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Totally umbilical submanifolds: some remarks (¥¥)

1 - Introduction

The present paper collects some results concerning totally umbilical submani-
folds of Riemannian manifolds.

In Section 2, we give a new characterization of totally umbilical submanifolds,
that could be useful in further research.

In Section 4, we consider the Riemannian manifolds of constant sectional cur-
vature and the almost Hermitian manifolds of constant holomorphie, anti-holo-
morphic curvature and prove some results about the sectional curvature of their
totally umbilical submanifolds.

Similar results concerning bisectional curvature will appear in a next paper.

2 - A characterization theorem

Let M = M(g) be an #ii-dimensional Riemannian manifold and g its metric.
Let M be an m-dimensional submanifold of M with induced metric, still denoted
by g.

We refer to [4] Ch. 7, to [9] Ch. 2 and to [2] Ch. 2 for the basic facts about the
geometry of submanifolds. In the sequel B denotes the second fundamental form

1
and H = — ftrace B the mean curvature vector field of M.
m ~
We recall also that M is a totally umbilical submanifold of M, if and only if we

have

@ B(X,Y)=HyX,Y)
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for any vector fields X, Y of &(M). In particular, M is a totally geodesic submani-
fold of M if and only if we have

@) BX,¥)=0

for any vector fields X, ¥ of (M).

Other conditions for the second foundamental form B have been considered by
several Authors (See for example [2] p. 43, [5], p. 907). Recently, the classical
Gauss equation suggested us to introduce condition

@) 9(BX, Y), B(Z, W)) =g(H, H) y(X, Y) g(Z, W)

for any vector fields X, Y, Z, W of (M).
Now we are able to prove

Theorem 1. Conditions (1) and (8) are equivalent. In other words, condi-
tion (3) characterizes the totally wmbilical submanifolds.

We may remark that, using condition (3), it is immediate from Gauss equation
to derive relations

@ Avs = X v — g(H, H) cos 7s

(5) K.=K,—gH, H).

linking the bisectional and the sectional curvatures of M with the corresponding
curvatures of M (see (8), (10) at p. 117 of [7)).

The above relations are true at any point « of the totally umbilical submanifold
M and for any pair r, s of oriented planes of T,,(M). Of course g(H, H) has to be
evaluated at point x. For the definition of the angle of two oriented planes, due to
E. Cartan, see for example [6], p. 149.

3 - Proof of Theorem 1

It is immediate to check that (1) implies (3); so we have only to prove the
converse.

Let « be any point of M and T, (M) the space tangent to M at x. It is sufficient
to prove that (3) implies (1) for any vectors X, Y, Z, W of T,,(M). Of course now
g, B and H must be considered at point x.

If we have H =0 at x, the proof is immediate. So we assume that H # 0 at
point .
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Let {e), ..., e, } be an orthonormal basis in T,.(M). From equation (3) we
derive:
(6) g(B(ei) ej); B(ei’ e])) =0 fOI’ 'L#j
(M g(B(e;, e;), Ble;, ;) =g(H, H).

- Remember that B : T,.(M) x T,(M)— T,(M)*; so Im Bc T,,(M)*. It is imme-
diate to realize that Im Bcspan(B(e;, ¢); 4,7 =1, ..., m). Since from 6) we
have
8) B(e;, ¢;) =0 for 127 (i,7=1,...,m)
we obtain
9 Im Bcspan(B(e;, ¢;); i=1, ..., m).

Let {vy, ..., v, } with » = 7% —m be an orthonormal basis of T,(M)*. Then we
can write B(e;, e;) = blv, where t runs over the integers 1, ..., 7.

From relation (7) we get:

§(H, H) = g(Bles, o), Ble, ) = S(b)"
g(H, H) = Bes, &), Bles, 6)) = S}

o(H, H) = g(Bles, &), Ble;, ¢)) = ?bf b

for any i,j=1, ..., m.
On the other hand, the identity

T r r
; (bit )221‘1 (bjt)z — (? bit bjt )2 — gt(bis bjt _ bit bjs )2
8
is well known (cf. [8], p. 45). Therefore, in the present case, we have

bibl—bfbf =0 for any s,t=1,...,7.

This equation shows that for any ¢,7=1,...,m the vectors B(e; ¢;) and
B(e;, ¢;) are linearly dependent. So we can conclude that

(10) dim span(B(e;, ¢;);1=1, ..., m) < 1.
m

Consider now the vector u = —— 2.¢; and note that
m 1
m

B(u,u)= "1‘ ZB(ei, Gj) = i— EB(ei, g )=H=#=0.
m ij m 1
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Consequently
1) Im Bospan H .
Finally, taking into account (10), from (9), (11) we derive
Im B =span H .
Remark that for any i=1, ..., m we can write B(e;, ¢;) = a; H. So, putting

Jj=11in (7), we find B(e;, ¢;) = = H. Then, using the definition of H, we realize
that

(12) Ble;, e;) =H 1=1,...,m.

The proof of Theorem 1 ends by remarking that for any vectors X =X'¢;,
Y =Y¢ of T,(M) we have

B(X,Y)=X'Y/B(e;, ) = > X' Y Ble;, &) =g(X, ) H .
1

4 - Further results

In the sequel we always assume that M is a totally wmbilical submanifold of
the Riemannian maonifold M.
We list here some results about sectional curvatures. We begin with

Proposition 1. If M = M(@@) has constant sectional curvature ¢, then M
has constant sectional curvature ¢=¢+g(H, H) at any of its points.

If M is also connected and dimp M = 3, then M is a manifold of constant sec-
tional curvature, g(H, H) is constant on M and we have ¢ = ¢.

Before going further, we recall that a submanifold M of an almost Hermitian
manifold M = M(g, J) is called holomorphic (or J-invariant) if and only if we
have JT,(M) = T, (M) at any point 2 of M. A holomorphic submanifold M of M is
also an almost Hermitian manifold with the induced structures, so we can write
M=M(g, J).

We recall also that a submanifold M of an almost Hermitian manifold
M = M(g, J) is called anti-holomorphic (or J- anti-invariant or totally real) if
and only if we have JT,(M)c T,(M)* at any point z of M.

Proposition 2. Let M = M(g, J) be an almost Hermitian manifold and
M =M(g, J) a holomorphic submanifold of M. If M has constant holomorphic,
anti-holomorphic curvature, then M has constant holomorphic, anti-holomor-
phic curvature, at any of its points, respectively.
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Proposition 3. Let M = M(g, J) be an almost Hermitian manifold and M
an anti-holomorphic (totally real) submanifold of M. If M has constant
anti-holomorphic curvature ¢, then M has constant sectional curvature
c=¢,+g(H, H) at any of its points.

If M is also connected and dimp M = 3, then M is a manifold of constant cur-
vature, g(H, H) is constant on M and we have ¢ = c,.

5 - Proofs and remarks

The proof of Proposition 1 is easy. Since at any point x of Mc M and
for any plane r of T, (M)c T.(M) we have K,=¢, then equation (5) gives
K.=¢+g(H, H). In other words K, does not depend on the plane 7 of 7,(M). We
denote this constant by ¢ and the first part is proved.

In general g(H, H) is a function of the point x; so we can assert only that M
has pointwise constant sectional curvature. But, under the additional assumptions
of the second part of the statement, we can use the classical Schur theorem and
conclude that now ¢ is constant on M.

Remark 1. Proposition 2 can be regarded as an almost Hermitian analogue
of Proposition 1. However we must remark explicitly that the latter constants in
the statement depend, in general, on the point % of M. Since in the present case
we have not a Schur-like theorem, so we cannot affirm that these quantities are
constant all over M, even if M is assumed to be a connected m-dimensional sub-
manifold with m = 4.

To prove Proposition 2, consider first a point & of M and recall that a plane %
of T:(M) is said holomorphic iff we have h = Jh. A plane @ of T (M) is said anti-
holomorphic (totally real) iff we have & L Ja.

As in the proof of Proposition 1, we start from equation (5) of Sect. 2. In the
first case, at any point x of M ¢ M we know that K, = ¢, (constant) for any holo-
morphic plane % of T,.(M)c T.(M). So we have K, = ¢, + g(H, H) at any point x
of M and for any holomorphic plane % of T,,(M). In other words M has pointwise
constant holomorphic curvature. In the second case the proof is quite analogous.

To prove Proposition 3, note first that any plane tangent to M is anti-holomor-
phic (totally real). On the other hand we know that at any point & of M and for
any anti-holomorphic plane @ of T (M) we have X; = ¢,. Consider now a point x
of Mc M and a plane 7 of T, (M)c T.(M). Since r is anti-holomorphic we have
K. = ¢,. From equation (5) of Sect. 2 we derive K, = ¢, + g(H, H). In other words
M has pointwise constant sectional curvature. ’
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The second part of the statement can be proved by using the classical Sehur
theorem as in Proposition 1.
We end the present section with two remarks.

Remark 2. In Propositions 1,2, 8 the assumptions on M can be weakened.
In effect you may limit yourself to consider only planes tangent to M.

Remark 3. Some Authors have recently considered submanifolds M with
g(H, H) constant on M (in particular, extrinsic spheres). This additional assump-
tion permit us to prove the second part of Propositions 1, 8 without any assump-
tion on connectedness and on dimension of M and to obtain a global result also in
the case of Proposition 2.
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Sommario

Il laworo contiene una caratterizzazione delle sottovarietd totalmente ombelicali ed
aleunt risultati ad esse relativi, nell’ipotesi che la varietd ambiente sia a curvatura sezio-
nale costante, ovvero a curvatura olomorfo costante, oppure a curvatura anti-olomorfa
costante.



