L. A-M. HANNA (*)

On the matrix representation of Lie algebras for quantized Hamiltonians and their central extensions (**)

1 - Introduction

The method, introduced by S. Steinberg [6], to solve certain types of linear partial differential equations exploits the Lie algebraic decomposition formulae of Baker, Campbell, Hausdorff and Zassanhaus (cf. [7]) as well as their matrix representations. The required matrix representation should be faithful and of low-dimension [6]. This method is applied to solve the Schrödinger wave equations for some Hamiltonian systems in quantum mechanics. The faithful matrix representations of least degrees of three Lie algebras, namely L^+ , L^- and L^c , are discussed and treated as special cases of L_r^s and its central extension $^cL_r^s$.

 L^+ , L^- and L_r^s are generated by K_0 , K_+ and $K_- = K_+^{\dagger}$ († is used for hermitian conjugation) and are submitted to the physical condition that $K_+ + K_-$ is real, to satisfy the hermiticity of the Hamiltonians they correspond to. Also, K_0 is real and diagonal.

 L^+ corresponds to the model of two-level optical atom of Hamiltonian $K_0 + \lambda(K_+ + K_-)$, $\lambda \in \mathbb{R}^*$ (the non-zero real numbers) [5]. L^+ is defined by the commutation relations:

(1)
$$[K_+, K_-] = 2K_0$$
 and $[K_0, K_{\pm}] = \pm K_{\pm}$.

^(*) Dept. of Math., Kuwait Univ., P.O. Box 5969, Safat 13060, Kuwait.

^(**) Received November 12, 1996. AMS classification 17 B 81.

 L^- corresponds to the model of light amplifier of Hamiltonian $K_0 + \lambda(K_+ + K_-)$, $\lambda \in \mathbb{R}^*$ (cf. [1], and references). L^- is defined by the commutation relations:

(2)
$$[K_+, K_-] = -2K_0$$
 and $[K_0, K_{\pm}] = \pm K_{\pm}$.

 L_r^s is the Lie algebra defined by the commutation relations:

$$[K_+, K_-] = sK_0$$
 and $[K_0, K_+] = \pm rK_+$

 $r, s \in \mathbb{R}^*$. This is a generalization of L^+ and L^- . We prove that L_r^s has no non-trivial representation only if r and s have the same sign. Hence L^- has no non-trivial matrix representation satisfying the required mentioned physical conditions.

 L^c is generated by K_1 , $K_2 = K_1^{\dagger}$, K_3 and K_4 which satisfy:

$$[K_1, K_2] = K_3 + 2K_4$$
 $[K_1, K_3] = 0$ $[K_1, K_4] = K_1$

$$[K_2, K_3] = 0$$
 $[K_2, K_4] = -K_2$ $[K_3, K_4] = 0$.

 K_3 and K_4 are real diagonal.

 L^c has the Hamiltonian model $\omega K_3 + 2\omega K_4 + \lambda(K_1 + K_2)$, λ , $\omega \in \mathbb{R}^*$, which is an alternative representation for the light amplifier model.

 L^c is a special case of $^cL_r^s$. While $^cL_r^s$ is a generated by K_0 , K_+ , $K_- = K_+^{\dagger}$ and the central real diagonal elements K_1 , K_2 , ..., K_k satisfy

$$[K_+, K_-] = sK_0 + a_1K_1 + a_2K_2 + ... + a_kK_k$$
 $[K_0, K_+] = \pm rK_+$

where $r, s, a_i \in \mathbb{R}^*$; i = 1, 2, ..., k. It is also subjected to the physical condition that $(K_+ + K_-)$ is real. It is shown that ${}^cL_r^s$ has no non-trivial representation unless r and s have the same sign and so L^c has no non-trivial representation satisfying the physical conditions.

2 - Faithful non-trivial matrix representations of least degrees for L_r^s

Consider a representation of degree n for L_r^s . Let $X=[x_{ij}], \ Y=[y_{ij}]=X^\dagger,$ and Z be the representation matrices of K_+, K_- and K_0 , respectively. To satisfy the physical properties, let $Z=[\delta_{ij}z_{ij}]$ (δ_{ij} is the Kronecker delta), $z_{ij} \in \mathbf{R}$, $y_{ij}=x_{ij}^\dagger=\overline{x}_{ji}$ (the bar is for complex conjugation), $1 \leq i,j \leq n$ and $X+Y=R=[r_{ij}]$ is a real matrix.

Lemma 1. The defining relations of L_r^s can be either

(3)
$$[X, Y] = sZ \qquad \text{and} \qquad [Z, X] = rX \qquad \text{or}$$

(4)
$$[X, Y] = sZ$$
 and $[Z, Y] = -rY$.

Proof.
$$[Z, Y] = [Z^{\dagger}, X^{\dagger}] = [X, Z]^{\dagger} = (-rX)^{\dagger} = -rX^{\dagger} = -rY$$
. Also $[Z, X] = [Z^{\dagger}, Y^{\dagger}] = [Y, Z]^{\dagger} = -[Z, Y]^{\dagger} = -(-rY)^{\dagger} = rY^{\dagger} = rX$.

Lemma 2. The representation matrices of the elements of L_r^s are all real trace-less matrices.

Proof. Since [Z, X] = ZX - XZ = rX, then $\sum_{l=1}^{n} (\delta_{il} z_{il} x_{lj} - x_{il} \delta_{lj} z_{lj}) = rx_{ij}.$ Thus:

(5)
$$x_{ij}(z_{ii} - z_{ji} - r) = 0$$

(6)
$$x_{ii}(z_{ii} - z_{ii} - r) = 0$$

for i, j = 1, 2, ..., n. In particular we have

(7)
$$x_{ii}(z_{ii}-z_{ii}-r)=0.$$

which implies $x_{ii} = 0$.

Since, R = X + Y, we have for $1 \le i, j \le n$ that $r_{ij} = x_{ij} + x_{ij}^{\dagger} = x_{ij} + \overline{x}_{ji}$ is real. But from (5), (6) we derive that x_{ij} and x_{ji} cannot be both different from zero for $i \ne j$. Thus both X and Y are real matrices with diagonal entries zeros and Y is just the transpose of X. From (3) we have

$$s\delta_{ij}z_{ij} = \sum_{l=1}^{n} (x_{il}x_{lj}^{\dagger} - x_{il}^{\dagger}x_{lj})$$

and consequently

(8)
$$z_{ii} = \frac{1}{s} \sum_{l=1}^{n} (x_{il}^2 - x_{li}^2).$$

Therefore
$$\qquad \qquad {\rm trace} \ \ Z = \sum\limits_{i=1}^n z_{ii} = \frac{1}{s} \sum\limits_{i,\;l}^n (x_{il}^2 - x_{li}^2) = 0 \; .$$

Hence the lemma.

From (8) and (5), if $x_{ij} \neq 0$ then

(9)
$$r = z_{ii} - z_{jj} = \frac{1}{s} \sum_{l=1}^{n} (x_{il}^2 - x_{li}^2 - x_{jl}^2 + x_{lj}^2).$$

Theorem. L_r^s has non-trivial matrix representation only when rs > 0, i.e. only when r and s have the same sign.

Proof. Inducing on n, the degree of the representation, we get for n = 1, that X = Y = Z is the zero 1×1 matrix, since $x_{11} = 0$ is the only element of X. The representation is trivial. Consider the following cases:

Case 1. Let n=2. For non-trivial representation let, $x_{ij} \neq 0$, $i \neq j$, $1 \leq i, j \leq 2$. From (6) $x_{ji} = 0$ and from (9) and (7) we have $r = \frac{2}{s} x_{ij}^2$ which is satisfied only when rs > 0.

Now, assume that the theorem is true for n = m - 1. Consider a matrix representation for L_r^s of degree m. Let X be partitioned as follows

$$X = \begin{bmatrix} X_{m-1} & C_{m-1} \\ R_{m-1} & 0 \end{bmatrix}$$

where X_{m-1} is an $(m-1) \times (m-1)$ matrix. C_{m-1} and R_{m-1} are (m-1)-component column and row, respectively. From (7), $x_{mm} = 0$.

Consider now the following cases and sub-cases:

Case 2. If $X_{m-1} = O_{m-1}$, the zero $(m-1) \times (m-1)$ matrix. For a non-trivial representation, there must be a non-zero element in C_{m-1} or R_{m-1} .

Case 2.1. If all the elements of C_{m-1} are zeros and $x_{mj} \neq 0$, $j \neq m$. Then from (9)

(10)
$$r = z_{mm} - z_{jj} = \frac{1}{s} \left(\sum_{l=1}^{m} x_{ml}^2 + x_{mj}^2 \right)$$

which is only satisfied when rs > 0.

Case 2.2. If all the elements of R_{m-1} are zeros and $x_{im} \neq 0$, $i \neq m$. Then from (9)

(11)
$$r = z_{ii} - z_{mm} = \frac{1}{s} \left(x_{im}^2 + \sum_{l=1}^m x_{lm}^2 \right)$$

which is satisfied only when rs > 0.

Case 2.3. If $x_{im} \neq 0$, $i \neq m$, and R_{m-1} is a non-zero row. For each element $x_{mj} \neq 0, j \neq m$, in the m^{th} row, we have from a previous remark, $x_{jm} = 0 = x_{mi}$. From (5) we have $r = z_{ii} - z_{mm} = z_{mm} - z_{jj}$. Thus, $2r = z_{ii} - z_{jj}$. And from (8) we get

(12)
$$2r = \frac{1}{s}(x_{im}^2 + x_{mj}^2)$$

which is satisfied only when rs > 0.

Therefore the theorem is true for case 2 and its sub-cases 2.1-2.3.

Case 3. If $X_{m-1} \neq O_{m-1}$. Let $P = [p_{ij}]$ be an $(m-1) \times (m-1)$ matrix. In each of the sub-cases 3.1-3.2 P will be acquired to be a non-zero matrix representing K_+ , which contradicts our assumption unless rs > 0, as required.

Case 3.1. If $X_{m-1} \neq O_{m-1}$ and all the elements of R_{m-1} and C_{m-1} are zeros, then let $P = X_{m-1}$.

Case 3.2. If $X_{m-1} \neq O_{m-1}$ and not all the elements of R_{m-1} and C_{m-1} are zeros, consider an $x_{ij} \neq 0$, $i \neq j$; $1 \leq i, j \leq m-1$ (there must be such an element). Then let the only non-zero element of P be (see eq. (9))

$$p_{ij} = \sqrt{\frac{1}{2} \sum_{l=1}^{m} (x_{il}^2 - x_{li}^2 - x_{jl}^2 + x_{lj}^2)} = \sqrt{\frac{rs}{2}} \neq 0$$
.

We have
$$\frac{1}{s} \sum_{l=1}^{m-1} (p_{il}^2 - p_{li}^2 - p_{jl}^2 + p_{lj}^2) = \frac{1}{s} (p_{ij}^2 + p_{ij}^2) = r.$$

We conclude this section by introducing all the non-trivial matrix representations of degree two, the lowest degree, for L_r^s .

From Case 1, $x_{ij}^2 = \frac{rs}{2}$ and we have the representations:

$$X = \begin{bmatrix} 0 & \pm \sqrt{\frac{rs}{2}} \\ 0 & 0 \end{bmatrix} \quad Y = \begin{bmatrix} 0 & 0 \\ \pm \sqrt{\frac{rs}{2}} & 0 \end{bmatrix} \quad \text{and} \quad Z = \frac{r}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 0 \\ \pm \sqrt{\frac{rs}{2}} & 0 \end{bmatrix} \quad Y = \begin{bmatrix} 0 & \pm \sqrt{\frac{rs}{2}} \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad Z = \frac{r}{2} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Clearly, L_r^s is $sl(2, \mathbf{R})$, the special linear Lie algebra of all 2×2 trace-less matrices.

The one-parameter subgroups of $SL(2, \mathbf{R})$ associated with X, Y, and Z in each representation are respectively:

$$\exp\left[\alpha(t)\,X\right] = \begin{bmatrix} 1 & \pm \alpha(t)\,\sqrt{\frac{rs}{2}} \\ 0 & 1 \end{bmatrix} \qquad \exp\left[\beta(t)\,Y\right] = \begin{bmatrix} 1 & 0 \\ \pm \beta(t)\,\sqrt{\frac{rs}{2}} & 1 \end{bmatrix}$$

and

$$\exp\left[\gamma(t) Z\right] = \begin{bmatrix} e^{\frac{r\gamma(t)}{2}} & 0\\ 0 & e^{-\frac{r\gamma(t)}{2}} \end{bmatrix}$$

$$\exp\left[\alpha(t)\,X\right] = \begin{bmatrix} 1 & 0 \\ \pm \alpha(t)\,\sqrt{\frac{rs}{2}} & 1 \end{bmatrix} \qquad \exp\left[\beta(t)\,Y\right] = \begin{bmatrix} 1 & \pm \beta(t)\,\sqrt{\frac{rs}{2}} \\ 0 & 1 \end{bmatrix}$$

and

$$\exp\left[\gamma(t) Z\right] = \begin{bmatrix} e^{-\frac{r\gamma(t)}{2}} & 0\\ 0 & e^{\frac{r\gamma(t)}{2}} \end{bmatrix}$$

with $t \in (-\infty, \infty)$.

3 - Faithful non-trivial matrix representation for $^{c}L_{r}^{s}$

Let $K = K_0 + b_1 K_1 + b_2 K_2 + \ldots + b_k K_k \in {}^cL_r^s$, where $b_i = \frac{a_i}{s}$ and $i = 1, \ldots, k$. From the above discussion there are no non-trivial matrices to represent K_+, K_-, K unless rs > 0, because

$$[K_+, K_-] = sK$$
 $[K, K_+] = \pm rK_+$

as $[K_i, A] = 0$, $\forall A \in {}^{c}L_r^{s}, i = 1, ..., k$.

Therefore, L^c has no non-trivial matrix representations satisfying the mentioned physical requirements.

References

- [1] M. A. Al-Gwaiz, M. S. Abdalla and S. Deshmukh, Lie algebraic approach to coupled-mode oscillator, J. Phys. A 27 (1994), 1275-1282.
- [2] G. Dattoli, P. Di Lazzaro and A. Torre, A spinor approach to the propagation in self-focusing fibers, Il Nuovo Cimento B 105 (1990), 165-178.
- [3] G. Dattoli, M. Richetta, G. Schettini and A. Torre, Lie algebraic methods and solutions of linear partial differential equations, J. Math. Phys. 31 (1990), 2856-2863.
- [4] S. S. Hassan, L. A-M. Hanna and M. E. Khalifa, *Lie algebraic approach to Schrödinger equations for Hamiltonian models of optical atoms*, Second Int. Conf. on Dynamic Systems and Applications, Atlanta, USA, 1995, to appear.
- [5] R. J. C. Spreeuw and J. P. Woerdman, *Optical atoms*, Progress in Optics 31 (1993), 263-319.
- [6] S. Steinberg, Applications of the Lie algebraic formulas of Baker, Campbell, Hausdorff and Zassenhaus to the calculation of explicit solutions of partial differential equations, J. Differential Equations 26 (1977), 404-434.
- [7] W. WITSCHEL, Ordered operator expansions by comparison, J. Phys. A 8 (1975), 143-155.

Sommario

Si consideri l'algebra di Lie $L_r^s:[K_+,K_-]=sK_0$, $[K_0,K_\pm]=\pm rK_\pm$ e la sua estensione centrale ${}^cL_r^s:[K_+,K_-]=sK_0+a_1K_1+\ldots+a_kK_k$, $[K_0,K_\pm]=\pm rK_\pm$, dove $r,s,a_i\in I^s$, $i=1,\ldots,k$. $i=1,\ldots,k$.

