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A monotone iterative method

for semilinear parabolic systems (¥*)

1 - Introduction

In this work we propose a finite element method for reaction-diffusion equa-
tion systems. This method is based on a monotone iterative scheme proposed by
C. V. Pao (see [6] and [4]) which treats reaction-diffusion equations by the
method of upper and lower solutions [5] and its associate monotone itera-
tions.

The method we propose is shown first for a single equation and then is ex-
tended to a reaction-diffusion system of equations. We proceed working from a
weak formulation of the problem to obtain a semidiscrete Galerkin system (see
[7]). This system is approximated by means of a 8-method and then we apply an
upper and lower solution iterative scheme. Results about uniqueness and exi-
stence of the solution, stability and convergence of the numerical scheme are
shown.

2 - The case of one equation

Consider @ = [a, b]c R and, for each time T > 0, define Dy = (0, T] X
and Sy = (0, 7] x 32. We want to study the semilinear reaction-diffusion
parabolic equation

0 ! _ )
1) Ll (s(@)uy) =f(u) inDyp

Bu=¢g onSy, ux,0)=us(x) in

where x e [a, b, t = 0, s(x) is a positive known function, B is a Robin boundary
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operator, f, g, u, are assumed to be Holder continuous in their respective do-

3
mains and the function f is such that exists ?9—5 in Dy (see [5]).

We apply the Galerkin semidiscretization method making a partition of the

domain [a, b] in p subintervals with knots «; = a + 1k (h =0 ; @ ). Using a fi-
p
nite element method, we make the approximation u = 2 a; (1) @;(x) where the

i=0
@; are B-splines (and they are used as test functions too). Then we use the
trapezoidal method for integration and we obtain a semidiscrete scheme

@) Da’ + Aa = D-f(t, @)

where D is the diagonal matrix D = kI, a = (ag, ..., @,) and
fla) = (flwg, T, ag(®)), ..., flwy, ¢, ap(8)).

A is a tridiagonal, diagonal dominant and symmetric matrix of the form

ao - bo e 0

- bo [¢2 - b1 :
(3) A= 1 = 1 A.

h : ., . b h
p—1
0 et - bp . a,
Now we can apply a 0-method to the equations (2). We define 4t,, . 1 =%, .1~ t,,
At, )

Py = 2 and we define a, = a(t,), a; , = (a,);. From (2) we obtain

@ d+0rAa,=T—-1-0)rA)a,_;+4t, (0f(a,) + (1= 0)fla,-1)

where 0 <6 <1.

Definition. Given two vectors v, w e RY we write v <w (or v = w) iff
() <w(@) (or v(@)z2w@) Vi=1,...,q.

Definition. A vector @, is called an upper solution of (4) if & = v, (Where
Uy = (% (29), ---, %9 (%)) and
I+ 0r,A)a, =~ (- 60)r,A) T, + 4t, (0f(@,) + (1 — O)f(@, 1))

where n=1,2,..., N.
Similarly @, is called a lower solution if G, < u, and satisfies the reversed
inequality.

Definition. The pair &,, a, are said to be ordered if @, = a, for every n.
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Definition. For any pair of ordered upper and lower solutions
—~ — —_— —~ T —~ . — — — T o .
Gy = (g, s U1y ey Gp ) s G = (Ao, 05 Q1 ny-ery Gy n), We define a sector in
Rp+1 by

(a')l? a?l) = {a7ZERP+1 | an s a?l S a?l}

of N - ,
-—a(ai,n)}ai!”$ai,nSa‘,-,‘,,} t=0,1,...,p

and put ¢ n = max{— 3

Cn = dlag (50, N El, Ny s Ep, n)

where ¢; , are functions satisfying ¢; , = max {0, ¢; ,}.

Hence we can write equation (4) in the following form

B T+0A)a,=UI-A1-NHA,.Da, 1+6F,(a,)+(1—-0)F,(a,-1)

where F,(a,) = 4t,(f(a,) + C,a,) and A, =7,4+ 4t,C,.

It’s easy to show that, in the sector (@, @,), F, () is monotone nondecrea-
sing component by component. Hence we can apply the following iterative
scheme

6) T+04)a"=U-(1-0A,_Dai_;+0F, (@ D)+ 1~ 0)F,(ak_)

n,m=1,2,..; where ay’ = u, for all m =0, 1, ... and ¥ is the limit of the

sequence at the time step =.

In fact, if we denote the sequences beginning with Eﬁf) =d, and ¢V = Ay,
with {@} and {a™} respectively, then it’s possible to show that for every n
they converge to a unique limit, that we denote with a (this result is immedia-
te for m =0). This is the subject of the following theorems.

— g _ ~
Now we define Oy = max{ 5{; (a'i, n) l Ai,n S Qi n = i ns 1= 0; ,]9}

Theorem 1 (uniqueness of the limit). Let a,, @, be a pair of ordered up-
per and lower solutions of (4) and let the following conditions hold:

1a. l—At,z,(—Z—;—En)(l—H)>0 Vi=0,..,p

1b. 1-64t,0,>0.

Ifthe sequences {@"™} and {a™} given by (6) with a¥ = &, and ¢'* = @, con-
verge to o, and a, respectively, then a, = &, and this is the unique solution in
the sector (G, Q).
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Proof. Let’s consider w, =4, — a,, then w, =0, wy =0, and

I+60A)w, =T~ 1 —-0A,_ )Dw,

@ +{0F,(@,)+(1-0)F,(@,_,) —0F,(a,)~(1-0)F,(a,_1}.

Sinee F, is monotone nondecreasing, we have

F,(a,) - F,(a,) < B,(a, —a,) = B,w,
where B, = At, 0,1 + 4t,C, is a diagonal matrix. Hence we deduce that
® IT+0P)yw, <(U—-1~-)YP,_w,_

where P,=A4,—B,.

From 1b we have that (I + 6P,) is diagonal dominant with positive diagonal
entries, thus (I + 8P,) ! exists and is positive (see [8], p. 85).

So we obtain

9 w,<UT+0P) I -1-6)P,_ )w,_;.

From la we can verify that (/ — (1 — )P, _) is positive too. It follows from
wy = 0 that w, < 0 for every n. Since w, = 0, we must have w, = 0. This proves
the relation «, = @,. The uniqueness follows from the maximal and minimal
property of «, and a,.

As (I + 64,) is diagonal dominant and, for 1 <i<p, (I + 64,); > 0, then

(I+ 6A,)7! exists and is positive. From (6) we can write (x™ = al"™y:

a0 "=+ 04,) ' U-1-0A,_Daj_4
+(I+6A,) HOF, (" )+ (1-0)F,(aX )I=G, (=™ 1) (m,n=1,2,...).

Lemma 1. Let G:R™— R™ be a contraction on o closed set D cR™ (i.e.
there exists K < 1 such that |G (x) — G(y)|| < K|z — y|| Y, y € D) and such that
G(D)cD. Then G has o unique fixed point x*e D such that Ya®e D the se-
quence defined by x*+' = G(x*) converges to x*. Moreover

o —orll < e llet a0, k=12
where K is the contraction constant.

Let J(G(x)) be the Jacobian matrix of G(x), Then we have

Lemma 2. If G:R™—R™ belongs to C'(D) and |J(G@)|<K<1
Vx e D, then G is a contraction on D with constant K.
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For the proofs of Lemmas 1 and 2 see [2] and [3].

Consider L, = 23})}){ T .

Lemma 8. Suppose that G, € C*(D,), where D, = {x e R™ |a, <z <a,},
that fis almost differentiable in the domain Q and that the following condition
holds :

(11) 3K, <1 suchthat A4t,0|J + 64,) 'L, | <K, .

Then G, is a contraction on D, with constant K,,.

Proof. Notice that J(G, (%)) = 6(I + 68A4,) L J(F,(x)). Our aim is to prove
that there exists K, such that ||J(G,)], < K, < 1. We have that

”J(Fn (93))”2 S Atn 'L'n
and, from (11)
HJ(Gn (93))“2 = Atne ”(I + HAn)_an ”2 = K

Lemma. 4. Let a,, &, be a couple of ordered lower and upper solutions
of 65 and D,={a,, a,). Suppose that the following condition holds
Vn=0,..,N

(12) I—At,,(%;—l +8.,)1-6)>0 Yi=1,..,p.

Consider the iterative scheme (10) and suppose that G, is a contraction on
D,,, with constant K,. Then, ¥n =0, 1, ..., G,(D,) c D, and the two sequences
(@} and {al”} converge to a unique limit . Moreover the following error
estimates hold:

la? = ai < (—% )Ha"”’ a’

1__.
(13)
a8~ atll < (2 et - at =)

for k=1,2....

Proof. By induction we prove that, for every n=20,...,N

(14) Gn(a’ll) 2 a?l G')L(a’ll) s &)l M

Define w=ay’—ay’. So we have w= ) = uy — ug = 0; hence

ap —
Gy (Gy) < dy. Similarly we prove that Gy(ag) = a,. We deduce Gy(Dy) c Dy.
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Supposing that (14) is true for I — 1 (hence there exists the unique limit af._ ;
and G;_1(D;_1)c Dy y).

Now observe that from G, ,(D;.;)cD,.; we deduce that the two se-
quences aj*.; and aj*, are bounded in D, ; and ;.S af.1<da-;.
Remember that F, is monotone nondecreasing (component by component)
Vn=0,...,N; so we have that

(15) F?z(al~1)an‘(a;}:——l)an(al-—l) V’i?/:O,...,N.

From (12) (I — (1 — 0)A4;_;) is a nonnegative matrix. In fact it is tridiagonal
and its elements over and under the diagonal are nonnegative.
Then, if we consider the diagonal elements:

T-(1-0)4,_Dy=1-(1-0)(r_-10;-4 _Atl—lai,l—l)
a; 1 -
—_-1—(1 —G)Atl_.l (—_2— +ci,l—1)>0'
h

Let’s show that (14) holds for [ too. Remember that al=a§°’ and
G,(@) =a and put = a\” — @ " . Using the fact that ( — (1 — 0)4,_,) is
nonnegative, the definition of upper solution and the (15) we have:

I+6A)w=U+604Apa,—08F,(a)—U—-1Q-0)A,_Daji_{— (1 -0 Fi(aj_ )
2z +04pa; - 0F(a)—-1-OF (- )—-UT-(1-0DA_1)a,_1=0.

(I + 64)) is an M-matrix and its inverse is positive. It follows that w = 0, which
implies @\” = a!” and G,(@,;) < @,.

Now we prove that G,(a;) = a;. Define w = gﬁo) - g_}”. In the same way as
shown before we obtain:

(I+60Apw=UI+04ADpa,—0F(a)—-U -1 -0)A_Dai-; — (1 -0 Filai_)
s{U+0A)a,—0F(a)—(1—-0)F(a;-1)—-UT-(1-0A_1)a;_,1<0

It follows that (I + 64)w <0 and w =<0, so G,(a;) = q; .

Remember that @, and @, are ordered and that G, is monotone nondecrea-
sing. This implies that G, (a,) < G,(a,), so G, (a,) e D, and G, (@ ,) € D, for all
n=1,2,.... From the monotone property of G, we have that G,(D,)cD,,
Vrn=1,2,...

Using the previous lemmas, we conclude that, for all » =0, 1, 2, ... and for
every initial value in D,, the two upper and lower sequences '™ and @™ de-
fined in (6) converge to a unique limit a} € D,,. Moreover we obtain the follo-
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wing error estimates:

llam-a;:lls(l_ )Ha‘“ a7
[@a® - ax| < (—=% )l‘““) |

1 —_
where K, is the contraction constant of Gn.
Lemma. 5. The iterative schemes of the upper and lower sequences de-
fined in (6) are stable for K,, < % (where K, is the contraction constant of G,,).

(k) __

Consider ef = ]]a . From (13) we can deduce that
les?” — e H<( = ) flas? —ay” 1)[ls( )l = agll+llag—ay™ I
- 1- Kn
that is el < ( L) ek + ek ).
For I?n<l we have g,’fs(——g’z‘—_—)'g,’f‘l If Kn<— then ——— <1.
2 1- 2Kn 3 1- 2Kn

For the upper sequence we follow the same way.
We summarize of the previous results in

Theorem 2 (existence, uniqueness and stability). Let a, and @, be a cou-
ple of ordered upper and lower solutions of (5). Suppose that the conditions la,
1b and (11), (12) hold. Then Vn =0, ..., N the upper and lower sequences {a\"”}
and {a”} converge to a unique limit af e D, = {x e R™ |G, < x < &,}. More-
over if in (11) Kn < é—, then the algovithm 1is stable.

Proof. The proof follows immediately from the previous lemmas.

3 - The case of a system of reaction-diffusion semilinear parabolic equations

Consider the semilinear parabolic system

oU(x, t)
ot
with convenient Robin-type boundary conditions and initial condition
Uz, 0) = Uy(zx) = (Uyy, ..., Upy) and where S is a positive diagonal matrix.
Moreover £ (subset of RY) and F(x,t, U) = (Fy(x, t, U), ..., F,(x, t, 1)) sa-

tisfy convenient regularity conditions (see [5], p. 382, 16, 21).

(16) =V-(S@)VU(x, t)+F(U(x, 1) (x,t)eQxR*, Uz, t)eR™
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If we apply a finite element method to system (16), we obtain a new system
of ordinary differential equations of the form:

1" B v + e

dt
with an initial condition v(0) = vy, and v(¢) = (0, )T, v ()T, ..., v, (DT e R™
where v;(t) is a l-vector of elements v;;(?).

Here A denotes the Im X Im block-diagonal matrix 4 = l—— DRA= %Z
y

where @ is the Kronecker product, D is a diagonal matrix with elements d;,

i=1,...,m and 4 is an [ X [ matrix. A is a matrix of the type:
a1 —by 0
_ —bn Q2 —byp
A=
- bm(l - 1)
0 e - bm(l -1 Ayt

Moreover it is f(v(t)) = (AL VENT, LFENT, .., fu (vENT)T where f; (v(2)) is
a l-vector and 4 is a positive constant (the spatial step).

Now, applying a 8-method to system (17) we obtain a scheme like (4), that
is:
(18) I+ 0r,A)v, = I(1 = 6)r,A)v, 1+ At, 1 (0f(v,) + (1 = 0)f(v, 1)

where v,, =v(t,). Defining Uy =Uy,... , Upn), where Uy; = (Upi (), ..., U (),
then the definition of upper and lower solutions, of sector and of ordered upper
and lower solutions are analogous with that we used in the previous part.

For each time tn, we can consider a couple of ordered upper and lower sol-
utions of (18), v, v,. Then we define:

af; _
Cijn = max{ - (91)“ (u)ijn) in = wzjn == vlj?l} Cz'j'rz = max(cijn ) O)
]

(19) Cn = dlag (Elln: L) Elln’ cees Emln 3 ey E'm.ln)

_ of; ; .
Op = max{ 0 (Wign)® Vg S Wiy S Vg, 1= 1, ., myj=1,...,1}.
i

As we did in the first part of this paper, we consider
ﬁ"ﬂ/ (v) = {Atn (f(vn) + C’IL V’Il )] A?lr = T?ZA + Atn C’IL M

It's easy to see that F', (v) is monotone nondecreasing component by component.
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Hence we can rewrite (18) in the form of (5):

20) T+604)v, =T —(1=0)A,_)V,_1+0F,(v,)+ (1 -0 F,(v,_1).
We can now apply the iterative scheme:

@) (I +04)v =T~ (1~ 04, - )vi 1+ 0F, 0 )+ (1= 0 F(vi-1)

k=1,2,...;n=1,..., N; where v(()k) =U,forallk=0,1,...,and v} is the limit

of the sequence at the time step =.

Theorem 3 (uniqueness of the limit). Let ¥, v, be a pair of ordered upper
and lower solutions of (20) and let the following conditions hold for each time
step n:

Ay _ . .
2a. l—Atn(l—Z—o,l)(l—G)>O Vi=1,..,m; j=1,...,1
[

2b. 1—A4t,65,>0.

If the sequences {32} and {v¥"}, given by (21) with ¥’ =%, and v\¥ =¥,,

converge to v, and v, respectively, then v, =V, and this is the unique solution
in the sector (v,, V).

The proof is similar to that of Theorem 1.

Remark. With the same arguments used in the previous section we can

say that there exists (I + 64,)7! and is positive. From (21) we can write
(@* =v,")

xk — (I + OAn)—l(I — (1 - 0)A7L~1)V7'?-1

+(I+64,) 'OF, (" H+ Q-0 F,vi_D]l= G, (a"1)

for k=1,2...; n=1,...,N. N
max |J (F,, ()]
Atn )

It’s easy to show that three lemmas, analogous with Lemma 3, 4 and 5, hold.
Just use

As before we define L, =

alj - . .
@2) I—Atn(F +T) (1—6)>0 Vi=1,..,m; j=1,..,1

instead of (12), and condition
(23) 3K, <1 suchthat 64t,|| +64,) 'L,|:<K,.

Finally, the following theorem follows immediately
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Theorem 4 (existence, uniqueness and stability). Let v, and v, be a couple
of ordered upper and lower solutions of (20). Suppose that the conditions 2a, 2b,
(22), (23) hold. Then ¥n =1, ..., N the upper and lower sequences {x“ff,l” )} and
{v{P} converge to a unique limit vi e D, = {x e R":%, < x <¥,}. Movreover if
in (23) K, < é, then the algorithm is stable.

The proof follows immediately from the previous considerations.
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Sommario

A partire da una semidiscretizzatione di Galerkin per un sistemao di equazioni para-
boliche semilineari viene proposto un metodo di approssimazione numerica della solu-
zione che utilizza un 8-metodo e quindi uno schema iterativo monotono basato sulle so-
luzioni superiori ed inferiori. Vengono mostrate le proprietd di esistenza e unicita della
soluzione, convergenza e stabilita dello schema mumerico.



