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MAaURIZIO ROMEO (%)

A wave splitting approach for a layer (*%)

1 - Introduction

A noticeable part of theoretical and experimental research in geophysics and
electromagnetism is devoted to wave propagation into inhomogeneous layers.
This topie covers a wide class of phenomena such as the propagation of seismic
displacements through continuous or discontinuous strata of the earth’s surface,
the reflection and refraction of acoustic or electromagnetic pulses and the trans-
mission of signals in electromechanical devices.

Concerning to a linear theory, the mathematical description of the problem
reduces to a system of second order differential equations for the field variables
whose coefficients depend on the depth within the stratified layer.

To this respect, we deal with a one-dimensional problem with assigned boun-
dary conditions at the edges of the layer. If we also account for harmonie waves,
where the time dependence of the fields is given by exp (—iwt), (w e R* *), then
we get a system of ordinary linear differential equations.

In the simplest cases, such as waves in continuously layered isotropic media
with normal incidence through the layer, we have scalar problems of the

type

(Gv') +w?Sv=0
where v represents the field variable, G(2) and S(z) are suitable continuous
functions of the depth z and the prime denotes derivative with respect to z (see

for ex. [2].
If we are dealing with anisotropic media and/or we account for bias external
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fields, we obtain vector problems in which coupling effects among the different
field’s components take a crucial role. Such is the case of electromagnetic waves
in an anisotropic dielectric layer [3] and of electromechanic waves in a biased
elastic dielectric layer [5], where two-component fields are considered.

Here we are interested in generalizing the previous models to a n-components
time-harmonic field for a continuous layered medium. In particular we extend
the approach of [5] to the vector equation

(1.1) (Gv) + w2 Sv—wCv=0

where G(z) and S(z) are n-dimensional diagonal matrices and where we have
pointed out the contribution of the coupling effect in terms of the spatial deriva-
tive of a suitable matrix C(z), which accounts for bias and/or anisotropy of the
medium and whose diagonal entries are constant (see [5]). It is also understood
that G, S and C are piecewise smooth functions in (0, d), where d is the thick-
ness of the layer, and that G and S are positive definite.

A physical motivation of equation (1.1) can be found for example in the pro-
blem which is complementary to that solved in [5]. There, a purely transverse
electromechanie field v, is studied which decouples from a four-component field
v, with polarization normal to v;. Under suitable assumptions on the material
symmetry of the solid and accounting for normal incidence, the governing equa-
tion for v, has the form (1.1) with n =4.

From a mathematical point of view, equation (1.1) deserves some interest in
connection with both the direct and the inverse problems. In particular, the wa-
ve splitting technique, which is performed in Section 2, allows us to extend in a
natural way the usual analysis of the direet problem for a homogeneous layer.
The resulting equation can be put in a form which is susceptible of an iterative
solution. The convergence of such a solution is shown in Section 3. The invariant
imbedding approach is also exploited in Section 4 to suggest a suitable formula-
tion of the inverse problem.

2 - Wave splitting

It has been recently shown how a diagonalizing procedure of the system of li-
near differential equations arising in layered media can give more insights about
the physical meaning of the problem at hand [3], [5]. We develop here the gene-
ral procedure which applies to the time-harmonie problem (1.1) for a n-compo-
nent field v.

As a first step we introduce the quantity w = Gv' in order to reduce (1.1) to
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a first order equation. We have v/ = G™'w and, after substitution, we get

vy 0 G Hy/v
2.1 = .
(w) (—a)ZS+a)C' 0 ) (w)
The wave splitting technique consists in defining a couple of n-dimensional
fields v and v~ such that the 2x X 2% matrix in the right hand side of (2.1)

splits into a homogeneous-like diagonal part plus terms due to inhomogeneity.
To this end we pose

NI
where
o= (1)

and look for a m X # matrix N which meets the diagonalization requirement.

Substitution of (2.3) into (2.2) and, in turn, into (2.1), yields

(v*)' _ 1( NN’ "‘N_INI)(V+)
-N"IN’ N7IN'

v

2 v

(2.4)
1 N1 (-02S+wC)+G'N NH(-0?S+wC)—-G Ny y*
el G-

AN (-w?S+wC)+G !N -N1(-w?S+wC)-G !N

The only purely inhomogeneous term of the second matrix in the right hand
side of (2.4) is oN~! C'. The remaining terms can be diagonalized by imposing
wiN"'S 4+ G !N = 0, which amounts to set
2.5) N = iwG? §% .

The sign in the right hand side of (2.5) is taken in such a way that
G~ !N — w?N~!8S have positive imaginary part, according to the notation of the
splitted field (v*, v~). Finally, after the positions

A=GF§*  P=§8TTGF

we write equation (2.4) in the form

() =G 200

1 PP -pP! i P Py/C'" 0\|(v"
+ Py -5 .
2[(—1)'?-1 P'p—l) 2(—P —P)(O c') (v—)
The effectiveness of the present formulation rests upon the physical meaning

of the three contributions in the right hand side of (2.6). The first term is the
counterpart of that occurring in the homogeneous layer’s problem where v splits

2.6)
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into a forward and a backward propagating plane waves
vt = ;7 (0) exp (iw;) v = (0) exp(—iwd;)

where 4; (j =1, ...,n) are the diagonal entries of /1. The second term specifi-
cally takes into account the inhomogeneity of the layer and the third term cha-
racterizes the coupling effects. These results are obvious consequences of the
fact that A4 and P are diagonal and C' has null diagonal entries.

3 - The convergence theorem

In terms of the components of v* and v~, equation (2.6) reads

v = wd;ut + é(Zﬂi v —Apvg)
@1 v = —iwA v - —;-(ij o = Ay v)
where
3.2) A=P P 1 +iPC’

and the bar denotes complex conjugate.
In view of an integral formulation of equations (3.1) we introduce the follo-
wing new variables

3.3) o;j=[4;dv i=1..,n
0

which play the role of characteristic travelling times. Their regularity is ensured
by the positiveness of A;. Denoting by (-) ; the derivative with respect to o;
and multiplying equations (3.1) respectively by exp (—two;) and exp (iwo;) we
obtain

[vj" exp(—iwo))] ;= %(a_f,:k v — @l v7) exp (—iwo;)
(34) — .
[v;” exp(+iwo))] ;= — %(aj-k vy — Qh vy ) exp (+iwo))
where @l =@ ;P L +iPC ) (j not summed).

After integration and rearrangement equations (8.4) can be transformed into
the following system of linear integral equations
9 _, .
vt =27 (0) exp (+iwo;) + -;— (@ v — @lpvy) exp[ —iw (& - 0,)]1dE
(3.5) %,

v = (0) exp (—iwo;) - % J(aj:k o — Aog) expl+iw (& — )dé.
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If the data v (0), (j =1, ..., n) at the edge of the layer are given, the inte-
gration of system (3.5) gives the solution of our problem in terms of the compo-
nents of the forward and backward splitted wave fields within the layer.

We introduce the quantity V = (v, ", ..., 07, v, v, ..., v, )" which
can be viewed as a composition of z via the ¢;’s with values in a 2n-dimensional
vector space B, (0, d). We also introduce

V(O) = (,U1+ (0) eiwol Yy ,vn+ (O)eitua,,’ 7)1_ (0)8 —-iwal’ e ,Un~ (O) e 'iwan)T

and look for a solution to equations (3.5) in the form of the series expan-
sion

(8.6) V= z AYAY2 yvp+D = va(p)
P

with p = 0 and where the action of the linear operator L,, on B, (0, d) is defined
as

Uj . Uj . .
% deE(j) a;k _ % j‘dEE'(J) aj,k vk+<p)
3.7) L,V? = ° ° ) ( )

aj .
- _;_ JEEED @), vy P

0

O [

o _ .
f dSE(J) aﬁ_k
(j=1,...,m), with ’
3.8) EY =exp[—iw(& —op)].

In order to state a convergence theorem for the series (3.6), we introduce the
norm in B, (0, d)
(3.9) IVl = sup {2 (1o (0;(@), @)I* + [oy7 (032, o) 21}

<z < J=

and define the quantity
(3.10) o =max{o;(d)}.
7

The following result holds.

Theorem. A sufficient condition for the series (3.6) to converge in norm
on B,(0,d) is

n

@.11) %fzn(P,jP*l)jm |(PC ) |?dE < 1.

ik

Proof. In view of the regularity of o;, the continuity of V and the defini-
tion (3.9), B, (0, d) turns out to be a Banach space. Owing to (3.7) we have, for
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an arbitrary V, that |L, V]|, is equal to
sup { z[l IE(])(ajk'Uk - ajkvk )d§]2+ |fE(J) ((fljkvk (fljk'l)k_)dglz]}% .

0<z<d

Accounting for (3.8) and using the Hélder’s inequality we obtain

aj . i n
NLeve], < swp {3 2 [1a5 0P = ag o7 dE}

< swp {1 EIEI ARITRUDE <.,2|vk—<7'>|2>%12d£}%
<z < J i3
<0supd{1 Zf[ @, |2 ag}s v,

and finally, by equations (3.6) and the definition (3.10)
Ve 2l < {3 Ofg |ael® g} [V,

In view of (3.2), the definition of @ k and the completeness of B, (0, d), the
condition (3.11) turns out to be sufficient for the convergence of the series
(3.6).

We remark that the present theorem can be extended to the case of a laye-
red half-space (z € (0, «)). In this case, of course, the convergence of the series
(3.6) requires stronger conditions on the matrices P’ P~! and PC’ since they
must be L?(R*). Essentially, this fact restricts our result to asymptotically ho-
mogeneous half-spaces.

4 - The invariant imbedding formulation

The solution (8.6) to the integral equation (3.5) of the wave-splitting problem
requires the knowledge of V¥ and, in turn, of the boundary values v~ (0). These
quantities can be obtained from the data on v and w at the edge of the layer. For
practical purposes, a more convenient approach to the solution of equation (3.1)
consists in restating the problem in terms of reflection and transmission matri-
ces R and T.
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The object of the invariant imbedding formulation (see [1]) is the conversion
of a system of linear differential equations for v* and v~ with assigned bounda-
ry values, into a system of non linear differential equations for the matrices R
and T which is independent on the boundary conditions at the edges of the
layer.

If we assume that an incident wave impinges on the layer at z = 0, we can
introduce the following Ricecati’s transformation

4.1 v () =R@E@)V (2) vi(z) =T 1z)v"(d)
together with the assumption

4.2) v (d)=0.

Substitution of (4.1) into (3.1) yields,

4.3) R’

i

}Z—K—iw(AR+RA)+ -;-(AR—RKH % RAR
(4.4) T = —inA——;—TK-{-%TAR.

Equations (4.3) and (4.4) can be used to solve the direct problem as follows.
Owing to (4.2) we have R(d) = 0. This condition is exploited as an initial datum
to solve (4.3) and to obtain R(0). Anagolously, since T(d) = 1 we can integrate
(4.4) to obtain T(0). Then equations (4.1) give the reflected field v~ (0) and the
transmitted field v* (d) in terms of the incident field v* (0).

The advantage of equations (4.3) and (4.4) also relies on their usefulness in
stating the inverse scattering problem for a layer. To this end we write (4.3) and
(4.4) in components

- % Ay —io(A; + A Ry, + é‘ (A4 Ry, — RyAy) + % RByAp Ry

— 5 1 A
Th= —twA, Ty — 3 TyAy + ';‘ Ty Au By -

14

Then we apply the change of variable (3.3) and pose oy, = 0; + 0.
Denoting by (-) s the derivative with respect to oy we get:

_ A+ A — A+ 4
- 1 ; 1 A, =ik
(Rjk),jk == ~2— ajk - 'la)Rjk + ‘2“ (aﬂle AJ +A}L - le a»lk A] + Ak)
(45) A+ 4
+ 1R R, S0
B R]lalh hk Aj+Ak

. -~k h A 3
(4.6) (Ti), e = —tw Ty — glz' Ty Qi + % T; Al —AI Ry
k
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with Q= (P 3 P+ 1PC ;)i and where Ry = Ry (o, w), Ty = Ty (0, w),
Q. = Qe (O 8)-

After multiplication of (4.5) by exp (iwo,) and (4.6) by exp (iwo;), we inte-
grate to obtain:

d
Ok

Ry (o, w) = %a{ ajk (7) expliow (v — o)]dr

d
Ujk
-1 I A (T) By (r — 0; + 04, w)e " "“Ciexp (iwt) dr
2 o,
4.7 d
L = i .
+ 5%{ Ry(t + 0; — 04, w) Ay (v) e " exp (iwt) dT
d
ik

- % IRy (t+0;— 04, 0) Ay (1) Ry (z — 0, + 0y, @) expliw (r — oy)ldr

5k

Tjk(o-ky w) = (Sjk exp [w)(aﬁf - Uk)]
of

k Y .
4.8) + %0{ Ty(r + o, — oy, a))(flfk(r) exp [iw(r — o)l dr
d
O
~ L [ Ty(r + 0~ 04, @) QD) Ry (2 + 04, w) explio(r = )] dr
O

where o = o(d) and where the conditions R(¢%) =0, T(6%) =1 have been
exploited.

Equations (4.7) and (4.8) are non linear integral equations for the reflection
and transmission matrices. In order to obtain @j; from the scattering data
R(0, w) and T(0, w) we firstly consider (4.7). For o0;=0 (j=1,...,7n), we
have

d
Ujk_
R;(0, w) = J Q;(7) exp (iwT) de
0

1
)
4.9) - % Of]taﬂ(r) Ry (r, w) — Ry(z, ) Ay, (1)] exp (iwt) dr

a
T

- % Oij,(t, ) Ay, (t) Ry, (T, ) exp (lwt)dr.

Taking the Fourier transform of both sides in (4.9) and taking into account
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that Q. (z) =0 for 7¢ (0, afk) we arrive at the inversion formula

]k(‘S) _-,-[ ]k(o ‘E)

d
Tk

(410) _Zl_ {c f[(flj,(r)R,k ('L', CU) - Rﬂ(’[, a))alk (T)] exp ['la)('[ - §)] drdw

d
= Uik
+ 5y L JIRy(7, @) A (0) Ry (7, 0)] explio(s - £ drdo
where the hat denotes the Fourier transform.

Analogous derivations of the inverse formula (4.10) have been developed in
the scalar case for a layer of infinite depth (an inhomogeneous half-space) (see
[4]). In that case the travelling time o ranges throughout R* and, as noted in
Section 3, the solution of the problem applies only to asymptotically homogene-
ous half-spaces.

For a layer of finite depth the quantities 0;(d) are unknown as well as the
material parameters @(o), and the effective inversion of the scattering problem
also requires the integration of (4.8). Hence the actual procedure in the present
case is as follows. In view of (4.7) and (4.10) we pose:

(4.11) Qo) = E a(n) (o)
4.12) Ry (0g, @) = R (0, )
with:

af (oz) = 3; R;.(0, o)

d

Ujk
@13) Bi (o5, 0) = L [ aid (@) explio(z — o) dv

]L

> Ry(0,w") o .
= 5 exp(~iwoy) [ — =o' Ok = e O do!
and:
o n
a(n+1)(gjk 2 [a](Z))R[(’Zq.—p) _Rj(ln~p) Cl%’)

(4.14) o p=0

n-p

n z R(n P=D PR expliw(r — o opldr dw
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d
RV (o, 0) = % f a(")(r) exp[iw (1 — o)) dv

rl
ik n

(4.15) _ _2_ f Z [a(p)R(N—P) ~iway R(” P a([’) —iway,
Oy P= 0

n-—-p
m-p-q - .
+ 20 Ry PP aPRY e 0,] exp (iwr)dr.
=

Equations (4.11)-(4.15) allow us to obtain @ and R in terms of the quantities
of. Successive substitution into equation (4.8) yields a linear integral equation
for T, that can be solved iteratively as

(4.16) Ty(op, ©) = 3T, ® (04, )
with:

Ty (o4, w) =0y exp[iw(aﬁ = o]
4.17)

T(n+1)(0k: w) = _;_ f (n)[aﬁC e ~iwoy _ aﬁl the—iwah] exp (iwr) dz .

In particular, equations (4.16) and (4.17), evaluated at o; = 0,(j = 1, ..., %) ena-
ble us to obtain 0}1, (j =1, ..., n) once the transmission data 7, (0, w) are given.

Summarizing the results of this section, we have obtained a recipe to evaluate
the material parameters @, (0;;) by the knowledge of the reflection and transmis-
sion matrices R(0, w) and T(0, w), which can be extracted from the scattering
data.

The convergence of the iterative solution (4.11) remains an open question
also for the scalar case in a half-space, owing to the non linearity of (4.7) (see
[4]). However, in connection to this point, a partial result can be obtained.

Theorem. Let P'P™! and PC’ satisfy inequality (3.11) and let
Ry (o, w)e LE(R* ) for any oy e (0, o}lk). If the series in (4.12) conwverge in
the norm of LE(R* *) for 0; =0, (j = 1, ..., n), then the series in (4.11) converge
i norm to (fljk(ajk).

Proof. We firstly note that the hypothesis (8.11) implies A e L2(0, a]”-lk)
for any pair jk. Then, by evaluating (4.15) at o3 =0 we get

d
ik m n—p

f 2 [a(mR(n P) R(n p>a(p)+ 2 R(n pP- q)@%)RIS,Z)] exp(iwr)dr
p=0

d
-1 f a]‘"’ (7) exp Gor)dt — Ry * P (0, w).
0
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After substitution into (4.14), we obtain
@18) af* V(o —aP o) = -1 [ RITV(0, w) exp(—iwoy)dw .

Taking the norm of both sides in (4.18) and using the Parseval’s formula for
the Fourier transform, we arrive to

e~ all = 2 1RE 0, o).
Hence, by the convergence of Z,LR},Z” (0, ) and the completeness of L2(0, a]‘fk)

we obtain the convergence of %, Cl](-}f) in (0, o).
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Sommario

Si studiano le onde armoniche che si propagano in un materiale disomogeneo per-
pendicolarmente ai suoi piani di stratificazione. Il problema viene formulato per un
campo ad n componenti generalizzando alcuni risultati precedentemente ottenuti in am-
bito elettromeccanico. Mediante lo tecnice di wave splitting si ottiene un sistema di
equazioni integrali lineari e si stabilisce un teorema di convergenza per la sua soluzio-
ne. Si considera poi Uapproccio di invariant imbedding al sistema di equazioni differen-
ziali di partenza per wno possibile formulazione del problema inverso.






