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TLARIA FRAGALA (%)

Remark on the semiconductor equations (**)

1 - Introduction

We consider the Van Roosbroeck model for the carrier transport in a semicon-
ductor device [19]; such model describes the transport of carriers in absence of
ionized impurities by means of the following system of non-linear partial differen-
tial equations:

py— V(D Vp + 1 pV®) = B(p, n)
1.1 W — V-(Da Vo — uonVd) = B(p, n) on Qr
-V(eVP)=p—~n

where p and # are the densities of mobile holes and electrons, while @ is the elec-
tric potential. The positive constants D;, «; and ¢ are respectively the diffusion co-
efficients, the mobilities of holes and electrons, and the dielectric permittivity. The
term R(p, n) represents the law of recombination which, according to the Shock-
ley-Read-Hall model, can be expressed by

1-pn

R(p’ n) P
To +7'1p + To N

where 7;, 1=0, 1,2, are positive constants. The domain @y is the product
QX (0, T), where 2 is an open bounded subset of RY with regular boundary.

Due to their physical and technological interest (see e.g. [11] and [15] for more
detailed information on the physical background), the above equations have re-
cently received a great deal of attention from the mathematical point of view. The
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problems of existence and uniqueness, regularity, and asymptotic behaviour of the
solutions have been widely studied by different authors, as M. S. Mock [12], [13],
[14], T. 1. Seidman [16], [17], H. Beirao da Veiga [2], [3], [4], H. Gajewski [7], [8],
and K. Gréger [7], [8], [9], [10].

In this paper we show the existence of an invariant region for the mobile carri-
ers p and %. That immediately yields the existence of a solution global in time to
(1.1), as well as an a priori sup-norm bound for p and #. The main aim of this pa-
per is then to notice that such results, which have been already proved in the lit-
erature by using essentially a more complicated version of the maximum principle
[17], [9], can be obtained in a quite simplified way.

In Section 2 we briefly recall the definition of invariant region, and a basic re-
lated criterion, while in Section 3 we state and prove the existence of an invariant
region for (1.1).

2 — Invariant regions for parabolic systems

Let us introduce the notion of invariant region and some related results [6].
For a complete survey about invariant regions, we refer to the book by J. Smoller
[18]. ‘
 Let us consider the weakly coupled parabolic system:

N
(uk)t = DA'L(:k +J§1 a,j(x, t)(uk)xj + 'l/Jk(ul, ceey uM) on QT

2.1
@D @, 0) = (@) on 9

U (%, 1) = (U )p (2, £) on 32 x (0, T)
where k=1, ..., M. Here D denotes a positive constant, while the coefficients a;,

the vector field V= (v, ..., ¥ ), as well as the initial and boundary data (uy),
and (uy,), are assumed to be continuous. In the following u will be a vector of com-
ponents (uy, ..., Uy).

Definition 1. A subset S of R is said to be an invariant region for the
parabolic system (2.1) when the following condition holds: if the initial and boun-
dary data of (2.1) lie in S, ie. if

u(x)eS Veel and uy(z,t)eS VYi(x,t)eocRx(0,T)

then every solution u(z, t) of (2.1) belonging to C2(Qr) N C°(@y) remains in S, i.e.
u(z,t)esS, Viz, t)eQr.
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‘We recall the following result [20], [1], which is the main tool used in the proof
of Theorem 2.

Theorem 1. Let S be a closed and convex subset of R such that the vector
field V does not point out of S whenever u is on the boundary of S, that is

(2.2) V(u)-v<0

Jor every point u € 9S and for every v outward normal vector at u. Then S is an
mvariant region for the parabolic system (2.1).

Remark 1.

i. Theorem 1 holds even if 3S contains singular points. In this case we take
as outward normal at a singular point u, any vector v of R¥ such that S is con-
tained in the halfspace with exterior normal v; the existence of such a vector v is
guaranteed by the hypothesis on S of being a closed and convex set [5].

ii. Let a, and B, be real numbers, for k=1, ..., M, and suppose that the
set SCRM is of the type

S= {uERM: ak$ukSﬂk, k:1, ey M}
Then Theorem 1 still holds if we replace the coefficient D in equation (2.1); by a
positive constant D, depending on the index k.
3 - Existence of an invariant region for the semiconductor equations
We want to use Theorem 1 to prove the existence of an invariant region for
the mobile carriers in semiconductor equations.
To this aim we observe that the model (1.1) can be reduced to a weakly cou-

pled parabolic system of type (2.1). Indeed, if we substitute equation (1.1); into
equations (1.1); and (1.1),, we get:

pi=DyAp+p,Vp-V& — %-p(p —n)+R(p, n)

1, = Dy dm — 15 V- Vb + —i—zn(p-n)+R(p, n).
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We consider the above equations coupled with initial data
plx, 0) = py(x) n(x, 0) = ny(x) on 2
and with Dirichlet boundary data
p=py(x, t) n=ny(x, t) on 92 x [0, T).

For simplicity we suppose that py, 19, ps, 7y are regular functions, satisfying the
compatibility econdition

e, 0) = pola) (2, 0) = ng () on Q.
We are now in a position to state our main result.
Theorem 2. For ¢ sufficiently large, the set

Qle)={(p,n)eR*: 0<p<l+c, 0sSn<l+c}

is an invariant region for the mobile carriers in the semiconductor equa-
tions.

Proof. It is sufficient to prove that, for ¢ large enough, the vector field
V={(f, g) of components

f=- %p(p-—n)-f—R(p, n) g= %n(p“ﬂHR(P, n)

satisfies hypothesis (2.2) on the boundary of Q(c). We set
Q) =TI Ur,Ursury,
where:
ri={p=0,0<n<l+c} Iy={n=0,0<p<l+c}
Is={p=1+c,0sn<sl+c} Iy={n=1+c,0<p<l+c}.
On I'y we have

1
To+ Tt

<0 Vne[0,1+c].

VoW, = =0, m) = -
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Similarly we obtain (V-v), <0 Let us consider I's.

1-1+4+¢e)n
ro+rn(l+ce)y+mn

(VW =f(L+e,m) = = EL (1 + o1 +¢) —n] +
£

for any ne[0,1+c].

1

. Hi 2
Since 14¢,0)=——Q+c)f+ —
K ) € ( ) 1o+ 1{l+¢)

1—(1+¢)?
ro+ (r +1r)1+¢)

and fl+c¢,1+¢)=

are both negative for ¢ large enough, we have only to show that there exists € >0
such that the derivative of f(1 + ¢, n) with respect to % is non-negative when c is
larger than €. Actually, for ne [0, 1 + ¢], we have the inequality

1+
-‘Q—J:(1+c,n)2&(l+c)— ( ) - "2
n . rn+r(l+e) [rg+r(1+ce)P
so that lim o (I+c,n)=+»,

c—> 4+ o "

which gives the required condition on I'5. In an analogous way one can show that,
for ¢ large enough, (V-¥), <0, and the proof is achieved.
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Sommario

Si prova Uesistenza di una regione invariante per il sistema parabolico che descrive il
trasporto di lacune ed elettroni nei semiconduttori. Conseguenza immediata di questo ri-
sultato é che lesistenza di una soluzione globale per le equazioni dei semiconduttori e la
sua limitatezza nella norma L possono essere dimostrate in modo molto semplificato.
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