Since the proof is the same in both the even-dimensional cases: m =4n,
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4n+2, it is developed for m=4mn+2 (the computations for m =4n are exposed in
detail in [PA]); the following lemmas are useful preliminaries to Theorem 3.6.

Lemma 34. For all aegl(4n) and xeR*",
[a*, Blu] ] = Blul(ax),

[Blulx, Blu] y] is vertical. 4

Lemma 3.5. Since @ is u-normal, then Ny, vanishes on the mived pairs,
(Bx, a*). Also the vice versa is true. €

Let @ be an u-normal CR-structure on 30 (4n + 2). Then @ is defined on the
ideal f =11, 3. The corresponding structure

J::JO*@(I)*

on SO,(M) is given on the subbundle HP & KP. Since [B(u)x, B(u) y] is con-
tained in F,P, HP® KP is involutive if and only if [B(u) x, B(u) y] = J§,
Va, y € R "2, Otherwise, such a condition is satisfied, as a consequence of Re-
mark 2.1. Moreover the condition

) ¢, y] = o, Joyle HPO KP

is always satisfied, V&, y € HP @ KP. In order to see if J4 is a CR-structure we
have to verify that

5) N; =0.

Ja

Such a condition is satisfied by any pair of vertical elements. Furthermore, it is
true even for mixed pairs, since @ is u-normal (Lemma 3.5).

Finally, we have that the Nijenhuis tensor vanishes on the pairs of horizontal
elements if and only if K(u) =AId. In fact, there is the

Theorem 3.6. Let (M, g) be a Riemannian orientable m-dimensional
manifold, with m =4n + 2. Then, the structure (HP @ KP, I) is integrable if
and only if (M, g) has constant sectional curvature.

Proof. First of all define

2
Kw): ANR"—30(m): x \y— Q(u)(Bx, By)
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where  is the 2-form of curvature. Then,
oN;(Bx, By) = —2K((x + iJyx) A (y + iJyy))

and hence N y vanishes identically on the horizontal vectors if and only if
Ker K(u) 2 /\(R’”)

0,2 0,2
— Let us suppose J integrable. Since Im 6\(R”‘) = Re 6\(R’”), we have
that ’ !

0,2
[@, ad(g )] K(u) (Re {]}(R’”’)) = {0},

for all v in P and g in U2n+1).
Moreover, Re /\(R‘*") corresponds to 3(2#n) in the canonical identification of

/\(R“") with 50(4%) thus, Yue P, Ya e SO(4n),
Ku)ad(a)3(2n+1)cad(a) 3(2n+1).

Furthermore, SO(m)— Aut 30 (m): a~ad(a) is an irreducible representation.
Hence, since Span {ad(a)3(2n): a € SO(4n)} is SO(4n)-invariant, it is

Span {ad(a)3(2n): ae SO(4n)} = 30 (4n);

then take the orthogonal projection p(a): 30 (4n)—ad(a)3(2n).

Finally, notice that K(u) is symmetric. Then ad (a) 3(2n + 1) is K(u)-invariant
if and only if [p(a), K(u)] =0. By Schur’s lemma, K(u)=AId + uH, where
H?= —1Id. Since K(u) is symmetric and H is not diagonalizable, u vanishes. So,
we deduce that K(u) =Ald, that means that (M, g) has constant sectional
curvature.

— Vice versa, let K(u) =AId. Then an easy computation shows that

Ku)(a+1iB) =0, Va, Bes(2n+1).

0,2
and hence, Ker K(u) 2 (r\(RM)' Thus, N; vanishes identically. =
0

Theorem 3.6 implies that the integrability of (HP @ KP, J) does not depend
on the choice of the u-normal structure @. Thus, we may take jU :=J, o U and
DM =J,0oM. The same fact will be true in the odd cases.



50 DANIELE GOUTHIER [12]

4. - The odd cases

Whenever m =4mn + 1, the vertical fiber F,P has dimension 2n(4n + 1),
while H,P is odd-dimensional. Thus, in correspondence of the hyperplane
E, =Span; ., (e;) cR* "1 define E"P as B(u) E,; then E"P@®FP is an even-
dimensional subbundle. On such a subbundle set

Jh,:J()@q)*.

Remark that, given «, y vertical, the element [x, y]—[J,«, J,¥] is in FP and
x, y satisfy Ny, (x, y) = 0 (cf. Proposition 3.1). Thus, the study of the integrability
of J; reduces to the horizontal and mixed pairs.

First of all, let us prove that

(6) [z, y]— [Dy2, ,yle E"POFP,
for all nonvertical x, y in E"P @ FP.

Lemma 4.1. For all aeso(m) and xeS,P, B,(®P(a)x)+B,(a]x)
ek, P.

(U+S U+ J,S  Jyv
Set a =
UtJ()

—v

v
) and @(a) =
0

). Then, the proof consists in
computing

®(a) (x) N a(Jox) _ ((jU+J0 oS+ (U+S) Joac)‘
0 viJyx —v'Jyx

Thanks to Lemma 3.4, Lemma 4.1 means that the condition (6) is satisfied for
mixed pairs. Moreover, by an analogous computation, the u-normality of @ im-
plies that N, (a*, B(u) x) is always zero.

In the following, we shall consider just pairs of horizontal elements. Since,
O0[Bx, By] vanishes, for all x, y, [Bx, By] is an element of F'P. Hence, the condi-
tion (6) is satisfied even in the horizontal case.

2
The map K(u): A\ R"™— 30 (m): © A\ y+— Q(u)(Bx, By) is useful to character-
ize the integrability of J,. In fact N, vanishes identically if and only if
Ku) ((w+ iJox) A (y +iJyy)) =0.
0,2

Thus, Jj, is integrable if and only if Ker K(u) 2 é\ E),. The same argument of The-
orem 3.6 assures that ‘
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Propositiorg 24.2. The almost-CR-structure J, is integrable if and only if
Klu] = Ald on /J\E,
0

A geometrical result about this situation is given in the terms of all the J;. In
fact, we have the

Theorem 4.3. In the above hypothesis, (M, g) is a Riemannian manifold
with constant sectional curvature if and only if all the almost CR-structures J,,
(h=1,...,4n+ 1) are integrable.

The other odd-case, corresponding to m =4mn + 3, has the same characteriza-
tion. In fact, consider the subbundle EP @& KP, where E,, is the image via B(u) of
an hyperplane and K, P corresponds to f =11,@ 3. For any u-normal CR-struc-
ture @, the sum J,®D @ defines an almost-CR-structure. This fact is a conse-
quence of Lemmas 2.1, 3.4 and 4.1.

Finally, Theorem 4.3 is true even in this case.

Notice that in the even cases, the maximal even-dimensional linear subspace of
R?" is unique and coincides with R?" itself. Thus, we may give a statement which
does not depend on the dimension of M.

Theorem 4.4. Let (M, g) be an m-dimensional (m > 4) Riemannion man-
fold. Take the almost CR-structures on P =S0,(M) of the form

E"P®KP, Jy=Jy @ D*.

(in the even-dimensional case J, is unique, in the odd there are m). Then, the
sectional curvature of (M, g) is constant if and only if all the J, are inte-
grable.
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Abstract

Let (M, g) be an m-dimensional orientable riemannion manifold. A family of al-
most-CR-structures is constructed on the principal bundle SO,(M). Their integrability is
studied, obtaining that it is equivalent to (M, g) being of constant sectional curvature
(Theorem 4.4).
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