E. CASINI and M. SALVATORI (*)

Complex interpolation and (n, δ) -convexity (**)

1 - Introduction and notation

In this paper we investigate the relations between the complex method of interpolation for infinite families of Banach spaces, introduced in [4], and the notion of (n, δ) -convexity, due to D. P. Giesy and R. C. James [6].

In particular, we prove that the intermediate spaces obtained by interpolation from a family $\{X(\theta)\}$, $0 \le \theta < 2\pi$, are (n, δ) -convex provided that the boundary spaces satisfy the same property when θ ranges in a subset U of $[0, 2\pi)$ with positive measure.

Our result includes those in [2] and [3], about, respectively, the stability of (n, δ) -convexity for complex interpolation of pair of spaces, and the case n = 2, i.e. uniform non-squareness.

For $n \ge 2$ and $\delta > 0$, a Banach space X is (n, δ) -convex if for any x_1, \ldots, x_n of X such that $||x_j|| \le 1$ for every j, there exists a choice of signs $\varepsilon_1, \ldots, \varepsilon_n$, with $\varepsilon_j = \pm 1$ such that

$$\left\|\frac{1}{n}\sum_{j=1}^{n}\varepsilon_{j}x_{j}\right\| \leq 1 - \delta.$$

A Banach space X is said to be *uniformly non-l_n*¹ if it is (n, δ) -convex for some $\delta > 0$, and X is B-convex if it is uniformly non-l_n¹ for some $n \ge 2$. Uniformly non-l₂¹ spaces are known as *uniformly non-square*. (For these definitions see [7] and [6]).

The complex method of interpolation for infinite families of Banach spaces is a

^(*) Ist. di Scienze Mat., Fis. e Chim., Via Lucini 3, 22100 Como, Italia; Dip. di Matem., via Saldini 50, 20133 Milano, Italia.

^(**) Received November 4, 1996. AMS classification 46 B 70.

generalization of the well known method for pairs of spaces introduced by Calderón, [1]. For sake of completeness we give a brief introduction to this interpolation method.

Let D be the open unit disk in the complex plane and denote by ∂D its boundary. We identify the points $e^{i\theta} \in \partial D$ and $\theta \in T = [0, 2\pi)$. For $z \in D$, the Poisson kernel at z is $P_z(\theta) = \frac{1}{2\pi} (1 - |z|^2) |z - e^{i\theta}|^{-2}$, and for any measurable subset U of T we denote by $|U|_z = \int_T P_z(\theta) \, \mathrm{d}\theta$ its harmonic measure.

The family of complex Banach spaces $\{X(\theta), \theta \in T\}$ is an interpolation family if:

- i. all the spaces are continuously embedded in a common Banach space $\operatorname{\mathscr{U}}$
- ii. for every $x \in \bigcap_{\theta} X(\theta)$ the function $\theta \to ||x||_{X(\theta)}$ is measurable with respect to the Lebesgue measure $d\theta$ on T

iii. there exists a measurable function k on T satisfying the inequality $\int \log^+ k(\theta) \, P_z(\theta) \, \mathrm{d}\theta < +\infty$ for some (and hence any) $z \in D$, and such that $\|x\|_{\mathscr{U}} \leq k(\theta) \|x\|_{X(\theta)}$ for every x belonging to the set:

$$\mathcal{A} = \left\{ x \in \bigcap_{\theta} X(\theta) : \int_{T} \log^{+} ||x||_{X(\theta)} P_{z}(\theta) \, \mathrm{d}\theta < + \infty \right\}.$$

Let \mathscr{F} be the completion of the space of functions $f:D\to\mathscr{N}$ of the form $f(z)=\sum\limits_{j=1}^n x_j\phi_j(z)$, where $x_j\in\mathscr{N}$ and $\phi_j\in N^+(D)$ (see [5]), with respect to the norm $\|f\|_{\infty}=\mathrm{Ess}\,\mathrm{Sup}\|f(\theta)\|_{X(\theta)}$. (Here, $f(\theta)$ is the non-tangential limit of f(z) as $z\to e^{i\theta}$.)

For $z \in D$, the intermediate spaces X(z) are the images at z of the functions in the class \mathcal{F} , and the norm in X(z) is $||x||_z = \inf\{||f||_{\infty} : f \in \mathcal{F}, f(z) = x\}$.

In the proof of our result we shall make use of the following inequality (Proposition 2.4 [4]). For every $f \in \mathscr{F}$ and for every $z \in D$

(1)
$$||f(z)||_z \leq \exp \int_T \log ||f(\theta)||_{X(\theta)} P_z(\theta) d\theta.$$

2 - The main result

Theorem. Let $\{X(\theta), \theta \in T\}$ be an interpolation family of complex Banach spaces, such that $X(\theta)$ is (n, δ_{θ}) -convex when θ belongs to a measurable subset U of T. If $|U|_z > 0$ for some (hence any) $z \in D$ and if the function $\theta \to \delta_{\theta}$ is measurable subset

surable, then for every $z \in D$ there exists $\delta_z > 0$ such that X(z) is (n, δ_z) -convex.

Proof. Let x_1, \ldots, x_n belong to the unit ball of X(z). For $\eta > 0$ fixed, we can find $f_1, \ldots, f_n \in \mathcal{F}$ with $||f_j||_{\infty} \leq 1$, and $(1 + \eta) f_j(z) = x_j$.

For every $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$, $(\varepsilon_j = \pm 1)$ we define the sets

$$E_{\varepsilon} = E_{\varepsilon}(\{f_j\}) = \{\theta \in U : \left\| \frac{1}{n} \sum_{j=1}^{n} \varepsilon_j f_j(\theta) \right\|_{X(\theta)} < 1 - \delta_{\theta} \}.$$

Since $X(\theta)$ is (n, δ_{θ}) -convex for every $\theta \in U$, it is $\bigcup_{\varepsilon} E_{\varepsilon} = U$. This implies that there exists $\overline{\varepsilon} = (\overline{\varepsilon}_1, \ldots, \overline{\varepsilon}_n)$ such that $|E_{\overline{\varepsilon}}|_z \ge \frac{|U|_z}{2^{n-1}}$.

By (1) and since we have $\|\frac{1}{n}\sum_{j=1}^n \overline{\varepsilon}_j f_j(\theta)\|_{X(\theta)} \le 1$ for every $\theta \in T$, it follows

$$\begin{split} \frac{1}{1+\eta} \, \| \, \frac{1}{n} \, \textstyle \sum_{j=1}^n \overline{\varepsilon}_j \, x_j \, \|_z & \leq \exp \int_T \log \| \, \frac{1}{n} \, \textstyle \sum_{j=1}^n \overline{\varepsilon}_j \, f_j(\theta) \, \|_{X(\theta)} \, P_z(\theta) \, \, \mathrm{d}\theta \\ & \leq \exp \int_{E_{\overline{\varepsilon}}} \log \| \, \frac{1}{n} \, \textstyle \sum_{j=1}^n \overline{\varepsilon}_j \, f_j(\theta) \, \|_{X(\theta)} \, P_z(\theta) \, \, \mathrm{d}\theta \\ & \leq \exp \int_{E_{\overline{\varepsilon}}} \log \left(1 - \delta_{\,\theta} \right) \, P_z(\theta) \, \, \mathrm{d}\theta \, \, . \end{split}$$

Moreover, Jensen's inequality yields

$$\exp \int\limits_{E_{\overline{\epsilon}}} \log \left(1-\delta_{\theta}\right) P_{z}(\theta) \, \mathrm{d}\theta \leq \left[\int\limits_{E_{\overline{\epsilon}}} (1-\delta_{\theta}) \, P_{z}(\theta) \, \frac{\mathrm{d}\theta}{\left|E_{\overline{\epsilon}}\right|_{z}}\right]^{|E_{\overline{\epsilon}}|_{z}}$$

$$= \left[1 - \int_{E_{\bar{z}}} \delta_{\theta} P_z(\theta) \frac{\mathrm{d}\theta}{|E_{\bar{z}}|_z}\right]^{|E_{\bar{z}}|_z}.$$

Recalling that $\frac{|U|_z}{2^{n-1}} \le |E_{\overline{\epsilon}}|_z \le |U|_z$, we get

$$\frac{1}{1+\eta} \left\| \frac{1}{n} \sum_{j=1}^n \overline{\varepsilon}_j x_j \right\|_z \leq \left[1 - \frac{1}{|U|_z} \int_{E_z} \delta_{\theta} P_z(\theta) \, \mathrm{d}\theta \right]^{\frac{|U|_z}{2^{n-1}}}.$$

To evaluate the last term we observe that each harmonic measure is absolutely continuous with respect to the measure λ given by $\lambda(M) = \int\limits_M \delta_\theta P_z(\theta) \, \mathrm{d}\theta$,

 $M \subset U$. Hence

$$\operatorname{Inf}\left\{\lambda(E): |E|_z \geq \frac{|U|_z}{2^{n-1}}\right\} = \alpha_z > 0.$$

This implies

$$\frac{1}{1+\eta} \left\| \frac{1}{n} \sum_{j=1}^{n} \overline{\varepsilon}_{j} x_{j} \right\|_{z} \leq \left[1 - \frac{\alpha_{z}}{|U|_{z}} \right]^{\frac{|U|_{z}}{2^{n-1}}}.$$

Since η is arbitrarily small the proof is complete if we take

$$\delta_z = 1 - \left[1 - \frac{\alpha_z}{|U|_z}\right]^{\frac{|U|_z}{2^{n-1}}}.$$

Remark. If we also assume that there exists a positive δ_0 such that $\delta_\theta \ge \delta_0$ for every $\theta \in U$, then it is easy to deduce that

$$\delta_z = 1 - \left[1 - \delta_0\right]^{\frac{|U|_z}{2^{n-1}}} \qquad \forall z \in D \; .$$

References

- [1] A. P. CALDERÓN, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
- [2] E. CASINI, Complex interpolation and l_n^1 property, Math. Pannonica 3 (1992), 117-119.
- [3] E. CASINI and M. VIGNATI, The uniform non-squareness for the complex interpolation space, J. Math. Anal. Appl. 164 (1992), 518-523.
- [4] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. in Math. 33 (1982), 203-229.
- [5] P. L. DUREN, Theory of H^p spaces, Accademic Press, New York 1970.
- [6] D. P. GIESY and R. C. JAMES, Uniformly non l¹ and B-convex Banach spaces, Studia Math. 48 (1973), 61-69.
- [7] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.

Sommario

Si prova che gli spazi ottenuti mediante il metodo di interpolazione complessa per famiglie di spazi di Banach sono (n, δ) -convessi se gode di questa proprietà un numero «sufficiente» di spazi sul bordo.