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GIULIANA GIGANTE (%)

A remark on Brody’s theorem

on homogeneous complex manifolds (**)

1 - Introduction

In [1], it has been given the proof that on compact complex manifolds, the
Kobayashi’s hyperbolicity can be characterized by the non existence of non con-
stant complex line. The following is the standard example of a non hyperbolic
manifold, that has no complex line:

M= {(z,, %) € C?: |2;25| <1 and |z] <1} — {(z, 0): |2 |<1}.

In [13], J. Winkelmann proves, among other things, that Brody’s theorem
holds on complex manifold of type G/H, where G is a real, solvable Lie group and
H is a closed subgroup.

In this brief note, we want to point out that Brody’s theorem holds also in ho-
mogeneous manifolds G/H, with G real semisimple Lie group of the first category,
which have a G-invariant complex structure [8].

We don’t have any example of homogeneous manifolds, where Brody’s theo-
rem fails and, as far as we know, there is no proof of a Brody’s theorem on homo-
geneous manifolds.

(*) Dip. di Matem., Univ. Parma, Via M. D’Azeglio 85, 43100 Parma, Italia.
(**) Received August 28, 1997. AMS classification 53 C 80. The author was supported by
the Project 40% MURST Geometria reale e complessa.
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2 - The anticanonical, the Kobayashi and the hyperbolic reductions

Let G be a connected real Lie group acting almost effectively and transitively
as a group of holomorphic transformations on the complex manifold X = G/H. Let
N be, as usual, the normalizer of H°, let J be the subgroup of N given by

J={keN|R(k): G/H°— G/H°, gH°— gkH® is holomorphic}

where G/H° is endowed with the complex structure induced by the covering
G/H°— G/H.

Then J/H® is a complex Lie group and G/H°— G/J is a holomorphic J/H°-prin-
cipal fiber bundle, the fibering G/H — G/J is locally holomorphically trivial and it
is called the anticanonical reduction.

Moreover, if Z denotes the centralizer of H°, the identity connected component
of H, then the group J contains Z so, if Z° does not coincide with H°, then G/H
has some complex line. Moreover, let’s remark that when G is solvable, and X has
no now constant functions, then G =J, so that G is a complex Lie group, H is
discrete and the action of G on X is holomorphic.

Note that, when G and H are complex Lie groups, then J = N, where N is the
normalizer of H° (For the anticanonical reduction see [3], p. 61).

Let’s briefly recall the definition of the Kobayashi reduction. Let’s consider
the Kobayashi pseudodistance d on G/H, and define the equivalence relation

=y if and only if d(z,y)=0.

The quotient space and the fiber are (not necessarily complex) homogeneous
spaces and the fiber cannot be hyperbolic.
The hyperbolic reduction is defined in [13] by the equivalence relation

x=y if and only if d(flx), fy)=0

for any bounded holomorphie function f of G/H.

The main fact about the hyperbolic reduction is given by Theorem 1 of [13];
hence, we get a domain D' and a holomorphic mapping p : G/L—> D’ such that all
holomorphic maps f: G/L— B to a hyperbolic manifold B, must fiber over D',
that is there is f': D’ — B such that f op=/f".

Note also, from Corollary 9 and Theorem 10 of [3] p. 78, that

if X has more than one end, then G/J is a complex homogeneous manifold
and J/H must be positive dimensional. This fact implies that X has some com-
plex line. So the problem of Brody should remain just for the one end
case.
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It is easy to prove that

if X has more than one end, then the hyperbolic and Kobayashi reductions
must reduce to a point.

The following Theorem 1 is a generalisation of Theorem 1 of A. Kodama [7],
where the same is proven under condition of hyperbolicity. Let’s first describe, in
some details, the situation: if IC denotes the Lie algebra of H, then the Lie algebra
of J is given by

J={Xe@:JIX,Y]-[X,JY]ed for all Y in G}

J is stable with respect to J and coincides with § N N(g) (see [7], Lemma 1) where
G is the Lie algebra of G, q denotes the complex subalgebra of the comple-
xified algebra G° which defines the complex structure J and

N ={Xeg"[X,qlcq}.

Now, Kodama proved that, when X is hyperbolic, J coincides with 9¢, and we
get N(g) = q. In the proof of Kodama, the hyperbolicity has been used only in or-
der to get that in §°there are no elements X which commute with JX, but this fact
is implied already by the assumption of non existence of non constant complex line
sinee, if [ X, JX] = 0 then exp (aX + bJX), for z = a + ib, would be a non constant
complex line.

Moreover it holds the following: the group G acts on the Grassmann manifold
of all complex subspaces of dimension m in G¢, where m is the complex dimension
of g, via its adjoint representation Ad.

Furthermore, if G ¢is the complex subgroup of GL(G¢, C) corresponding to the
subalgebra ad ¢ of GL(&°%, C), then one gets that G/H is G-equivariantly im-
mersed as an open complex submanifold in the complex homogeneous space
G°/Q, where @ is the isotropy group of G° at g, the Lie algebra of @ being
ad q.

Theorem 1. Let X = G/H be a complex manifold without any non constant
complex line. Then N(q) =q. Moreover, the group G acts on the Grassmonn
manifold Gr(G°, m) via its adjoint representation Ad; since H leaves q invari-
ant (that is Adk(q) = q, Yk e H), then one can define a map gH — Ad g(q), which
18 a G-equivariant immersion in the Grassmannian and is a covemng of X over
an open G-orbit in G°/Q.
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3 - The first category

Let G be a semisimple Lie group of the first category. A Lie algebra is of the
first category if the involutive automorphism generated by a corresponding Car-
tan decomposition is an inner automorphism (of this type are all the real forms of
simple complex Lie algebras with the exception of S£(n + 1, R) (n = 2), SU*(2n)
(n=2), SOp,2n—p) (p odd, n=4), £ I, £ IV).

In {8], F. M. Malysev proved that if G is a semisimple Lie group of the first
category and L is a connected closed subgroup of G, then G/L has an invariant
complex structure iff G/L has even dimension, L is reductive and its semisimple
part coincides with the semisimple part of the centralizer of a torus in G.

In terms of Lie algebras, he proved that the subalgebra q of G, which defines
the complex structure, must be contained in a parabolic subalgebra p; moreover it
holds that p = N(g).

Theorem 2. If G is a semisimple Lie group of first category and X = G/L
is a complex homogeneous manifold, then X is hyperbolic if and only if every
complex line from C to X is constant.

Proof. Since the hyperbolicity as the existence of non constant complex lines
are invariant under holomorphic covering map, we can suppose that L is
connected.

Thus, we can apply the result of Malysev and, if X = G/L has no non constant
complex lines, Theorem 1, to get that p must coincide with g since p = N(g) = g,
and G/L is holomorphically and equivariantly immersed, via gH — Ad g(q) as an
open G-orbit in the flag manifold G°¢/Q. Since open G-orbits in flag manifolds are
simply connected (Theorem 5.4 of [14], p. 1146) G/L is realized as such an
orbit.

Moreover, by Lemma 6.2 and Theorem 6.3 at p. 1150 of [14] we obtain also
that G/L has a G-invariant volume element and equivalently, has a G-invariant,
possibly indefinite, Kéhler metrie.

Now, at p. 1147 of [14] there is a detailed exposition of the decomposition of a
flag manifold S/P (S=G°, P=@Q) as a product of flag manifolds of type S;/P;,
where S; is simple (it comes from the complexification of the simple factors of G)
and P; is parabolie (it is the intersection of P with S;). In relation with such a de- -
composition, there is a decomposition of any G-orbit at any point p as product of
orbits in the flag manifolds S;/P;. An orbit is open iff each orbit in this decomposi-
tion is open. '

Now, we can use the fact that in a product manifold the property of being hy-
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perbolic is satisfied iff each factor is hyperbolic and in order to have a non con-
stant complex line is necessary and sufficient that one factor has it. So we can re-
strict our attention to the case when we have:

a simple real Lie group G

o reductive connected subgroup H

G/H is realized as an open orbit of G in a flag manifold S/P (and it is simply
connected).

Thus, following [13], there exists a maximal compact Lie subgroup X of G such
that the K-orbit in X is a complex space. Now, if X does not contain any
non constant complex line, then this K-orbit must reduce to a point, that is
K=KnH. But H is also the maximal connected subgroup of G (since G is sim-
ple), so we get K= H.

Since H is compact, in X there is an invariant volume element v and then we
can construct in a canonical way a Hermitian form £ (see [6], p. 374-375, Theo-
rems 4 and 5; or, for detailed proofs [7], [2]). Moreover, by Koszul [7], see also
Theorem 4, p. 374 of [6], since the number of the negative squares in % is equal to
the difference between the dimension of L and the dimension of a maximal com-
pact subgroup, then A is positive definite and G/L is a Hermitian symmetric space
of non compact type, so it is hyperbolie.

The following theorem holds for manifolds of semisimple Lie group without
restriction on the category.

Theorem. (Brody’s theorem for semisimple Lie group). Let G be a
semisimple Lie group, endowed with a left invariant complex structure. Then, G
has some non constant complex line.

Proof. The same of Proposition 5.3 of [9], keeping in mind the hypothesis
that there are no complex lines.

4 - Kobayashi and hyperbolic reductions in the first category

We want to look now to the Kobayashi reduction of G/L, where G is semisim-
ple of the first category, L is connected and G/L has a G-invariant complex strue-
ture. Then, G/J has the following property: if q denotes, as usual, the subalgebra
of §° which defines the complex structure of G/L, then p = N(g) is a parabolic
subalgebra.

The complex structure of G/L is given by P itself and, since p=N (p), being p
parabolic, we have again Theorem 1 of Kodama without any condition of hyper-
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bolicity. So G/J can be realized as a simply connected open orbit of a flag mani-
fold. In particular, the fibres of the anticanonical reduction are connected and we
can apply the theorem of Illarionov [4] to the locally trivial holomorphic fibration
7. G/L— G/J that is dgy, = n* dg;;. Moreover, G/J is the product, see [13], of a
bounded homogeneous domain D and a totally degenerate (with respect to the
Kobayashi distance) flag domain F. Thus, since dg;, degenerates along x ~*(F),
then the Kobayashi reduction of G/L is simply the projection % over D.

Furthermore, since the fiber of % is totally degenerate, then all holomorphic
mapping f: G/L— B must be constant along the fibres of &, when B is hyperbolie,
so also the hyperbolic reduction coincides with A.

Theorem 3. Let G be a real semisimple Lie group of the first category and
let G/L have a G-invariant complex structure. Then the basis of the Kobayashi
reduction of G/L is a bounded homogeneous domain of C*, and the fiber F* is a
Kobayashi totally degenerate complex manifold. Moreover it coincides with the
hyperbolic reduction.
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Sommario

Si prova il teorema di Brody per varietd omogenee sotto lU'azione di un gruppo di Lie
semiisemplice di prima categoria.






