G. FERRARESE e L. STAZI (*)

Riferimenti generalizzati in relatività (**)

1 - Caratterizzazione geometrica

Generalmente, per riferimento si intende ([1]), cap. IV) un insieme di ∞^3 particelle ideali che, nel loro divenire, invadono tutto lo spazio-tempo V_4 ; esse si muovono liberamente (senza urti o proliferazione), in modo che sia conservata la loro individualità, quindi il loro numero. Pertanto, dal punto di vista assoluto, un tale riferimento è caratterizzato da una congruenza globale Γ di ∞^3 linee d'universo, orientate e del genere tempo, cioè da un campo di vettori γ unitari e temporali

$$(1.1) \gamma \cdot \gamma = -1.$$

Dal punto di vista geometrico, Γ introduce, in V_4 , una struttura quasi-prodotto 1×3 , di tipo ortogonale, definita localmente da γ : asse temporale, e dall'iperpiano Σ ortogonale a γ : spazio fisico associato al riferimento (splitting dello spazio-tempo). Si tratta di una struttura che, sia pure in termini locali, costituisce, in Relatività generale, l'analogo del riferimento galileiano di cui alla situazione minkowskiana, a parte il carattere globale.

In ogni caso, pur con la variabilità di γ (e quindi della piattaforma Σ normale), un siffatto riferimento sottintende, almeno dal punto di vista cinematico, un continuo ordinario, costituito da particelle ideali a simmetria sferica, senza piani o assi privilegiati. Il precedente concetto di riferimento può così essere generalizzato nel senso dei continui polari, supponendo che la distribuzione di iperpiani $\{\Sigma\}$ (definita da γ nel caso ordinario), sia indipendente dalle linee orarie del continuo, come se questo fosse costituito da particelle orientate (spin). In questo

^(*) Dip. di Matem. G. Castelnuovo, Univ. La Sapienza, P.le A. Moro 2, 00185 Roma.

^(**) Ricevuto il 30.12.1996. Classificazione AMS 83 C 05.

senso, supporremo che, insieme alla congruenza temporale Γ , definita dai vettori unitari γ , in V_4 sia assegnata una distribuzione di 3-piani $\hat{\Sigma}$ non ortogonali a γ ; distribuzione caratterizzata in ogni caso: ellittico, iperbolico o parabolico, da un secondo campo di vettori $\eta \neq \gamma$, definito a meno di un fattore moltiplicativo. L'insieme ordinato dei due campi vettoriali γ e η introduce in V_4 una struttura quasi-prodotto 1×3 non ortogonale, che si riduce alla precedente per η parallelo a γ ; localmente si ha ancora un asse temporale (definito da γ) e uno spazio 3-dimensionale $\hat{\Sigma}$, ma questi è ortogonale a η e non a γ .

Più generalmente, una struttura siffatta è stata introdotta in una varietà dif- ferenziabile, mediante l'insieme di due campi: uno $contravariante \ \gamma^a$ e l'altro co- $variante \ \eta_a$, definiti ciascuno a meno di un fattore moltiplicativo, con $\gamma^a \eta_a \neq 0$ [3]. Tuttavia, il caso più frequente è quello metrico; la struttura non ortogonale interviene, ad esempio, nello spazio ordinario, quando si considera l'evoluzione di una $superficie \ ondosa$ e dei $raggi \ associati$. Analogamente, la $dinamica \ dei \ si stemi \ olonomi$ a vincoli dipendenti dal tempo, $tradotta \ nello \ spazio \ degli \ eventi$, induce quivi una struttura di tipo non ortogonale [2] e [4], definita dalle linee $x^0 = ct = var$. e dalle varietà V_n : $x^0 = cost$. Si tratta di due casi particolari, nei quali $la \ distribuzione \ \{\hat{\Sigma}\}\$ è integrabile. In una nota successiva, verrà trattato il caso dei superfluidi, più significativo dal punto di vista relativistico.

Nel seguito supporremo che V_4 sia orientata nel tempo e che gli iperpiani $\hat{\Sigma}$ siano strettamente euclidei, sì che anche η , come γ , è a norma negativa, ed entrambi appartengono allo stesso semicono luce: $\gamma \cdot \eta < 0$; pertanto, ai fini della caratterizzazione di $\hat{\Sigma}$, non è restrittivo supporre l'ulteriore condizione

$$\gamma \cdot \boldsymbol{\eta} = -1.$$

Si noti che la (1.2) è compatibile con il caso nullo: $\eta^2 = 0$, in cui l'iperpiano $\hat{\Sigma}$ è di tipo parabolico, cioè tangente al cono luce lungo η ; di qui la possibilità di utilizzare i riferimenti generalizzati nello studio dei fasci luminosi: congruenze nulle [1].

2 - Basi quasi naturali

Come nel caso standard, anche in una V_4 dotata di prodotto 1×3 non ortogonale, ha senso considerare basi adattate alla struttura; si tratta di tetradi costituite da un vettore collineare a γ , e da una base di $\hat{\Sigma}$, scelta arbitrariamente. Tra le infinite basi adattate, generalmente anolonome, ci sono quelle speciali, ad esempio quasi-naturali; esse sono di due tipi, a seconda che si consideri, in $\hat{\Sigma}$, la base indotta (per proiezione obliqua) dalla base naturale $\{\varepsilon_{\alpha}\}$, ovvero dalla duale $\{\varepsilon^{\alpha}\}$.

In ogni caso, riesce sempre utile (e generalmente non restrittivo) adottare coordinate interne (o adattate) alla congruenza Γ : (y^a) ; esse sono definite a meno di una arbitraria trasformazione del tipo

(2.1)
$$y^{0'} = y^{0'}(y^{\alpha})$$
 $y^{i'} = y^{i'}(y^1, y^2, y^3)$

ove le funzioni a secondo membro sono subordinate alle sole condizioni che le coordinate siano equiorientate nello spazio e nel tempo

(2.2)
$$\frac{\partial y^{0'}}{\partial y^0} > 0 \qquad \det \left\| \frac{\partial y^{i'}}{\partial y^i} \right\| > 0.$$

In coordinate adattate si deve intendere che ε_0 e γ siano paralleli e concordi, ovvero: $\gamma = \gamma^0 \varepsilon_0$, ($\gamma^0 > 0$, $\gamma^i = 0$). Ciò implica, essendo γ unitario, che le sue componenti covarianti siano del tipo usuale: $\gamma_a = g_{a0} (-g_{00})^{-\frac{1}{2}}$.

Per semplicità, come nel caso ordinario, sceglieremo in $\hat{\Sigma}$ basi quasi-naturali, indotte a partire dai vettori $\boldsymbol{\varepsilon}_i$ (anziché $\boldsymbol{\varepsilon}^i$); cioè considereremo basi adattate $\{\widetilde{\boldsymbol{e}}_a\}$ del tipo

(2.3)
$$\widetilde{e}_0 = \gamma = \gamma^0 \varepsilon_0 \qquad \widehat{e}_i = \varepsilon_i - \frac{\eta_1}{\eta_0} \varepsilon_0 \in \widehat{\Sigma} \qquad \widehat{e}_i = \widetilde{e}_i \qquad i = 1, 2, 3.$$

Esse presuppongono ovviamente la scelta di coordinate interne alla congruenza Γ (alle quali fa capo la base naturale $\{\varepsilon_a\}$); il carattere di base, sia pure anolonoma, è provato dal fatto che i vettori (2.3) sono linearmente indipendenti:

$$\widetilde{e}_0 \wedge \widehat{e}_1 \wedge \widehat{e}_2 \wedge \widehat{e}_3 = \gamma^0 \varepsilon_0 \wedge \varepsilon_1 \wedge \varepsilon_2 \wedge \varepsilon_3 \neq 0$$
.

Del resto, le relazioni (2.3), del tipo $\tilde{e}_{\alpha} = \omega_{\tilde{\alpha}}{}^{a} \varepsilon_{a}$ sono invertibili: $\varepsilon_{a} = \omega_{\tilde{\alpha}}{}^{\tilde{a}} \tilde{e}_{a}$; invero, tenuto conto delle limitazioni (1.1), (1.2), si hanno i legami

(2.4)
$$\eta_0 = \gamma_0 = -(\gamma^0)^{-1}$$

nonché dalla (2.3): $\varepsilon_0 = -\eta_0 \, \widetilde{e}_0$, $\varepsilon_i = \widehat{e}_i - \eta_i \, \widetilde{e}_0$, e pertanto

(2.3)'
$$\boldsymbol{\varepsilon}_{\alpha} = \delta_{\alpha}^{i} \, \hat{\boldsymbol{e}}_{i} - \eta_{\alpha} \, \tilde{\boldsymbol{e}}_{0} \qquad \qquad \alpha = 0, 1, 2, 3.$$

Dalla relazione scritta seguono direttamente gli shifters $\omega^{\tilde{a}}_{\ a}$

(2.5)
$$\omega^{\tilde{0}}_{a} = -\eta_{a} \qquad \omega^{\tilde{i}}_{a} = \delta^{i}_{a}.$$

Gli elementi reciproci $\omega_{\tilde{a}}^{a}$ sono invece forniti direttamente dalla (2.3)

(2.5)'
$$\omega_{\tilde{i}}{}^{\alpha} = \delta_{0}^{\alpha} \gamma^{0} \qquad \omega_{\tilde{i}}{}^{\alpha} = \delta_{i}^{\alpha} - \frac{\eta_{i}}{\eta_{0}} \delta_{0}^{\alpha}.$$

Come nel caso standard, la base $\{\widetilde{e}_a\}$ di cui alla (2.3) è di tipo anolonomo, nel senso che non deriva da alcuna specie di coordinate; tuttavia, in un cambiamento delle y^a di tipo interno (2.1), come nel caso ordinario ([5], p. 115), essa si trasforma secondo la legge

(2.6)
$$\widetilde{e}_{0'} = \widetilde{e}_{0} \qquad \widehat{e}_{i'} = \frac{\partial y^{i}}{\partial y^{i'}} \widehat{e}_{i}$$

come se, limitatamente a $\hat{\Sigma}$, la base $\{\hat{e}_i\}$ avesse carattere olonomo: di qui la denominazione di base quasi-naturale.

Nel seguito, indicheremo con

$$\hat{\gamma}_{ik} = \hat{e}_i \cdot \hat{e}_k$$

la metrica indotta in $\hat{\Sigma}$ e con $\hat{\gamma}^{ik}$ gli elementi reciproci di $\hat{\gamma}_{ik}$. Infine, sia $\hat{e}^i \in \hat{\Sigma}$ la base duale di \hat{e}_i in $\hat{\Sigma}$, caratterizzata dalle condizioni equivalenti:

$$\hat{e}^i \cdot \hat{e}_k = \delta^i_k \qquad \hat{e}^i = \hat{\gamma}^{ik} \, \hat{e}_k \, .$$

Per quanto riguarda la metrica di V_4 , essa è caratterizzata, in termini anolonomi (2.3), dai prodotti $\widetilde{g}_{\alpha\beta} = \widetilde{e}_{\alpha} \cdot \widetilde{e}_{\beta}$:

$$\widetilde{q}_{00} = -1 \qquad \widetilde{q}_{0i} = \widehat{\gamma}_{i} \qquad \widetilde{q}_{ik} = \widehat{\gamma}_{ik}$$

con

$$\widetilde{\gamma}_i = \gamma \cdot \widehat{e}_i = \gamma_i - \eta_i.$$

In termini contravarianti, dato che la (2.5) equivale ai legami $\tilde{e}^0 = -\eta$, $\tilde{e}^i = \varepsilon^i$, si ha direttamente:

(2.8)'
$$\widetilde{g}^{00} = \|\boldsymbol{\eta}\| \qquad \widetilde{g}^{0i} = -\eta^i \qquad \widetilde{g}^{ik} = g^{ik}.$$

Naturalmente, la metrica contravariante $\widetilde{g}^{\alpha\beta}$ è univocamente determinata dalla (2.8), cioè dai due ingredienti $\widehat{\gamma}_{ik}$ (metrica spaziale) e $\widehat{\gamma}_i$ (divario spaziale). Infatti, le relazioni di dualità: $\widetilde{g}^{\alpha\beta}\widetilde{g}_{\beta\varrho}=\delta^{\alpha}_{\beta}$, danno luogo direttamente alle condizioni:

$$\widetilde{g}^{\,0\varrho}\,\widetilde{g}_{k\varrho}=0 \qquad \widetilde{g}^{\,k\varrho}\,\widetilde{g}_{0\varrho}=0 \qquad \widetilde{g}^{\,i\varrho}\,\widetilde{g}_{k\varrho}=\delta^{\,i}_{\,k} \qquad \widetilde{g}^{\,0\varrho}\,\widetilde{g}_{0\varrho}=1\,.$$

Di qui, esplicitando le somme, e tenendo conto delle (2.8), (2.8)', si ottengono i seguenti legami:

$$(2.10) \quad \eta^i = \|\boldsymbol{\eta}\| \widehat{\boldsymbol{\gamma}}^i \qquad \eta^k = -g^{ik} \widehat{\boldsymbol{\gamma}}_i \qquad -\eta^i \widehat{\boldsymbol{\gamma}}^k + g^{ik} = \widehat{\boldsymbol{\gamma}}^{ik} \qquad -\|\boldsymbol{\eta}\| = 1 + \eta^i \widehat{\boldsymbol{\gamma}}_i$$
 avendo posto $\widehat{\boldsymbol{\gamma}}^i = \widehat{\boldsymbol{\gamma}}^{ik} \widehat{\boldsymbol{\gamma}}_k = \boldsymbol{\gamma} \cdot \widehat{\boldsymbol{e}}^i$.

Si noti che $\hat{e}^i \in \hat{\Sigma}$ è diverso da $\tilde{e}^i \notin \hat{\Sigma}$; più precisamente, a partire dalla decomposizione $\hat{e}^i = \lambda_k^i \tilde{e}^k + \mu^i \eta$, moltiplicando rispettivamente per \hat{e}_j ed η , si deduc e il legame

$$\widehat{e}^i = \widetilde{e}^i - \frac{\eta^i}{\| \boldsymbol{\eta} \|} \boldsymbol{\eta}.$$

In definitiva, la (2.10) dimostra l'equivalenza tra le (2.8) e (2.8)'. Invero, a parte l'identità (2.10)₂, le (2.10)_{1,4} forniscono rispettivamente η^i e $\|\boldsymbol{\eta}\|$ < 0:

$$\eta^i = \|\boldsymbol{\eta}\|\widehat{\boldsymbol{\gamma}}^i \qquad -\|\boldsymbol{\eta}\| = \frac{1}{1+\gamma^2} < 1$$

essendo γ il modulo di $\hat{\gamma} = \hat{\gamma}^i \hat{e}_i = \hat{\gamma}_i \hat{e}^i$, proiezione ortogonale di γ su $\hat{\Sigma}$:

$$\gamma = \hat{\gamma} - \frac{\eta}{\|\eta\|} \qquad \gamma^2 = \hat{\gamma}^i \hat{\gamma}_i = \hat{\gamma}_{ik} \hat{\gamma}^i \hat{\gamma}^k.$$

La $(2.10)_3$ dà invece luogo alla seguente espressione di $\widetilde{g}^{ik} = g^{ik}$:

$$g^{ik} = \hat{\gamma}^{ik} - \frac{1}{1 + \gamma^2} \hat{\gamma}^i \hat{\gamma}^k.$$

3 - Formule di commutazione e identità di Jacobi

Nel seguito adotteremo sistematicamente, in ogni punto E di V_4 , la base anolonoma $\{\widetilde{e}_a\}$ di cui alla (2.3), nonché coordinate interne alla congruenza di riferimento Γ . Pertanto, in luogo della derivazione ordinaria, interverranno le derivate pfaffiane $\widetilde{\partial}_a = \omega_{\overline{a}}{}^{\beta} \partial_{\beta}$:

(3.1)
$$\widetilde{\partial}_0 = \partial = \gamma^0 \frac{\partial}{\partial y^0} \qquad \widetilde{\partial}_i = \frac{\partial}{\partial y^i} - \frac{\eta_i}{\eta_0} \frac{\partial}{\partial y^0} \qquad i = 1, 2, 3.$$

Per analogia con il caso ordinario, esse saranno ancora chiamate derivata temporale e spaziale (in $\hat{\Sigma}$) rispettivamente; in ogni caso, conformemente alla (2.4), tali derivate sono costruite con le sole η_a . Si tratta ovviamente di operatori differenziali che non obbediscono al teorema di Schwarz, cioè le derivate seconde non sono permutabili:

$$[\widetilde{\partial}_{\alpha}, \widetilde{\partial}_{\beta}] \varphi = \widetilde{A}_{\alpha\beta}{}^{\varrho} \widetilde{\partial}_{\varrho} \varphi \neq 0.$$

In altri termini, il tensore di anolonomia $\widetilde{A}_{\alpha\beta}{}^{\varrho}$ della distribuzione di basi (2.3) è non nullo. Più precisamente, almeno per le funzioni scalari $\varphi(y)$, valgono le for-

Passiamo ora alle derivate spaziali di γ ; esse sono necessariamente del tipo

(4.7)
$$\widetilde{\partial}_i \gamma = \widehat{H}_i \gamma + \widehat{H}_i^{\ k} \widehat{e}_k$$

ove, come \hat{C} , le \hat{H}_i sono determinate dalla condizione di ortogonalità $\tilde{\partial}_i \gamma \cdot \gamma = 0$. Precisamente, si ha $\hat{H}_i = \hat{H}_i{}^k \hat{\gamma}_k$.

Analogamente, per quanto riguarda le derivate pfaffiane dei vettori \hat{e}_i , si avranno a priori espressioni della forma:

(4.8)
$$\partial \hat{e}_i = \hat{K}_i \gamma + \hat{K}_i^{\ k} \hat{e}_k \qquad \widetilde{\partial}_i \hat{e}_k = \hat{\mathcal{R}}_{ik} \gamma + \widetilde{\mathcal{R}}_{ik}^{\ j} \hat{e}_j$$

dalla quale, moltiplicando scalarmente per η , segue:

$$\widehat{K}_{i} = \partial \boldsymbol{\eta} \cdot \widehat{\boldsymbol{e}}_{i} \qquad \widehat{\mathcal{R}}_{ik} = \widetilde{\partial}_{i} \boldsymbol{\eta} \cdot \widehat{\boldsymbol{e}}_{k} .$$

D'altra parte, moltiplicando la (4.8) per γ , e tenendo conto delle (4.6) $_2$ e (4.7), si ricavano le relazioni:

(4.10)
$$\widehat{K}_{i} = C_{i} + \widehat{K}_{i}^{j} \widehat{\gamma}_{i} - \partial \widehat{\gamma}_{i} \qquad \widehat{\mathcal{R}}_{ik} = H_{ik} - \widetilde{\nabla}_{i} \widehat{\gamma}_{k}$$

ove si è posto $C_i = \hat{C}^j \gamma_{ij}$ ed $H_{ik} = \hat{H}_i{}^j \gamma_{jk}$.

Interviene qui la metrica spaziale

$$(4.11) \gamma_{ik} = \widehat{\gamma}_{ik} + \widehat{\gamma}_{i}\widehat{\gamma}_{k}$$

alternativa a $\hat{\gamma}_{ik}$ in $\hat{\Sigma}$, nonché la derivazione covariante $\tilde{\nabla}_i$ associata alla connessione $\tilde{\mathcal{R}}_{ik}^{\ j}$.

Infine dalle (4.8), moltiplicando scalarmente per \hat{e}_h , tenuto conto della (4.10), si ha rispettivamente:

(4.12)
$$\begin{aligned} \partial \widehat{e}_{i} \cdot \widehat{e}_{h} &= \widehat{K}_{i}{}^{j} \gamma_{jh} + (C_{i} - \partial \widehat{\gamma}_{i}) \widehat{\gamma}_{h} \\ \widetilde{\partial}_{i} \widehat{e}_{k} \cdot \widehat{e}_{h} &= \widetilde{\mathcal{R}}_{ik}{}^{j} \gamma_{jh} + (H_{ik} - \widetilde{\partial}_{i} \widehat{\gamma}_{k}) \widehat{\gamma}_{h} .\end{aligned}$$

D'altra parte, le (4.7) e (4.8) implicano:

$$[\partial,\,\widetilde{\partial}_i\,] = (\hat{K}_i - \hat{H}_i{}^k\,\widehat{\gamma}_k\,)\,\partial + (\hat{K}_i{}^k - \hat{H}_i{}^k\,)\,\widetilde{\partial}_k \qquad \qquad [\widetilde{\partial}_i,\,\widetilde{\partial}_k\,] = 2\,\widehat{\mathcal{R}}_{[ik]}\,\partial + 2\,\widetilde{\mathcal{R}}_{[ik]}{}^j\widetilde{\partial}_j\;.$$

Dal confronto con la (3.3), seguono le condizioni:

$$(4.13) \quad \widehat{K}_i - \widehat{H}_i^{\ k} \widehat{\gamma}_k = \widehat{\mathcal{C}}_i \qquad \widehat{K}_i^{\ k} = \widehat{H}_i^{\ k} \qquad \widehat{\mathcal{R}}_{[ik]} = \widehat{\Omega}_{ik} \qquad \widetilde{\mathcal{R}}_{[ik]}^{\ j} = 0.$$

 $La~(4.13)_2~riduce~K~ad~H~{\rm e,~data~la}~(4.10)_1,~{\rm trasforma~la}~(4.13)_1~{\rm nel~seguente}$ legame

$$\hat{c}_i = C_i - \partial \hat{\gamma}_i \ .$$

Esso vale ad esprimere il campo $\hat{\mathbb{C}}_i$ in termini di $\hat{\gamma}_i$ e del vettore di curvatura $\hat{\mathbb{C}}_i$ della congruenza di riferimento Γ .

In definitiva, tutte le derivate fondamentali (4.4), (4.7) e (4.8) si esprimono mediante gli ingredienti spaziali $\hat{\gamma}_i$, \hat{C}_i , H_{ik} , $\hat{\gamma}_{ik}$ e $\widetilde{\mathcal{R}}_{ik}^{\ j}$, questi ultimi simmetrici rispetto agli indici in basso a norma della (4.13)₄. Precisamente risulta:

(4.15)
$$\begin{aligned} \partial \gamma &= \widehat{C}^{i} \boldsymbol{E}_{i} & \widetilde{\partial}_{i} \gamma &= \widehat{H}_{i}{}^{k} \boldsymbol{E}_{k} \\ \partial \widehat{e}_{i} &= \widehat{H}_{i}{}^{k} \boldsymbol{E}_{k} + \widehat{C}_{i} \gamma & \widetilde{\partial}_{i} \widehat{e}_{k} &= \widetilde{\mathcal{R}}_{ik}{}^{j} \boldsymbol{E}_{j} + (H_{ik} - \widetilde{\partial}_{i} \widehat{\gamma}_{k}) \gamma \end{aligned}$$

dove si è posto $E_i = \hat{e}_i + \hat{\gamma}_i \gamma$. Infine, si noti che i vettori E_i appartengono a Σ .

5 - Significato geometrico-cinematico dei coefficienti $\hat{H}_i{}^k$ e $\tilde{\mathcal{R}}_{ik}{}^j$

Nelle (4.15) rimane ancora da precisare il significato cinematico dei coefficienti spaziali $\widehat{H}_i{}^k$, e quello geometrico della connessione spaziale $\widetilde{\mathcal{R}}_{ik}{}^j$. Cominciamo dal primo; moltiplicando la (4.15)₃ per \widehat{e}_k e simmetrizzando, si ottiene il seguente legame: $\frac{1}{2}\,\partial\widehat{\gamma}_{ik}=H_{(ik)}+(C_{(i}-\partial\widehat{\gamma}_{(i)})\,\widehat{\gamma}_{k)}$, ove è stata utilizzata la metrica spaziale γ_{ik} di cui alla (4.11) e l'espressione (4.14) di $\widehat{\mathbb{C}}_i$.

Pertanto, introducendo il tensore di deformazione $K_{ik} = \frac{1}{2} \partial \gamma_{ik}$, il precedente legame fornisce la parte simmetrica di H_{ik} :

$$(5.1) H_{(ik)} = K_{ik} - C_{(i}\widehat{\gamma}_{k)}.$$

La parte antisimmetrica si ricava dalla (4.10)2, tenuto conto delle (4.13)3,4:

(5.2)
$$H_{[ik]} = \widehat{\Omega}_{ik} + \widetilde{\partial}_{[i} \widehat{\gamma}_{k]}.$$

In definitiva, si ha la seguente espressione di H:

(5.3)
$$H_{ik} = K_{ik} + \hat{\Omega}_{ik} - C_{(i}\hat{\gamma}_{k)} + \tilde{\partial}_{[i}\hat{\gamma}_{k]}.$$

Essa vale ad esprimere il tensore H_{ik} in termini del vettore $\hat{\gamma}_i$ e dei tre ingredienti fondamentali C_i , K_{ik} e $\hat{\Omega}_{ik}$: curvatura, deformazione e vortice.

Per quanto riguarda l'interpretazione ordinaria di H_{ik} , essa continua a valere nel caso attuale; le due parti: simmetrica k_{ik} e antisimmetrica ω_{ik} , riassumono le velocità di deformazione e angolare proprie del riferimento generalizzato:

$$(5.4) k_{ik} = K_{ik} - C_{(i}\widehat{\gamma}_{k)} = \widehat{K}_{ik} - \widehat{C}_{(i}\widehat{\gamma}_{k)} \widehat{K}_{ik} = \frac{1}{2}\partial\widehat{\gamma}_{ik} \omega_{ik} = \widehat{\Omega}_{ik} + \widetilde{\partial}_{[i}\widehat{\gamma}_{k]}.$$

Si noti, nella espressione di k_{ik} , l'intreccio tra la deformazione della metrica γ_{ik} e il vettore di curvatura della congruenza Γ ; di qui il significato di deformazione totale. Idem per ω_{ik} .

Una volta fissato il contenuto cinematico del tensore H_{ik} , resta solo da precisare il signicato geometrico dei coefficienti $\widetilde{\mathcal{R}}_{ik}{}^{j}$, i quali sono simmetrici rispetto agli indici in basso, a norma della $(4.13)_4$. A tal fine, moltiplichiamo scalarmente

(2.6), hanno tutti carattere invariantivo per trasformazioni interne al riferimento: cambiamento arbitrario delle coordinate spaziali e del ritmo temporale, per ciascuna particella. In una successiva nota considereremo una prima applicazione dei riferimenti generalizzati.

Bibliografia

- [1] M. Castagnino, Sulle congruenze di curve nulle in una varietà riemanniana a metrica iperbolica normale, Rend. Mat. Appl. 24 (1965), 174-195.
- [2] G. Ferrarese, Sulle equazioni di moto di un sistema soggetto a un vincolo anolonomo mobile, Rend Mat. Appl. 22 (1963), 1-20.
- [3] G. Ferrarese, Proprietà di 2º ordine di un generico riferimento fisico in relatività generale, Rend. Mat. Appl. 24 (1965), 57-100.
- [4] G. Ferrarese, Dinamica riemanniana di un sistema olonomo con struttura interna, Atti Accad. Lincei Rend. 64 (1978), 466-471 e 584-585.
- [5] G. Ferrarese, Lezioni di relatività generale, Pitagora, Bologna 1994.
- [6] G. Ferrarese e D. Bini, Riferimenti fluidi polari in relatività generale, Ricerche Mat., Suppl. 41 (1992), 159-172.

Sommario

We study the main properties of a relativistic frame of reference, generalized in the polar sense [6], and the related non-holonomic techniques, in terms of non-orthogonal projections: first order characteristic tensors, Ricci rotation coefficients, longitudinal and transversal covariant derivatives. Thus, the first order properties of a standard frame of reference, are extended to the non-orthogonal case.

* * *