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On the matrix representation of Lie algebras
for quantized Hamiltonians
and their central extensions (*¥)

1 - Introduction

The method, introduced by S. Steinberg [6], to solve certain types of linear
partial differential equations exploits the Lie algebraic decomposition formulae of
Baker, Campbell, Hausdorff and Zassanhaus (cf. [7]) as well as their matrix rep-
resentations. The required matrix representation should be faithful and of low-di-
mension [6]. This method is applied to solve the Schridinger wave equations for
some Hamiltonian systems in quantum mechanics. The faithful matrix representa-
tions of least degrees of three Lie algebras, namely L ¥, L ~ and L°, are discussed
and treated as special cases of L and its central extension °L,S.

L*, L~ and L} are generated by K,, K, and K_ = K (t is used for hermi-
tian conjugation) and are submitted to the physical condition that K, + K_ is re-
al, to satisfy the hermiticity of the Hamiltonians they correspond to. Also, K, is
real and diagonal.

L™ corresponds to the model of two-level optical atom of Hamiltonian
Ko+ MK, + K_), Ae R* (the non-zero real numbers) [5]. L * is defined by the
commutation relations:

M (K., K_]1=2K, and (Ko, K.]1= =K.
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L~ corresponds to the model of light amplifier of Hamiltonian Ky+A(K, +K_),
AeR* (cf. [1], and references). L ~ is defined by the commutation relations:

@ [K,,K ]=-2K, and [Koy Kel= = K..
L; is the Lie algebra defined by the commutation relations:
[K,,K_.]=sK, and [Ky, K.l==7K.

r, se R*. This is a generalization of L * and L ~. We prove that L; has no non-
trivial representation only if » and s have the same sign. Hence L ~ has no non-
trivial matrix representation satisfying the required mentioned physical condi-
tions.

L° is generated by K;, K, =K{, K; and K, which satisfy:

[Ky, Kl =K3+2K, [K;, K3]1=0 [K;, K] =K,
[Kz,K3]=0 [Kz, K4]= ‘Kz [K3;K4]=0-

K; and K, are real diagonal.

L° has the Hamiltonian model wK; + 2wk, + A(K; + K;), 1, w e R*, which is
an alternative representation for the light amplifier model.

L° is a special case of °L;?. While °L; is a generated by Ky, K,, K_ = K] and
the central real diagonal elements K, K, ..., K, satisfy

(K., K 1=sKy+a, K; + @K + ... + g, K, [Ko, K. 1= 7K,

where 7, 8, ¢;e R*; 1=1, 2, ..., k. It is also subjected to the physical condition
that (K, + K_) is real. It is shown that °L; has no non-trivial representation un-
less 7 and s have the same sign and so L° has no non-trivial representation satis-
fying the physical conditions.

2 - Faithful non-trivial matrix representations of least degrees for L}

Consider a representation of degree n for L!. Let X =[], ¥ = [y;]1 = X",
and Z be the representation matrices of K,, XK. and K, respectively. To
satisfy the physical properties, let Z={[d;2;] (05 is the Kronecker delta),
zieR, yij=xi}= Tj; (the bar is for complex conjugation), 1<4i,j<n and
X+Y=R=[ry] is a real matrix.
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Lemma 1. The defining relations of LS can be either

3) X, Y]=sZ and Z,X1= rX or
@) [X,Y]=sZ and [Z,Y]=-7Y.
Proof. [Z,Y]1=[Z27,X"]=[X,Z] = (=1X)= —+XT= —2Y. Also

[Z,X]1=1Z", Y=Y, 2] = —[Z, Y]'= — (-r})' = oY =X.

Lemma 2. The representation matrices of the elements of LS are all real
trace-less matrices.

Proof. Since [Z,X]=2X-XZ=7X, then lz(dﬂzﬂxlj—xi,a,jzlj)=mij.
=1
Thus:

®) (2 —2;;—7) =0
(6) w2 — 23— 1) =0
for i,5=1,2, ..., n. In particular we have

M (25— 25— 1) =0.

which implies z; = 0.

Since, B =X +Y, we have for 1 <1, j <n that r; = v; + o} = x; + T;; is real.
But from (5), (6) we derive that x; and x;; cannot be both different from zero for
1% j. Thus both X and Y are real matrices with diagonal entries zeros and Y is
just the transpose of X. From (8) we have

n
86 25 = l;(xiz wf — )

and consequently

M=

1
@® 2= 7 (xf —xf).

=1

n 1 X3
Therefore trace Z= 2, 2= — Zl(xﬁ —-x2)=0.
=1 s

Hence the lemma.
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From (8) and (5), if ;0 then

1 n
2_ 2 2 2
©) TEg = 12_1(1311 — T — i + ®f).

Theorem. L has non-trivial matrix representation only when rs >0, i.e.
only when r and s have the same sign.

Proof. Inducing on n, the degree of the representation, we get for n =1,
that X = Y = Z is the zero 1 X 1 matrix, since x;; = 0 is the only element of X. The
representation is trivial. Consider the following cases:

Case 1. Let n = 2. For non-trivial representation let, x; = 0,177, 1 <4,j < 2.

From (6) ;=0 and from (9) and (7) we have r = —x? which is satisfied only
when rs > 0. §

Now, assume that the theorem is true for n = m — 1. Consider a matrix repre-
sentation for L; of degree m. Let X be partitioned as follows

Y= Xm——l Cm—l
Rm—l 0

where X, _; is an (m — 1) X (m — 1) matrix. C,,_; and E,, -, are (m — 1)-compo-
nent column and row, respectively. From (7), 2,,, = 0.
Consider now the following cases and sub-cases:

Case 2. If X,,_, = 0,,_1, the zero (m — 1) X (m — 1) matrix. For a non-trivial
representation, there must be a non-zero element in C,,_; or K,, _1.

Case 2.1. If all the elements of C,,_, are zeros and x,,;=0, j=m. Then
from (9)

1 m
(10) T = 2y, — B = - (121 T2+ )

which is only satisfied when 7s > 0.
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Case 2.2. If all the elements of R,,_; are zeros and ;, #0, i = m. Then
from (9)

1 m
(11) V=24 — By = "';' (xi?m + ZZI xl?n)

which is satisfied only when s > 0.

Case 2.3. If x;, =0, i#m, and R,,_ is a non-zero row. For each element
Zp; =0, j = m, in the m™ row, we have from a previous remark, 2, =0 = &,,;.
From (5) we have 7= 2; ~ 2y = 2y — 25. Thus, 2r=z; — z;. And from (8)
we get

1
(12) 2y = g (xi%n + wnzij)

which is satisfied only when s >0.
Therefore the theorem is true for case 2 and its sub-cases 2.1-2.3.

Case 3. If X,,_,#0,,_. Let P=[py] be an (m —1) x (m — 1) matrix. In
each of the sub-cases 3.1-3.2 P will be acquired to be a non-zero matrix represen-
ting K, which contradicts our assumption unless rs >0, as required.

Case 3.1. If X,,,_; # O,,_; and all the elements of R,,_, and C,,_, are zeros,
then let P=X,,_,.

Case 3.2. If X, _; # 0,,_;and not all the elements of R,,_; and C,,_, are ze-

ros, consider an x; =0, 1#5; 1 <4, j<m — 1 (there must be such an element).
Then let the only non-zero element of P be (see eq. (9))

1 = /Ts
p1]=\/Elgl(xz%—xﬁ—-xﬁ+xl]2)= —é- Z0.

1 ms! ' 1
We have " 2:1 (pd _pl%_‘pj% + 1%2') = ;‘(pz%""pi?) =r.

Hence the theorem.
We conclude this section by introducing all the non-trivial matrix representa-
tions of degree two, the lowest degree, for LS.



10 L. A-M. HANNA [6]

s .
From Case 1, x§ = — and we have the representations:

Py 0 0
< |0 '*_'\/7'—28 v _ g gt
t\/’: 0 2o -1

0 0
. 0 =+ il r| -1 0
X= rs Y= 2 and Z= — .
=+ 1

Clearly, L} is sli(2, R), the special linear Lie algebra of all 2 x 2 trace-less

matrices.
The one-parameter subgroups of SL(2, R) associated with X, Y, and Z in

each representation are respectively:

1 \/78‘ 1 0
expla(t) X] = Ay exp[B(t) Y] = rs
£B(t) 4] — 1
0 1 i 2
ﬂ g
e 2 0
and exply(t) Z] = o
0 e 2 |
1 0 I s
exp[a(t) X] = s ewipyr =" O \/'2_
+alt) ] — 1
2 0 1
) :
e 2 0
and exply(t) Z]1 = e
0 e 2

with e (— o, ).

3 - Faithful non-trivial matrix representation for °L;

Let K = Ky + by Ky + by Ky + ... + by K, e°L$, where b;= = and i=1, ..., k.
S

From the above discussion there are no non-trivial matrices to represent
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K., K_, K unless rs >0, because
(K., K_]1=3sK [K,K.]=*7K,

as [K;, Al=0, VAe®L:, i=1, .., k.
Therefore, L° has no non-trivial matrix representations satisfying the men-
tioned physical requirements.
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Sommario

St considert lalgebra di Lie Li:(K,,K_1=sK,, [Ky,K.]l==+7K. ¢ la sua
estensione centrale °L;:[K,, K_]=sKj+ o, K+ ... +a;K;, [Ky, K.]= 7K., dove
78, qeRY i=1, ..., k. Ky é Uoperatore hermitiano, K, =K1 e K; sono gli elementi
centrali diagonali. Si dimostra che L} ¢ °L} hanno rappresentazioni matriciali non
banali soltanto quando ¢ rs> 0.
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