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A theorem of existence for the equations
of the Winslow’s effect (**)

1 - Introduction

Electrorheological fluids are slightly conducting suspensions whose viscosity
varies by a factor as high as 10° if a strong electric field is applied. This effect was
discovered by W. M. Winslow in 1947 [10] and bears his name. Electrorheological
fluids captured the interest of many authors since a fluid that changes its bulk
viscosity with the electric field offers a way to address many electromechanical
problems and can be used to control vibration damping, see [5].

The current levels associated with the high voltages are typically in the order
of a few micro-ampere; consequently, magnetic effects are negligible and we
assume the constitutive equations of Electrohydrodynamics, for which we refer
to [3].

In this paper we propose (Section 2) a quite general constitutive equation re-
lating the stress tensor to the electric field via a viscosity tensor, whose form is
determined by using the objectivity principle. We hope, in this way, to capture the
anisotropic character of the Winslow's effect.

The main result is given in Section 3, where we prove that the resulting
boundary value problem has at least one weak solution.

2 - Derivation of the basic equations

Our treatment is based on a representation theorem for tensor valued isotro-
pic functions. We recall that a tensor valued function is said to be isotropic if the
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form of its components functions is the same for all orthonormal bases (see [8] for
details). The following result is a corollary of a theorem of A. S. Wineman and
A. C. Pipkin [9], but, to make this paper more readable and self contained, we
present an elementary proof.

Theorem 1. FEvery isotropic function, defined in the set of non-vanishing
vectors E with values in the space of fourth order tensors wium = Wipm(E;)
i, k,l,m,j=1, 2,3, which satisfies the symmetry relations:

@ M it = M kitm it = Hoitoml
can be written as

Hikim = 010 %0 pp + 02(0 0 oo + 8 53y O 1) + a3 By B Oy + 4 B B O iy,
@
+a5 (B B0 o, + BB, 05+ B E, 0y + B ELdyy) + ag B E EVE,,

where the a; are arbitrary functions of |E|.

Proof. We estimate the dimension of the linear space I of isotropic funec-
tions and exhibit an explicit basis for it. Then we include the symmetry conditions.
We have dim ¢ < 81. By using suitable orthonormal transformation of the Eu-
clidean space R® we will prove that the dimension of 9¢ is, in fact, smaller. We set
E = |E|e; and note that this assumption is not restrictive.

By a reflection with respect to the plane span {e;, e, } and taking into account
that the functions in ¢ are isotropic, we find that certain components must be
equal to their opposites and therefore vanish. This implies dim 3¢ <21. With a
further reflection with respect to span {e;, e;} we obtain dim < 11. Finally a
rotation of m/4 about e; proves that dim 3¢ =< 10.

On the other hand the following 10 tensors are isotropic as can be checked
from the definition:

Fip, =00 m Fign =000 im Fii,=0m0u

iklm
Fim=0wBE:B,  Fip =04EE,  Fi =0umEB
FPD =64,E.E, F& =03EE, Fy =0mEE,
FV=E,E.EE,,.

We will prove the linear independence of {F) } by a straightforward calculation
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of the Gram determinant

det Gram (FV, ..., FU0)

[ 9 3 3 3|E]* [E]* |E|* |E[* [E|*3|E|®
8 9 3 |E[* 3|E|* |E|* |E[* 3[E]* [E|*
3 3 9 |E[* |E|* 3|E|* 3|E|* [E|* [E|*
3|E|* |EI* |E|*3|E|* |E|* |E|* |E|* [E|* |E|*
[E* 3|E[* |E|* |E|*3|E]* |E|* [E|' |E|' [E[
|E|* |E[* 3|E|* |E|* |E|*3|E]* [E|' [|E|* |EJ*
|E[* |E[* 3|E|* [E|* |E[* [|E|'3[E|* [E|* |EJ*
|E|* 3|E]* |E[* |E|* |E[* [E|* [E|'3|E|" |E[*
3|E|* |E[* |E* |E|* [E|* |E|* [E|" |E|*3|E["
L [EI* BT |E]*[E]° |E]® |E[® [E]° |E[° |E|°

= det

=2048|E|2=0.

Hence {FJ)

iy give a basis and all the elements u;, € 3C are given by

10
Wil = ygl a,(|E])F iilclm

63

|19
|E|*
Bl
|E°
|B®
|B®
|E[°
|B°
|E|°
|E|®)

where the a, must be functions of |E|, which is the only invariant (under ortho-

gonal transformations) of E.

Taking into account the symmetry conditions we see that ¢, =¢; and that

C¢ = C7 = Cg == Cg, and the result follows.

Let E be the electric field and ¢ the dielectric constant. We decompose the

stress tensor o in the following way
(3) Op=—pPOy+oh+0y

where p is the pressure and o the Maxwell’s stress tensor, ie.

1
4) U%=€(E1Ek“§|E|25w)-

With the term o we try to describe the modification induced by the Winslow’s
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effect on the viscosity. To this end we assume that

(5) U?}é = ﬁz’klm(E) Vim

7)l, m + vm, l

where V,, = , are the components of the rate of deformation tensor

corresponding to the velocity field v; and iy, (E) is a tensor viscosity which satis-
fies the symmetry conditions (1) which follows from the symmetry of o and
Wm-

By the principle of objectivity we require the function z,,, (E) to be isotropic.
Then Theorem 1 applies and the tensor is given by (2).

Under steady condition there exists an electric potential & such that

(6) E=-Vo,

From (4) and (6) it follows the expression of the body forces of electric
origin

) fi=o¥, = qE;
where ¢ is the charge density related to the potential @ by the equation
® —edP=q.

A second constitutive equation is given by
C) ' J=-D'Vg+KqgE +gqv

where J is the current density, D' is a coefficient of diffusion and K the ionic mo-
bility, see A. C. Eringen and G. A. Maugin [3].

By the balance of the momentum and by the conservation of charge, we
have

(10) QUi KV =0y, ; Ji, ;=0

where ¢ is the density of mass. We arrive to

Problem 1.
(11) OV kVk =0y, v, ;=0 in 2
(12) =0 on 9Q
(13) —D’Aq+(v—KV¢)-Vq+§q2=0 —edp=q in Q
(14) q=q ¢o=¢, on 2.

Equation (18), follows from (10), taking into account (8) and (11)s.
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Let us examine the consequences of (2), (4) and (5). By the incompressibility
condition (11), we have:

'Ul, m + vm,, 2

(15) C’/l(lEDailc(jlm"'—‘“T“:O
vl, m + vm, l

(16) as(|EDE;E 64, — s 0

1
Redefining the pressure as —p + —éa4(]E|)EZE'm(vl,,,L + Uy, 1) the term corre-
sponding to a4 disappears. Hence by (15) and (16) we can rewrite (3) as

follows

op=—ady+on+a(|E)w; x+ vy )
am
+BUEDIEE (v, + v, ) + ELEy (v s+ v, )1+ v((E|) B E E By vy, o

We recover the usual Navier-Stokes equations with constant viscosity and body
forces of electric origin if

a(|E|)=a,>0 BUE|)=0 y(|JE|)=0.

Let d and @ be a characteristic length and potential. To write the problem in non
dimensional form, we define the following non dimensional starred quantities:

P
x = dx* p=Dyp* =TOE*
K@o 8@0 % ¢%KZQ .
vV = v = —q = *
d d? d?

Redefining the functions a(|E|), B(|E|), y(]JE|) in a suitable way, and sup-
pressing the stars, we arrive to

Problem 2.
(18) Vi, k V= 03y, v; ;=0 in £
19 v=0 on 8Q
20) —-DAg+ (v=V¢)-Vg+¢2=0 —Adp=q in Q

@1 q=Q =y on 92
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where D =
. K®q

Let £ be an open, bounded and connected subset of R? with a regular boun-
dary Q. We use the customary spaces C™ *(Q), L?(Q) and H™ P(Q), referring
to the book [1] for definitions and properties. Let

and oy, now non dimensional, is still formally given by

LP(Q) = (LP(Q))° H™P(Q2) = (H™P(Q)).
Norm and scalar product are denoted |. |, (,) in both L?(2) and L*(£). Let

V= {ve (CF(2)): v; ;=0}. As usual, H and V are the closure of ¥ in L?(2) and
H{(Q) respectively.

3 - Existence of weak solutions

We set, whenever the integrals exist,

a(E; v, w) = [ a(|E)w; 1 + vy, 1) w;,
o
blu;v,w) = fuk'vi,kwidx
(o]
d(E; v, w) = [ BUEDIEE (o, + v, ) + B By, + vy, )] w;, A
o

g(E; v, W) = fy(|EI)EiEkElEmvl,mwi,kdx .
Q2

We assume that
(22) a(g), B(&), y(&) e L= (R)N C(R)

23) a(§) Za,>0 B& =0 7(6) =0 VieR .

Lemma 1. Let (22) and (23) hold, then for oll veV and EecL” () we
have

@) a®;v,v) = aelvf dE;v,v)=0 g(E;v,v)=0.



[7] A THEOREM OF EXISTENCE FOR THE EQUATIONS... 67

Proof. Assume ve ¥ and E eL”(Q). By (23) we have

1
a(E; v, v) = Efa(lEp(vi,kwk,i)?dxa fg-‘lfwi,kwk,i)?dx
2 Q

= aof'viz,kdx + aof”i,kvk, da = a, v
Q 2
Again from (23) we obtain

AE; v, v) = [BUBDIE B, 1+ v1,0) + By Bi(w;, 1+ v, )] v, g dw
o
= [BUEDIBsvi, 1+ 2Byv; ) Eyvg, 1) + (Brvy, )] do
o
= fﬁ(|E|)(Ei7)i,k + E'ﬂ)k,z)zdx =0
o

g(E, v, V) = f’}/( ! E l ) E"L'E|]¢I;LEm’l)l7 m Vi, kdx = f’}/( I E ; )(EiEkvi, k)2 de=0.
Q Q
Since ¥ is dense in V, the conclusion follows.

As weak formulation of Problem 2 we take

Problem 3. To find {v, g, ¢} e VX H(Q)x H(2) such that
(25) awE; v, w)+b(v;v,w)+dE;v,w)+gE;v,w)=(E, w)

for any weV

¢ —preHg(2) Vo, VE) = (g, ) V¢eHy(2)
E= -V
q—qeHJ(RQ) D(Vq, Vi) + (v = V¢)-q, ) + (g%, 1) = 0
for any ne H{(Q).
We have

Theorem 2. Let qeHY(Q) with 0<qg,<gy=sup q,< +. Assume
a9
pre H(R2) and ve VN & *(Q), then the following problem:

(¢, $) e HY(Q)x HY(Q)
¢~ preH(Q) Vo, VZ) =(q, 8) VEe Hi(2)

q-qeHi(2) D(Vq, V) — (qv, Vi) + (qV¢, V1) =0 VneH}(Q)
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has at least one solution that satisfies

(26) 0 =g=gq.

Proof. We suppose g, e C'(Q). Let = {ge " “(Q); 0 < ¢ < ¢y} and define
the map

T: 3% () T: g7,
via the linear problem
—Adp=q -DAG+(v—-Vp)-Vg+qG=0 in 2
P=0y g=q on 89 .

By the Hélder results for linear elliptic equations (Courant-Hilbert [2]) we see
that this problem has a unique solution such that

[Volieo. «copp < C(g, ¢4, 2, ) and Glleo. w0y < B(gy, Vllev. a0y, ¢, @)

By the classical maximum principle (see D. Gilbarg and N. S. Trudinger [4])
we prove that condition (26) is satisfied by q.

We conclude that 7 maps X into a compact subset of itself. Hence, by Schau-
der’s fixed point theorem, T has a fixed point. We complete the proof constructing
an approximating sequence {q;,} such that g, e C'(Q), with

27 o0l = 0y < o Qon—>qp in H(RQ).

Let now (g,, ¢,) be the solution obtained by the previous argument. Define
Br=qn— Qe Hi (2). We have ||3,]lL=0) <2q,. Moreover, we have

(28) D(V(ﬁ n + qbn)a V77) - ((ﬁn + an)Vy V77) + ((ﬁ n + qbn) V¢ ns V77) =0

for any ne H}(Q).
Setting =4, we get

D“ﬁ 71“2 = D“ﬂ n-” | qun. ] + ”‘Ibn “Lw(.@) ”V” “ﬁ n ” + “/371 + Qon ”L“’(Q) |V¢ n | lvﬁ n | .

By (27) we obtain ]V¢ 7 ’ = ”%z“ = C”qn“L“’(Q) < C. Hence ”.Bn” s C.
Therefore we can extract subsequences (not relabelled)

B.—pB in HY(Q2) B,—pB in LEK) and ae. V¢,—Vey in L3(Q).
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Taking the limit in (28) we conclude that ¢ = + g, and ¢ give a solution to the
problem.

We are now in a position to prove the main result of this section
Theorem 3. There exists at least one weak solution to Problem 3.

Proof. We use the Galerkin method in a standard way. Let {wy, ..., W, }
be a basis of V in the following sense: wy, ..., w,, are linearly independent
Vm e N, and finite combinations are dense in V. Such a basis exists since V is se-
parable and it is possible to assume that w;e (G5 () ).

Let v, espan{wy, ..., w, }. We denote by (¢, g,) the solution of pro-
blem

(29) Qn — € HOI (Q) - DAqm + (Vm - V¢ 'm) 'VQm + qr?z =0 in Q

(30) ‘pm"’(prHOl(‘Q) —Ap =gy in Q.
By Theorem 2 (29), (30) have at least one solution such that
31) 0=<q,( <q.

Let E,,= — V¢ ,,. From (30) we have |[E,, ||lz2ro) < C; and by Sobolev’s em-~
bedding theorem

(32) E.,,

(eo,u(g))ii S Cg

where the constants C;, C, depend only on 2, gy, ¢y.
We seek a solution v,, espan{wy, ..., w, } of the finite-dimensional pro-
blem

(33) a’(Em; Vs Wj) + b(vm; Vins Wj) +d(Em; Vs wj) +g(Em; Vs Wj) = (Qm Em’ Wj)

for 1<j=sm.
From (33) we get, recalling that b(v,; vy, v,) =0,

a(E7n; vm’ V‘nl) + d(E7n; v’nlr’ V’ln) + g(Enl; V'In’ V'"L) = (q"n E'nl/’ v'”l) .
By Lemma 1 we have a;|v,,|? < CillgmEnllv [V llv and recalling (81), (32)
(34) VIl < Cs

where the constant does not depend on m.
The existence of a solution v,, to (33) follows from Brouwer’s fixed point theo-
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rem (see J. L. Lions [6], 53). By (32) we infer from (29) that
D|Vgu |* < qovuull| Van | + 16 ll1 V| + llgnlD
and, by using the boundedness of |[v,,/ly and || . /lz1(0),
(35) |V | <Cs.

By (32), (34) and (35) we can extract from {v,,}, {q¢.}, {E.} subsequences (not
relabelled) such that

(36) Vv.—V inV v,—v in H and a.e in Q
37 Gm—q in HY(Q) ¢n—q in L%(2) and ae. in Q
(38) E,,—E uniformly in (c%*(@)).

Using (36); and (38) in (33) we obtain, keeping j fixed,
W(Bpy; Vi, W) = a(E; v, w)).
As in the Navier-Stokes equations (see [7] for details) we have
b(Vy; Vi, W) = b(v; v, W;).

Taking the limit in d(E,,; v, w;) and g(E,,; v,,, W;) is also immediate, since by
(38) we have:

(Em)i(Em)lc’_éEiEk in (GO,a('Q‘) )32

B B BB — BB BBy, in (@)
By (22) we also have
BUE, ) —B(E]) Y(| By D= y(|E]).
Therefore, letting m— + o in (338), we have
a(E; v, w;) +b(v; v, w;) + d(E; v, w;) + g(E; v, w;) = (gE, w;)

where 1 <j<m.
By density we conclude that (25) holds. Finally we can pass to the limit in (29)
and (30). Hence (v, g, ¢) is a weak solution to Problem 3.
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Sommario

In questo lavoro vengono ricavate le equazioni costitutive per i fluidi elettroreologici.

Le ipotesi assunte sono legate alla dipendenza tensoriale della viscosité dal campo elet-
trico. Mediante Uapprossimazione di Galerkin si prova pot Uesistenza di soluzioni debolt
per tali equazions.






