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ALBERTO ROSSANI (%)

Fokker-Planck approximation of the linear Boltzmann equation
with inelastic scattering: study of the distribution function
for charged particles subjected to an external electric field (**)

1 - Introduction

In a recent paper [1], C. R. Garibotti and G. Spiga developed a formalism for
introduction of inelastic collision processes in the Boltzmann equation. A two-
species mixture was considered, where one of the particles is endowed with two
internal energy levels, and a non-linear system for such a mixture was written
down. Under suitable hypotheses, a linear transport equation was then derived
for the study of the diffusion of light test particles (7'P), like electrons, in a me-
dium of field particles (FP) such that both a loss and a gain of a fixed amount of
energy is possible when a TP interacts with a FP,

In this paper our aim is:

i. to study the collision integral of such equation

ii. to point out the connections with transport of electrons in a semiconduc-
tor [4], [5]

iii. to construct, under suitable asswmptions, a Fokker-Planck approxima-
tion of this equation and to solve it in the case of charged TP subjected to
an external electric field.

(*) Dip. di Matem., Politecnico Torino, C.so Duca degli Abruzzi 24, 10129 Torino,
Italia.
(**) Received March 3, 1997. AMS classification 76 P 05. This paper has been partially
supported by MURST and by CNR-GNFM.
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The paper is organized as follows. Section 2 is devoted to the description of
the physical situation we deal with. In Section 8 a study of the collision integral
follows: collision invariants, trend to equilibrium and equilibrium distribution
functions are investigated. Then (Section 4) we prove the mathematical equiva-
lence between our problem and transport of electrons in a semiconductor.

In the case of TP which interact with F/P only by means of elastic scattering, it
is usual in the Physics of Weakly Ionized Gases (PWIQ) to adopt a Fokker-Planck
approximation of the collision integral, which leads to a solvable equation for the
distribution function (see [2], [3]). Here we want to extend such an approach to in-
elastic interactions and find the distribution function which include these effects.
First of all, by means of a truncated spherical harmonie expansion of the distribu-
tion function, the transport equation is broken into a system for the first two com-
ponents (Section 5). Then, by adopting the same procedure which is usual for ela-
stic interactions, we construct a Fokker-Planck approximation to the inelastic col-
lision terms (Section 6).

The equations we find (Section 7) are solvable and explicit solutions are shown
for both hard sphere and Maxwell interactions, together with a discussion on the
possiblity that runaway occurs.

2 - QOutline of the problem

Consider a space homogeneous medium constituted by field particles (FP)
with mass M, endowed with only one excited internal energy level. We eall
AE > 0 the difference of internal energy between the excited and the fundamen-
tal level.

Through this medium, we consider test particles (TP), endowed with mass
m<<M and charge Q, which diffuse under the effect of an external electric field E.

The TP are supposed to interact with the medium according to the following
inelastic mechanism

9] TP+ FP;=TP + FP,

where FP; and FP, are F'P, respectively, at fundamental and excited level. We as-
sume that the number density % of T'P is much lower than the number density &
of FP, so that the medium can be modelled as a fixed background.

This medium is supposed to be in thermodynamical equilibrium at temperature
T. If we call N} and Ny, respectively, the number densities of the F'P at fundamen-
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tal and excited energy levels, according to statistical mechanies

Ny AE
2 2= -
® ) Ny exp( kT )

where k is the Boltzmann constant.
Observe that one can write:

& N
) 2T 1+

where &= exp(AE/KT).

Since we consider M >>m, the distribution function & (v) for FP, can be ap-
proximated by N.d(v), that is a Maxwellian with M — « .

In this case the kinetic equation for the distribution function f of TP may be
written as follows [1]:

e ¥ B A

4
ot ox m oV

= J(v)
with 4 (v) = ﬂfﬁ[(m, Q-Q) flv, Q) dQ’
v
LM JUu@w? -9 v2Iw, @-Q) flv_ Q') dQ’
v

—f(v) 1 f[szf Iy, Q-Q)+ N UWw?—n) v21(v, R-Q')] dQ’
v

where 7 =2AE/m, v. =\/v?x 5 and I(v, R-Q') is the cross section of the in-
elastic interaction between T'P and F'P; ( is a unit vector and U is the step func-
tion). As physically plausible, we assume that

lirr%) v2I(v, R-Q')=0.
P>

It is important to stress that equation (4) is reconsidered here under slightly
different assumptions than in [1].
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3 - Study of the inelastic collision integral

Let us now study collisional invariatns and trend to equilibrium, according to
the collision integral A(v).
For any arbitrary function ¢(v) it is not difficult to show that

) [ o(v) s(v) dv

= [dQ [dQ' [v[p(Q)— ¢, QDIN, f(v, @)= Ny f0R)] vE (v, , R-Q') dv.
0

From (5) we find that any ¢(vQ) = @(v?) such that ®(v%+ 5) = &(v?) is a colli-
sional invariant. In particular, the case @(v?) =1 corresponds to number conser-
vation for TP.

2
muv-

2T

Equation (5) applied to ¢(v) =log[f(v)/exp(— )] gives

J o) 5tv) av

= [ae [aQ [v{log fvQ) —log[f(v, Q') 8]}
0

[flv, )8~ fR)] Npv} I(v,, @-Q") dv

which means that, in the space homogeneous case with E=0

% [ ptvydvso

that is we find a Boltzmann inequality or an H theorem (see [3]) for the present
equation.
At equilibrium, for any », @ and Q' it has to be

JR) =f(v, Q') &

02

”
2kT

which is satisfied by any f(vQ)=TI(v?) exp(— ) such that INv?+n)=I(v?).
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4 - Equivalence with electron transport in semiconductors

The results shown in Section 3 are surprisingly similar with those found by A.
Majorana in the field of electron transport in semiconductors ([4]). Indeed, we

shall prove that equation (4) is mathematically equivalent to the equation utilized
in [4] and [5].

First of all let us rewrite, in the space homogeneous and forceless case, equa-
tion (4) as follows

" %f"(w) = 5(w)
where w =vA/y, f(w) =f(v) and
§w) = M Jw2iw,, @-9Q) fw, Q) dQ’
w

J\rg

+ =
w

JUw—1) w2iw, @-Q) faw_ Q') de’

—f(w) 1 J1Nw2 Fw,, -9 + N, Uw — 1) w2 Iw, @-Q")] Q'
w

with w, = Vw?= 1, I(w, -Q) =51, R-Q').
Now, by taking into account that

Uw=1)6(w' —w.)=2w.0w?2-—w?F1)

it is possible to express j(w) in the equivalent form
Jow) = 8f K(w, w', Q") S(w'? —w? 1) f(w') dw’
+ fﬂ((w’, w, Q) S(w?—w?—1) f(w)dw’
—fonLf Rw, w', Q") 6(w'® —w? — 1) dw’

+8f Kw', w, Q-Q) S(w'? —w?+1) dw']

Z.Ngw'

where X(w, w', -Q') = f(w’, Q-

W
In [4] and [5] A. Majorana considers free electrons (effective mass m *) inter-
acting with monochromatic phonons (energy #w,, where #=h/2x and
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w, = 2mv, being h Planck’s constant and v, phonon frequency) of a semiconduc-
tor lattice at temperature 7. In [5] the distribution function @ of electrons de-
pends on the dimensionless wave vector
h 1
c=cQ=k(——-)2
2m* w L

where k is the electron wave vector. The kinetic equation for the present problem,
as reported in [5], reads as follows:

op
?t = Q(c)

where @ turns out to have exactly the same form as last expression of J we have
shown. One can observe the following correspondences:

. h
f—9 w—c 8— exp ( wTL)

while X corresponds to a suitable continuous positive kernel of the electron-
phonon interaction. Moreover, by recalling the expression of & as a function of
temperature, it is apparent that AE—#w .

5 - Spherical harmonics expansion

As usual in PWIG [2], if both the spatial gradients and the electric field are
small, we may resort to a truncated spherical harmonie expansion of f(v€):

(6) f(®) = N(w) + Q-I(»)
where N@) = — Jfe) de Iy = = fefwe) de .
4 47

By inserting (6) into (4) and projecting over 1 and © we find the following system
for N(v) and J(v):

_‘?.Z.V.. + EV.J_‘_ E\):E_.l.__ i@ﬂ,}):
ot 3 m  3v% v

-N‘I'UE_

N@,) Iy(v,)
v

4!
+ NpvU(w? = 57) N(w_) Ij(v) = N(v) l[szi Li(vy) + Ny UW@E =) v2I(v)]
v
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N1v+

C)
%’%+WN+ Qp N Jw,) [(w,)

m o

8
+ N oUW =) J(v-) Li(w) — J(v) L [WovE To(vy) + N U@? — ) w21 ()]
v

+1
where L) =2x [ I(w, w) u'du 1=0,1.

-1

In view of the manipulations we are going to perform on the right hand sides
of these equations, it is convenient to introduce

F(&)=N() G(&) =J(v) 0(8) = Ii(v)

where &=92% and rewrite equations (7) and (8) as follpws:

3F \E Q 2 Ny
— +—V-G+—E-— —(E )-—( ).:0 = —(E+n) F(E+y) 0g(E+7)
(9) Bt 3 m \/E ag 1 '\/E 0
+N2\/§U(§_77)F(§_77)00(5)—F(§)-}\/-g[Nz(g‘*"?)Uo(‘f‘*‘??)‘{“NlU(E“??) £oo(8)]
oG 2Q, oF oG N,
— +VEVF + ZPEVE— = (— )= — (E+7) G(E+ +
o VE - \/Eag (= e \/E@ 7) GE+ 1) o1(E+ 1)
1
+ Ny VEUE=17) GEE—1) 01(E)— G(E) —= [N (E+7) ao(E+n) + N, UE—1) Eoo(E)].

VE

6 - The “Fokker-Plank” approximation

In the stationary and space homogeneous case equations (9) and (10) are
rewritten as

QUE| 2 _
(11) 3 \/_ 3 (5 ) ( )con
(12) gﬂz \/Eﬂ = ( % )coll

dé ot
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G oG E
where G(&) = G(&) —IE—]— ( = Jeoll = ( )coll B

If # is much lower than the thermal mean square speed of a TP, that is
3kT

<< —— , it is possible to adopt a procedure (see [2]) which leads to a Fokker-
m

Plank approximation for (3F/0%)..
Consider an arbitrary smooth function @(&), one can easily show that

o

oF
OI VE( = Jen @(&) dé

= JAED(E) — D&+ PIN FE+ 1) = Ny FONE +7) o0& +7) dE .
; .

Now we expand the integrand of the right hand side in power series of # and re-
tain only the terms up to 7*:

-~ OF
f\/g( Jeon P(8) A& = — 577 Nf‘? (E)[F(é') — +F (&)1 80y(85) d&
0

and, integrating by parts

. oF 1, . d m ,
Of\/a?t)con@@) dg= - n*N ()f@(&)—a;&—{ms)m +F'(E)] Eoy(£)} dE.

Since @(&) is arbitrary, we obtain the following Fokker-Planck expression of
the collision term

oF 1 1
13 e = =N — — {(F(§) — + F"'
(13) ( Py Jeoll 5 VE {( (E) ShT +F'(E)]&0y(8)}.
oF
We remark that ( 5 e =0 « F=Cexp(- .§), that is the equilibrium

distribution function for the present appr ox1mat10n isa Maxwelhan (C is the nor-
malization constant).
Observe that (11), together with (13), shows that G = O(n?) so that (3G/8t)eon
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is coherently approximated by
(14) ~ NVEo.(8) G(&)

where 0, (&) = 00(5) —01(&).

7 - Solution to equations (11) and (12)

Equations (11) and (12) give

2 Boe) = L2 , o EF'(E) = —
-?;EG(éE)— 57 oo (EF(E) + 2M,F(E)] 2EF' (&) 0.(&) G(&)

QUE|
mN
By eliminating G the following equation for F' is obtained:

where E =

~ \2
1
ﬁ(ﬁ)—m-—wduwa=—ﬂina

3\ 5 ) 04(8)oy(&) 2kKT
m : s[E Y 1
i i F&=A - - =] ———)"1dE’
which gives (€) exp| STT 0f(1+ 3 ( . ) D) 00(5')) d&’]

where A is given by the normalization condition

2x [VEF(E)dE=mn.
0

Under certain assumptions on the cross sections, we shall show the explicit ex-
pression of such distribution funetion.
Suppose that the cross section is separable in energy and angle, that is

o(&, 1) = P(&) Q).

The distribution function takes the form

mg 8
F(&E) = - =
<a1%m[zwgu+[

E T 1
g
5 nP(E')] )T dé’]

C 4 Co

+1 +1

where ¢o =27 | Qu) du co=2m [ Quu)(1—u)du.
-1 -1
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It is well known (see [6] and references therein) that, in the stationary and ho-
mogeneous case, the transport equation for charged particles subjected to an ex-
ternal electric field has not, in general, a solution which can be normalized. The
nonexistence of such a solution is called runaway phenomenon. The oceurrence
of runaway depends on how fast is the decay of the cross section, as a function of
energy.

Here we shall consider two physically meaningful interaction laws which give
rise to different situations, with respect to the possiblity that runaway oc-
curs.

In the case of hard sphere interactions, that is P(§) =1, we have:

mé 8(EVY 1
F(E)=A exp( M) where 6 =1+ 3( ) wes

U

It is always possible to normalize this #(&), no matter how large is the electric
field (within the range of applicability of the spherical harmonics expansion, of
course).

In this case of Maxwell interactions, that is P(&) = 1/\/5, we have

~ \2 2
F(§)=[1+~§—(—E—) d 17 where y=coc*——?—)—m (—72-)

n ] ccx 16 kT \ &

This F(£) can be normalized only when the electric field is sufficiently small:

- ¢ Cx
E<y . , otherwise runaway phenomenon occurs.
KT 8

In conclusion, we would like to point out that interesting extensions of the
present approach could be the introduction of elastic seattering and/or a more re-
alistic treatment of inelastic interaction, by keeping M/m finite. Such improve-
ments of the model would allow comparisons with the well known results by Mar-
genau and Druyvesteyn (see [2] and [3]), valid when only elastic interactions
oceur.
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Sommario

L'equazione lineare di Boltzmann per scattering inelastico é applicata allo studio
della funzione di distribuzione per particelle cariche, soggette ad un campo elettrico
esterno, in un mezzo ospite. Si studia Uintegrale collisionale inelastico e si mettono in lu-
ce le connessioni col trasporto di elettroni nei semiconduttori. Viene poi sviluppata una
approssimazione alla Fokker-Planck dell’equazione cinetica, che porta, nel caso spazial-
mente omogeneo, ad un sistema risolubile per © primi due momenti della funzione di di-
stribuzione. Si forniscono e si commentano risultati espliciti per interazioni di interesse
fisico.
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