F. LUNARDINI and G. DI COLA (*)

A monotone iterative method for semilinear parabolic systems (**)

1 - Introduction

In this work we propose a finite element method for reaction-diffusion equation systems. This method is based on a monotone iterative scheme proposed by C. V. Pao (see [6] and [4]) which treats reaction-diffusion equations by the method of upper and lower solutions [5] and its associate monotone iterations.

The method we propose is shown first for a single equation and then is extended to a reaction-diffusion system of equations. We proceed working from a weak formulation of the problem to obtain a semidiscrete Galerkin system (see [7]). This system is approximated by means of a θ -method and then we apply an upper and lower solution iterative scheme. Results about uniqueness and existence of the solution, stability and convergence of the numerical scheme are shown.

2 - The case of one equation

Consider $\Omega = [a, b] \subset \mathbb{R}$ and, for each time T > 0, define $D_T = (0, T] \times \Omega$ and $S_T = (0, T] \times \partial \Omega$. We want to study the semilinear reaction-diffusion parabolic equation

(1)
$$u_t - \frac{\partial}{\partial x} (s(x)u_x) = f(u) \quad \text{in } D_T$$

$$Bu = g \quad \text{on } S_T, \quad u(x, 0) = u_0(x) \quad \text{in } \Omega$$

where $x \in [a, b], t \ge 0$, s(x) is a positive known function, B is a Robin boundary

^(*) Dip. di Matem., Univ. Parma, Via M. D'Azeglio 85, 43100, Parma, Italia.

^(**) Received December 19, 1996. AMS classification 65 M 60.

operator, f, g, u_0 are assumed to be Hölder continuous in their respective domains and the function f is such that exists $\frac{\partial f}{\partial u}$ in D_T (see [5]).

We apply the Galerkin semidiscretization method making a partition of the domain [a,b] in p subintervals with knots $x_i=a+ih$ ($h=\frac{b-a}{p}$). Using a finite element method, we make the approximation $u=\sum\limits_{i=0}^{p}\alpha_i(t)\,\varphi_i(x)$ where the φ_i are B-splines (and they are used as test functions too). Then we use the trapezoidal method for integration and we obtain a semidiscrete scheme

(2)
$$D\alpha' + A\alpha = D \cdot f(t, \alpha)$$

where D is the diagonal matrix D = hI, $\alpha = (\alpha_0, ..., \alpha_p)$ and $f(\alpha) = (f(x_0, t, \alpha_0(t)), ..., f(x_p, t, \alpha_p(t)))$.

A is a tridiagonal, diagonal dominant and symmetric matrix of the form

(3)
$$A = \frac{1}{h} \begin{pmatrix} a_0 & -b_0 & \cdots & 0 \\ -b_0 & a_1 & -b_1 & \vdots \\ \vdots & \ddots & -b_{p-1} \\ 0 & \cdots & -b_{p-1} & a_p \end{pmatrix} = \frac{1}{h} \widetilde{A}.$$

Now we can apply a θ -method to the equations (2). We define $\Delta t_{n+1} = t_{n+1} - t_n$, $r_n = \frac{\Delta t_n}{h^2}$ and we define $\alpha_n = \alpha(t_n)$, $\alpha_{i,n} = (\alpha_n)_i$. From (2) we obtain (4) $(I + \theta r_n \tilde{A}) \alpha_n = (I - (1 - \theta) r_n \tilde{A}) \alpha_{n-1} + \Delta t_n (\theta f(\alpha_n) + (1 - \theta) f(\alpha_{n-1}))$ where $0 \le \theta \le 1$.

Definition. Given two vectors $v, w \in \mathbb{R}^q$, we write $v \leq w$ (or $v \geq w$) iff $v(i) \leq w(i)$ (or $v(i) \geq w(i)$) $\forall i = 1, ..., q$.

Definition. A vector $\tilde{\alpha}_n$ is called an *upper solution* of (4) if $\tilde{\alpha}_0 \ge \mathbf{u}_0$ (where $\mathbf{u}_0 = (u_0(z_0), \dots, u_0(z_p))$) and

$$(I + \theta r_n \widetilde{A}) \widetilde{\alpha}_n \geqslant (I - (1 - \theta) r_n \widetilde{A}) \widetilde{\alpha}_{n-1} + \Delta t_n (\theta \underline{f}(\widetilde{\alpha}_n) + (1 - \theta) \underline{f}(\widetilde{\alpha}_{n-1}))$$
where $n = 1, 2, ..., N$.

Similarly $\hat{\alpha}_n$ is called a *lower solution* if $\hat{\alpha}_0 \leq \mathbf{u}_0$ and satisfies the reversed inequality.

Definition. The pair $\tilde{\alpha}_n$, $\hat{\alpha}_n$ are said to be ordered if $\tilde{\alpha}_n \ge \hat{\alpha}_n$ for every n.

Definition. For any pair of ordered upper and lower solutions $\tilde{\alpha}_n = (\tilde{\alpha}_{0,n}, \tilde{\alpha}_{1,n}, \dots, \tilde{\alpha}_{p,n})^T$, $\hat{\alpha}_n = (\hat{\alpha}_{0,n}, \hat{\alpha}_{1,n}, \dots, \hat{\alpha}_{p,n})^T$, we define a sector in \mathbb{R}^{p+1} by

$$\langle \hat{\alpha}_n, \tilde{\alpha}_n \rangle = \{ \alpha_n \in \mathbb{R}^{p+1} \mid \hat{\alpha}_n \leq \alpha_n \leq \tilde{\alpha}_n \}$$

and put

$$c_{i,n} = \max \left\{ -\frac{\partial f}{\partial u} \left(\alpha_{i,n} \right) \, \middle| \, \hat{\alpha}_{i,n} \leq \alpha_{i,n} \leq \tilde{\alpha}_{i,n} \right\} \qquad i = 0, 1, \dots, p$$

$$C_n = \operatorname{diag}(\overline{c}_{0,n}, \overline{c}_{1,n}, \dots, \overline{c}_{n,n})$$

where $\bar{c}_{i,n}$ are functions satisfying $\bar{c}_{i,n} \ge \max\{0, c_{i,n}\}$.

Hence we can write equation (4) in the following form

(5)
$$(I + \theta A_n) \alpha_n = (I - (1 - \theta) A_{n-1}) \alpha_{n-1} + \theta F_n(\alpha_n) + (1 - \theta) F_n(\alpha_{n-1})$$

where
$$F_n(\alpha_n) = \Delta t_n (f(\alpha_n) + C_n \alpha_n)$$
 and $A_n = r_n \tilde{A} + \Delta t_n C_n$.

It's easy to show that, in the sector $\langle \hat{\alpha}, \tilde{\alpha}_n \rangle$, $F_n(\alpha)$ is monotone nondecreasing component by component. Hence we can apply the following iterative scheme

(6)
$$(I + \theta A_n) \alpha_n^{(m)} = (I - (1 - \theta) A_{n-1}) \alpha_{n-1}^* + \theta F_n(\alpha_n^{(m-1)}) + (1 - \theta) F_n(\alpha_{n-1}^*)$$

n, m = 1, 2, ...; where $\alpha_0^{(m)} = \mathbf{u}_0$ for all m = 0, 1, ... and α_n^* is the limit of the sequence at the time step n.

In fact, if we denote the sequences beginning with $\overline{\alpha}_n^{(0)} = \widetilde{\alpha}_n$ and $\underline{\alpha}_n^{(0)} = \widehat{\alpha}_n$ with $\{\overline{\alpha}_n^{(m)}\}$ and $\{\underline{\alpha}_n^{(m)}\}$ respectively, then it's possible to show that for every n they converge to a unique limit, that we denote with α_n^* (this result is immediate for n=0). This is the subject of the following theorems.

Now we define
$$\overline{\sigma}_n = \max \{ \frac{\partial f}{\partial u} (\alpha_{i,n}) \mid \widehat{\alpha}_{i,n} \leq \alpha_{i,n} \leq \widetilde{\alpha}_{i,n}, i = 0, \dots, p \}.$$

Theorem 1 (uniqueness of the limit). Let \hat{a}_n , \tilde{a}_n be a pair of ordered upper and lower solutions of (4) and let the following conditions hold:

1a.
$$1 - \Delta t_n \left(\frac{a_i}{h^2} - \overline{\sigma}_n\right) (1 - \theta) > 0 \quad \forall i = 0, \dots, p$$

1b.
$$1 - \theta \triangle t_n \overline{\sigma}_n > 0$$
.

If the sequences $\{\overline{\alpha}_n^{(m)}\}$ and $\{\underline{\alpha}_n^{(m)}\}$ given by (6) with $\overline{\alpha}_n^{(0)} = \widetilde{\alpha}_n$ and $\underline{\alpha}_n^{(0)} = \widehat{\alpha}_n$ converge to $\overline{\alpha}_n$ and $\underline{\alpha}_n$ respectively, then $\underline{\alpha}_n = \overline{\alpha}_n$ and this is the unique solution in the sector $\langle \widehat{\alpha}_n, \widetilde{\alpha}_n \rangle$.

Proof. Let's consider $w_n = \overline{\alpha}_n - \underline{\alpha}_n$, then $w_n \ge 0$, $w_0 = 0$, and

(7)
$$(I + \theta \mathbf{A}_n) w_n = (I - (1 - \theta) \mathbf{A}_{n-1}) w_{n-1}$$

$$+ \left\{ \theta F_n(\overline{\alpha}_n) + (1 - \theta) F_n(\overline{\alpha}_{n-1}) - \theta F_n(\underline{\alpha}_n) - (1 - \theta) F_n(\underline{\alpha}_{n-1}) \right\}.$$

Since F_n is monotone nondecreasing, we have

$$F_n(\overline{\alpha}_n) - F_n(\underline{\alpha}_n) \le B_n(\overline{\alpha}_n - \underline{\alpha}_n) = B_n w_n$$

where $B_n = \Delta t_n \cdot \overline{\sigma}_n I + \Delta t_n C_n$ is a diagonal matrix. Hence we deduce that

(8)
$$(I + \theta P_n) w_n \le (I - (1 - \theta) P_{n-1}) w_{n-1}$$

where $P_n = A_n - B_n$.

From 1b we have that $(I + \theta P_n)$ is diagonal dominant with positive diagonal entries, thus $(I + \theta P_n)^{-1}$ exists and is positive (see [8], p. 85).

So we obtain

(9)
$$w_n \leq (I + \theta P_n)^{-1} (I - (1 - \theta) P_{n-1}) w_{n-1}.$$

From 1a we can verify that $(I - (1 - \theta) P_{n-1})$ is positive too. It follows from $w_0 = 0$ that $w_n \le 0$ for every n. Since $w_n \ge 0$, we must have $w_n = 0$. This proves the relation $\underline{\alpha}_n = \overline{\alpha}_n$. The uniqueness follows from the maximal and minimal property of $\underline{\alpha}_n$ and $\overline{\alpha}_n$.

As $(I + \theta A_n)$ is diagonal dominant and, for $1 \le i \le p$, $(I + \theta A_n)_{ii} > 0$, then $(I + \theta A_n)^{-1}$ exists and is positive. From (6) we can write $(x^m = \alpha_n^{(m)})$:

(10)
$$x^{m} = (I + \theta A_{n})^{-1} (I - (1 - \theta) A_{n-1}) \alpha_{n-1}^{*} + (I + \theta A_{n})^{-1} [\theta F_{n}(x^{m-1}) + (1 - \theta) F_{n}(\alpha_{n-1}^{*})] = G_{n}(x^{m-1}) (m, n = 1, 2, ...).$$

Lemma 1. Let $G: \mathbb{R}^m \to \mathbb{R}^m$ be a contraction on a closed set $D \subset \mathbb{R}^m$ (i.e. there exists $\overline{K} < 1$ such that $\|G(x) - G(y)\| \leq \overline{K} \|x - y\| \ \forall x, y \in D$) and such that $G(D) \subset D$. Then G has a unique fixed point $x^* \in D$ such that $\forall x^0 \in D$ the sequence defined by $x^{k+1} = G(x^k)$ converges to x^* . Moreover

$$||x^{k} - x^{*}|| \le \frac{\overline{K}}{1 - \overline{K}} ||x^{k} - x^{k-1}||, \quad k = 1, 2, ...,$$

where \overline{K} is the contraction constant.

Let J(G(x)) be the Jacobian matrix of G(x), Then we have

Lemma 2. If $G: \mathbb{R}^m \to \mathbb{R}^m$ belongs to $C^1(D)$ and $||J(G(x))|| \leq \overline{K} < 1$ $\forall x \in D$, then G is a contraction on D with constant \overline{K} .

For the proofs of Lemmas 1 and 2 see [2] and [3].

Consider

$$L_n = \max_{x \in D_n} \frac{\|J(F_n(x))\|_2}{\Delta t_n}.$$

Lemma 3. Suppose that $G_n \in C^1(D_n)$, where $D_n = \{x \in \mathbb{R}^m \mid \widehat{\alpha}_n \leq x \leq \widetilde{\alpha}_n\}$, that \underline{f} is almost differentiable in the domain Ω and that the following condition holds

(11)
$$\exists \overline{K}_n < 1 \quad \text{such that} \quad \Delta t_n \theta \| (I + \theta A_n)^{-1} L_n \|_2 \leq \overline{K}_n.$$

Then G_n is a contraction on D_n with constant \overline{K}_n .

Proof. Notice that $J(G_n(x)) = \theta(I + \theta A_n)^{-1} J(F_n(x))$. Our aim is to prove that there exists \overline{K}_n such that $||J(G_n)||_2 \le \overline{K}_n < 1$. We have that

$$||J(F_n(x))||_2 \leq \Delta t_n \cdot L_n$$

and, from (11)

$$||J(G_n(x))||_2 \le \Delta t_n \, \theta \, ||(I + \theta A_n)^{-1} L_n||_2 \le \overline{K}_n$$
.

Lemma. 4. Let $\hat{\alpha}_n$, $\tilde{\alpha}_n$ be a couple of ordered lower and upper solutions of (5) and $D_n = \langle \hat{\alpha}_n, \tilde{\alpha}_n \rangle$. Suppose that the following condition holds $\forall n = 0, ..., N$

(12)
$$1 - \Delta t_n \left(\frac{a_{i-1}}{h^2} + \overline{c}_{i,n} \right) (1-\theta) > 0 \quad \forall i = 1, ..., p.$$

Consider the iterative scheme (10) and suppose that G_n is a contraction on D_n , with constant \overline{K}_n . Then, $\forall n=0,1,\ldots,G_n(D_n)\in D_n$ and the two sequences $\{\overline{\alpha}_n^{(m)}\}$ and $\{\underline{\alpha}_n^{(m)}\}$ converge to a unique limit α_n^* . Moreover the following error estimates hold:

(13)
$$\left\|\underline{\alpha}_{n}^{(k)} - \alpha_{n}^{*}\right\| \leq \left(\frac{\overline{K}_{n}}{1 - \overline{K}_{n}}\right) \cdot \left\|\underline{\alpha}_{n}^{(k)} - \underline{\alpha}_{n}^{(k-1)}\right\|$$

$$\left\|\overline{\alpha}_{n}^{(k)} - \alpha_{n}^{*}\right\| \leq \left(\frac{\overline{K}_{n}}{1 - \overline{K}_{n}}\right) \cdot \left\|\overline{\alpha}_{n}^{(k)} - \overline{\alpha}_{n}^{(k-1)}\right\|$$

for k = 1, 2,

Proof. By induction we prove that, for every n = 0, ..., N

(14)
$$G_n(\hat{\alpha}_n) \ge \hat{\alpha}_n \quad G_n(\tilde{\alpha}_n) \le \tilde{\alpha}_n$$
.

Define $w = \overline{\alpha}_0^{(0)} - \overline{\alpha}_0^{(1)}$. So we have $w = \widetilde{\alpha}_0 - \overline{\alpha}_0^{(1)} = u_0 - u_0 = 0$; hence $G_0(\widetilde{\alpha}_0) \leq \widetilde{\alpha}_0$. Similarly we prove that $G_0(\widehat{\alpha}_0) \geq \widehat{\alpha}_0$. We deduce $G_0(D_0) \subset D_0$.

Supposing that (14) is true for l-1 (hence there exists the unique limit α_{l-1}^* and $G_{l-1}(D_{l-1}) \in D_{l-1}$).

Now observe that from $G_{l-1}(D_{l-1}) \subset D_{l-1}$ we deduce that the two sequences $\overline{\alpha}_{l-1}^m$ and $\underline{\alpha}_{l-1}^m$ are bounded in D_{l-1} and $\widehat{\alpha}_{l-1} \leq \widehat{\alpha}_{l-1}^* \leq \widehat{\alpha}_{l-1}$. Remember that F_n is monotone nondecreasing (component by component) $\forall n = 0, \ldots, N$; so we have that

(15)
$$F_n(\hat{\alpha}_{l-1}) \leq F_n(\alpha_{l-1}^*) \leq F_n(\tilde{\alpha}_{l-1}) \qquad \forall n = 0, ..., N.$$

From (12) $(I - (1 - \theta)A_{l-1})$ is a nonnegative matrix. In fact it is tridiagonal and its elements over and under the diagonal are nonnegative.

Then, if we consider the diagonal elements:

$$\begin{split} (I - (1 - \theta)A_{l-1})_{ii} &= 1 - (1 - \theta)(r_{l-1}a_{i-1} - \Delta t_{l-1}\overline{c}_{i, l-1}) \\ &= 1 - (1 - \theta)\Delta t_{l-1} \left(\frac{a_{i-1}}{h^2} + \overline{c}_{i, l-1}\right) > 0 \; . \end{split}$$

Let's show that (14) holds for l too. Remember that $\tilde{\alpha}_l = \overline{\alpha}_l^{(0)}$ and $G_l(\tilde{\alpha}_l) = \tilde{\alpha}_l^{(1)}$ and put $\overline{w} = \overline{\alpha}_l^{(0)} - \overline{\alpha}_l^{(1)}$. Using the fact that $(I - (1 - \theta)A_{l-1})$ is nonnegative, the definition of upper solution and the (15) we have:

$$(I + \theta \mathbf{A}_l) \overline{w} = (I + \theta \mathbf{A}_l) \widetilde{\alpha}_l - \theta F_l(\widetilde{\alpha}_l) - (I - (1 - \theta) \mathbf{A}_{l-1}) \alpha_{l-1}^* - (1 - \theta) F_l(\alpha_{l-1}^*)$$

$$\geq (I+\theta A_l)\widetilde{\alpha}_l - \theta F_l(\widetilde{\alpha}_l) - (1-\theta)F_l(\widetilde{\alpha}_{l-1}) - (I-(1-\theta)A_{l-1})\widetilde{\alpha}_{l-1} \geq 0.$$

 $(I + \theta A_l)$ is an M-matrix and its inverse is positive. It follows that $\overline{w} \ge 0$, which implies $\overline{\alpha}_l^{(0)} \ge \overline{\alpha}_l^{(1)}$ and $G_l(\widetilde{\alpha}_l) \le \widetilde{\alpha}_l$.

Now we prove that $G_l(\hat{\alpha}_l) \ge \hat{\alpha}_l$. Define $\underline{w} = \underline{\alpha}_l^{(0)} - \underline{\alpha}_l^{(1)}$. In the same way as shown before we obtain:

$$(I+\theta A_l)\underline{w} = (I+\theta A_l)\hat{\alpha}_l - \theta F_l(\hat{\alpha}_l) - (I-(1-\theta)A_{l-1})\alpha_{l-1}^* - (1-\theta)F_l(\alpha_{l-1}^*)$$

$$\leq (I + \theta A_l)\hat{\alpha}_l - \theta F_l(\hat{\alpha}_l) - (1 - \theta)F_l(\hat{\alpha}_{l-1}) - (I - (1 - \theta)A_{l-1})\hat{\alpha}_{l-1} \leq 0$$

It follows that $(I + \theta A_l) \underline{w} \leq 0$ and $\underline{w} \leq 0$, so $G_l(\hat{a}_l) \geq \hat{a}_l$.

Remember that $\widehat{\alpha}_n$ and $\widetilde{\alpha}_n$ are ordered and that G_n is monotone nondecreasing. This implies that $G_n(\widehat{\alpha}_n) \leq G_n(\widetilde{\alpha}_n)$, so $G_n(\widehat{\alpha}_n) \in D_n$ and $G_n(\widetilde{\alpha}_n) \in D_n$ for all $n = 1, 2, \ldots$ From the monotone property of G_n we have that $G_n(D_n) \subset D_n$, $\forall n = 1, 2, \ldots$

Using the previous lemmas, we conclude that, for all n = 0, 1, 2, ... and for every initial value in D_n , the two upper and lower sequences $\underline{\alpha}_n^{(m)}$ and $\overline{\alpha}_n^{(m)}$ defined in (6) converge to a unique limit $\alpha_n^* \in D_n$. Moreover we obtain the follo-

wing error estimates:

$$\begin{aligned} & \left\| \underline{\alpha}_{n}^{(k)} - \alpha_{n}^{*} \right\| \leq \left(\frac{\overline{K}_{n}}{1 - \overline{K}_{n}} \right) \cdot \left\| \underline{\alpha}_{n}^{(k)} - \underline{\alpha}_{n}^{(k-1)} \right\| \\ & \left\| \overline{\alpha}_{n}^{(k)} - \alpha_{n}^{*} \right\| \leq \left(\frac{\overline{K}_{n}}{1 - \overline{K}_{n}} \right) \cdot \left\| \overline{\alpha}_{n}^{(k)} - \overline{\alpha}_{n}^{(k-1)} \right\| \end{aligned}$$

where \overline{K}_n is the contraction constant of G_n .

Lemma. 5. The iterative schemes of the upper and lower sequences defined in (6) are stable for $\overline{K}_n < \frac{1}{3}$ (where \overline{K}_n is the contraction constant of G_n).

Consider $\underline{e}_n^k = \|\underline{\alpha}_n^{(k)} - \alpha_n^*\|$. From (13) we can deduce that

$$\left\|\underline{\alpha}_{n}^{(k)}-\alpha_{n}^{*}\right\| \leq \left(\frac{\overline{K}_{n}}{1-\overline{K}_{n}}\right) \cdot \left\|\underline{\alpha}_{n}^{(k)}-\underline{\alpha}_{n}^{(k-1)}\right\| \leq \left(\frac{\overline{K}_{n}}{1-\overline{K}_{n}}\right) \cdot \left(\left\|\underline{\alpha}_{n}^{(k)}-\alpha_{n}^{*}\right\|+\left\|\alpha_{n}^{*}-\underline{\alpha}_{n}^{(k-1)}\right\|\right)$$

that is

$$\underline{e}_{n}^{k} \leq \left(\frac{\overline{K}_{n}}{1 - \overline{K}_{n}}\right) \cdot (\underline{e}_{n}^{k} + \underline{e}_{n}^{k-1}).$$

For
$$\overline{K}_n < \frac{1}{2}$$
 we have $\underline{e}_n^k \leq \left(\frac{\overline{K}_n}{1 - 2\overline{K}_n}\right) \cdot \underline{e}_n^{k-1}$. If $\overline{K}_n < \frac{1}{3}$, then $\frac{\overline{K}_n}{1 - 2\overline{K}_n} < 1$.

For the upper sequence we follow the same way.

We summarize of the previous results in

Theorem 2 (existence, uniqueness and stability). Let $\tilde{\alpha}_n$ and $\hat{\alpha}_n$ be a couple of ordered upper and lower solutions of (5). Suppose that the conditions $\mathbf{1a}$, $\mathbf{1b}$ and (11), (12) hold. Then $\forall n=0,\ldots,N$ the upper and lower sequences $\{\overline{\alpha}_n^{(m)}\}$ and $\{\underline{\alpha}_n^{(m)}\}$ converge to a unique limit $\alpha_n^* \in D_n = \{x \in \mathbf{R}^m \mid \widehat{\alpha}_n \leq x \leq \widetilde{\alpha}_n\}$. Moreover if in (11) $\overline{K}_n < \frac{1}{3}$, then the algorithm is stable.

Proof. The proof follows immediately from the previous lemmas.

3 - The case of a system of reaction-diffusion semilinear parabolic equations

Consider the semilinear parabolic system

(16)
$$\frac{\partial U(x,t)}{\partial t} = \nabla \cdot (S(x) \nabla U(x,t)) + F(U(x,t)) \quad (x,t) \in \Omega \times \mathbb{R}^+, U(x,t) \in \mathbb{R}^m$$

with convenient Robin-type boundary conditions and initial condition $U(x, 0) = U_0(x) = (U_{01}, ..., U_{0m})$ and where S is a positive diagonal matrix. Moreover Ω (subset of \mathbf{R}^q) and $F(x, t, U) = (F_1(x, t, U), ..., F_m(x, t, U))^T$ satisfy convenient regularity conditions (see [5], p. 382, 16, 21).

If we apply a finite element method to system (16), we obtain a new system of ordinary differential equations of the form:

(17)
$$\frac{d\mathbf{v}(t)}{dt} = -A\mathbf{v}(t) + f(\mathbf{v}(t))$$

with an initial condition $\mathbf{v}(0) = \mathbf{v}_0$, and $\mathbf{v}(t) = (v_1(t)^T, v_2(t)^T, \dots, v_m(t)^T)^T \in \mathbf{R}^{lm}$ where $v_i(t)$ is a l-vector of elements $v_{ij}(t)$.

Here A denotes the $lm \times lm$ block-diagonal matrix $A = \frac{1}{h^2} D \otimes \overline{A} = \frac{1}{h} \overline{A}$ where \otimes is the Kronecker product, D is a diagonal matrix with elements d_i ,

 $i=1,\ldots,m$ and \overline{A} is an $l\times l$ matrix. \widetilde{A} is a matrix of the type:

$$\widetilde{A} = \begin{pmatrix} a_{11} & -b_{11} & \cdots & 0 \\ -b_{11} & a_{12} & -b_{12} & \vdots \\ \vdots & \ddots & -b_{m(l-1)} \\ 0 & \cdots & -b_{m(l-1)} & a_{ml} \end{pmatrix}$$

Moreover it is $f(\mathbf{v}(t)) = (f_1(\mathbf{v}(t))^T, f_2(\mathbf{v}(t))^T, \dots, f_m(\mathbf{v}(t))^T))^T$ where $f_i(\mathbf{v}(t))$ is a *l*-vector and *h* is a positive constant (the spatial step).

Now, applying a θ -method to system (17) we obtain a scheme like (4), that is:

$$(18) \qquad (I + \theta r_n \widetilde{A}) \mathbf{v}_n = (I(1 - \theta) r_n \widetilde{A}) \mathbf{v}_{n-1} + \Delta t_n I(\theta f(\mathbf{v}_n) + (1 - \theta) f(\mathbf{v}_{n-1}))$$

where $\mathbf{v}_n = \mathbf{v}(t_n)$. Defining $\mathbf{U}_0 = (\mathbf{U}_{01}, \dots, \mathbf{U}_{0m})$, where $\mathbf{U}_{0i} = (U_{0i}(x_1), \dots, U_{0i}(x_l))$, then the definition of upper and lower solutions, of sector and of ordered upper and lower solutions are analogous with that we used in the previous part.

For each time t_n , we can consider a couple of ordered upper and lower solutions of (18), $\tilde{\mathbf{v}}_n \hat{\mathbf{v}}_n$. Then we define:

$$c_{ijn} = \max \left\{ -\frac{\partial f_i}{\partial v_{ij}} (w_{ijn}) : \hat{v}_{ijn} \leq w_{ijn} \leq \tilde{v}_{ijn} \right\} \qquad \overline{c}_{ijn} = \max (c_{ijn}, 0)$$

$$(19) \qquad C_n = \operatorname{diag}(\overline{c}_{11n}, \dots, \overline{c}_{1ln}, \dots, \overline{c}_{m1n}, \dots, \overline{c}_{mln})$$

$$\overline{\sigma}_n = \max \left\{ \frac{\partial f_i}{\partial v_{ij}} (w_{ijn}) : \hat{v}_{ijn} \leq w_{ijn} \leq \tilde{v}_{ijn}, i = 1, \dots, m; j = 1, \dots, l \right\}.$$

As we did in the first part of this paper, we consider

$$\widetilde{F}_n(\mathbf{v}) = [\Delta t_n (f(\mathbf{v}_n) + C_n \mathbf{v}_n)] \quad \mathbf{A}_n = r_n \widetilde{A} + \Delta t_n C_n.$$

It's easy to see that $\widetilde{F}_n(\mathbf{v})$ is monotone nondecreasing component by component.

Hence we can rewrite (18) in the form of (5):

(20)
$$(I + \theta A_n) \mathbf{v}_n = (I - (1 - \theta) A_{n-1}) \mathbf{v}_{n-1} + \theta \tilde{F}_n(\mathbf{v}_n) + (1 - \theta) \tilde{F}_n(\mathbf{v}_{n-1}).$$

We can now apply the iterative scheme:

(21)
$$(I + \theta A_n) \mathbf{v}_n^{(k)} = (I - (1 - \theta) A_{n-1}) \mathbf{v}_{n-1}^* + \theta \widetilde{F}_n(\mathbf{v}_n^{(k-1)}) + (1 - \theta) \widetilde{F}_n(\mathbf{v}_{n-1}^*)$$

 $k = 1, 2, ...; n = 1, ..., N$; where $\mathbf{v}_0^{(k)} = \mathbf{U}_0$ for all $k = 0, 1, ...,$ and \mathbf{v}_n^* is the limit of the sequence at the time step n .

Theorem 3 (uniqueness of the limit). Let $\tilde{\mathbf{v}}_n$, $\hat{\mathbf{v}}_n$ be a pair of ordered upper and lower solutions of (20) and let the following conditions hold for each time step n:

2a.
$$1 - \Delta t_n \left(\frac{a_{ij}}{h^2} - \overline{\sigma}_n \right) (1 - \theta) > 0 \quad \forall i = 1, ..., m; \ j = 1, ..., l$$

2b.
$$1 - \Delta t_n \theta \overline{\sigma}_n > 0$$
.

If the sequences $\{\overline{\mathbf{v}}_n^{(k)}\}$ and $\{\underline{\mathbf{v}}_n^{(k)}\}$, given by (21) with $\overline{\mathbf{v}}_n^{(0)} = \widetilde{\mathbf{v}}_n$ and $\underline{\mathbf{v}}_n^{(0)} = \widehat{\mathbf{v}}_n$, converge to $\overline{\mathbf{v}}_n$ and $\underline{\mathbf{v}}_n$ respectively, then $\underline{\mathbf{v}}_n = \overline{\mathbf{v}}_n$ and this is the unique solution in the sector $\langle \widehat{\mathbf{v}}_n, \widetilde{\mathbf{v}}_n \rangle$.

The proof is similar to that of Theorem 1.

Remark. With the same arguments used in the previous section we can say that there exists $(I + \theta A_n)^{-1}$ and is positive. From (21) we can write $(x^k = \mathbf{v}_n^{(k)})$

$$x^{k} = (I + \theta A_{n})^{-1} (I - (1 - \theta) A_{n-1}) \mathbf{v}_{n-1}^{*}$$
$$+ (I + \theta A_{n})^{-1} [\theta \widetilde{F}_{n}(x^{k-1}) + (1 - \theta) \widetilde{F}_{n}(\mathbf{v}_{n-1}^{*})] = \mathbf{G}_{n}(x^{k-1})$$

for k = 1, 2...; n = 1, ..., N.

As before we define
$$L_n = \frac{\max\limits_{x \in D_n} \|J(\widetilde{F}_n(x))\|_2}{\Delta t_n}$$
 .

It's easy to show that three lemmas, analogous with Lemma 3, 4 and 5, hold. Just use

(22)
$$I - \Delta t_n \left(\frac{a_{ij}}{h^2} + \overline{c}_{ijn} \right) (1 - \theta) > 0$$
 $\forall i = 1, ..., m; \ j = 1, ..., l$

instead of (12), and condition

(23)
$$\exists \overline{K}_n < 1 \quad \text{such that} \quad \theta \Delta t_n \| (I + \theta A_n)^{-1} L_n \|_2 \leq \overline{K}_n.$$

Finally, the following theorem follows immediately

Theorem 4 (existence, uniqueness and stability). Let $\tilde{\mathbf{v}}_n$ and $\hat{\mathbf{v}}_n$ be a couple of ordered upper and lower solutions of (20). Suppose that the conditions $\mathbf{2a}$, $\mathbf{2b}$, (22), (23) hold. Then $\forall n=1,\ldots,N$ the upper and lower sequences $\{\overline{\mathbf{v}}_n^{(k)}\}$ and $\{\underline{\mathbf{v}}_n^{(k)}\}$ converge to a unique limit $\mathbf{v}_n^* \in D_n = \{x \in \mathbf{R}^{lm} : \widehat{\mathbf{v}}_n \leq x \leq \widetilde{\mathbf{v}}_n\}$. Moreover if in (23) $\overline{K}_n < \frac{1}{3}$, then the algorithm is stable.

The proof follows immediately from the previous considerations.

References

- [1] V. Comincioli, Analisi numerica, McGraw Hill, Milano 1990.
- [2] J. M. Ortega, Numerical analysis-a second course, Academic Press, London 1972.
- [3] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, London 1970.
- [4] C. V. Pao, Monotone iterative methods for finite difference systems of reactiondiffusion equations, Numer. Math. 46 (1985), 571-586.
- [5] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum, New York 1992.
- [6] C. V. Pao, Finite difference reaction-diffusion equations with nonlinear boundary conditions, Numer. Methods Partial Differential Equations 11 (1995), 355-374.
- [7] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, Springer, Berlin 1994.
- [8] R. S. VARGA, Matrix iterative analysis, Prentice-Hall, New Jersey 1962.

Sommario

A partire da una semidiscretizzatione di Galerkin per un sistema di equazioni paraboliche semilineari viene proposto un metodo di approssimazione numerica della soluzione che utilizza un θ -metodo e quindi uno schema iterativo monotono basato sulle soluzioni superiori ed inferiori. Vengono mostrate le proprietà di esistenza e unicità della soluzione, convergenza e stabilità dello schema numerico.

* * *