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On the connections between Kinetic theory
and a statistical model for the distribution of dominance

in populations of social organisms (**)

1 - Introduction

It is well known that the idea of dominance plays an important role in
studies of animal behavior. On the other hand the concept of dominance can be
introduced into any population of anonymous organisms, as an attribute pos-
sessed by each individual which characterizes its social life, and may undergo
variation due to encounters (interactions) between the individuals themselves.
Individuals are to be understood in the broadest sense (animals, persons, com-
munities, states, ...) and the attribute might refer to any kind of skill, strenght,
or endowment (physical, cultural, economical, technological, ...). Moreover, the
establishment of a dominance distribution in a population is analogous to the
establishment of ratings in competitive events such as chess, tennis, and golf.
The interested reader is referred to [5] and to the bibliography therein.

In order to study the dymamics of dominance, the dominance itself is usually
associated with a single nonnegative real number x, ranging, without loss of
generality, in the closed interval [0, 1].

In the simplest situation, assuming suitable reasonable rules governing the
development of dominance and its variation due to encounters, Jéger and Segel
provided a stochastic model for the time evolution of the distribution function
flz, t), where f(x, t)dx is the number of individuals that at time ¢ have domi-
nance values in the interval (x,  + dx). In the frame of the theory of Markov
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processes, by use of the Chapman-Kolmogoroff equation, they derived the basic
equation for the evolution of dominance [5]
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where n(zx, y) = #(y, ) = 0 denotes the microscopic collision frequency be-
tween individuals with dominance x and ¥, and w(x', ¥'; ) = 0 is the probabili-
ty density that, after an (x', ') encounter, the x' individual ends up with domi-
nance in the interval (z,  + dx), with the obvious normalization
1
(2) T,y z)de=1 Ve', y'el0, 1].
0

The hypotheses underlying equation (1) are of course satisfactory for those
societies where correlations between individuals are weak enough, and indeed
the model finds a very good verification for primitive communities like insects
or similar. In any case, such hypotheses are much the same as for the derivation
of the nonlinear Boltzmann equation of gas kinetic theory.

Some kinetic like applications in this respect are available in the literature
[2], and also immunology problems have been dealt with in such a spirit [1].
However, it is worth considering concepts which are typical of kinetic theory,
but are usually not considered in equation (1), like conservation of dominance
and microscopic reversibility in each encounter.

The first applies whenever dominance is neither destroyed nor created du-
ring interactions, and implies conservation of the total amount of dominance in
the population.

The second refers to the situation when the collision (z', y') — (x, y) and
its inverse (x, ) — (x', ¥') are equally likely, as it occurs to the standard par-
ticle collisions according to classical mechanics.

Indeed, discussion of these conecepts and their consequences is just the main
topics of the present paper. It is shown in particular that, as expected, an H-the-
orem can be proved, Maxwellians are explicitly found, and trend to equilibrium
is established. Possible generalizations are also discussed and commented on.

Under hypothesis of continuity of # on [0, 1] X [0, 1], and of measurability
of ¥ on [0, 1] X [0, 1] X [0, 1], existence and uniqueness of a global L, valued
continuous positive mild solution to the Cauchy problem associated to equation
(1), with positive L initial datum, has been proved in [3]. Such a solution is also
C! when v is continuous.
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We define total number of individuals ¢ and average dominance per indi-

vidual u as
1

[ xf(w, 1) do
0

o

1
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and notice that condition (2) immediately implies ¢ = constant (the size of the
population is conserved). In addition, there results in general that
wx', y'; x) = p(y’, &'; x), but the unique solution above is also unique solution
of a different version of equation (1), where only the probability distribution v is
replaced by the symmetrized form

o) wi@, y'se) = LIy, y's @) iy, w2l

If necessary, it is thus not restrictive considering 1 as symmetric with respect
to its first two arguments.

2 - Dominance conservation and microreversibility in an encounter

If the dominance of the interacting partners has to be the same before and
after the encounter, bearing in mind the meaning of the fundamental parame-
ters n# and 1, it is spontaneous to define conservation of dominance by

® n@,y ', y'se) =y, ey, e'se’ +y' —x)
namely the final dominance attained by the y'-individual is ¢ ' +y' —x, if z is the
dominance of x' after the encounter. Since both final levels must belong to
[0, 1], the support of 1 must be restricted, since, according to whether '+’ <1
or ' +y'=1, there are dominance intervals not admissible starting from «'.
More precisely w(z', y'; ) = 0 for x < max(0,2"+y'—1) or & > min(x'+y ', 1).
Since 7 is symmetric, dominance conservation corresponds to
(6) pl',yo)=ywly, sz +y —x) Yz, y;2)e®
where the domain @ is defined by

0o y' <1 max(0, 2’ +y' — 1)<z <min(z'+y',1).

Upon defining the average dominance of x' after interaction with y’

. ;
™ g’y = Jaey', y'; x)de
Q

subject thus to the constraint max(0,z'+y'—1) <g(z',y") <min(x' +y’, 1),
and resorting to equation (2), it is easy to prove that (6) implies

® gla',y) +gly',a)=n"+y'
of clear physical meaning (if the symmetrized probalility distribution (4) were
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’ '

x + Yy
2
cient to guarantee conservation of the global dominance in the population.
Multiplying equation (1) by x and integrating over x yields in fact, after simple
manipulations

used, one would get correspondingly g*(x’, y') = ). Equation (8) is suffi-

1
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t_290f

1

o', y") + gy, a') —x' —y']

) 0
', y") fle’, 6) fy', tde' dy' =0

so that u is, like o, a conserved quantity.

In the Boltzmann equation, reversibility of the equations of mechanics entails
microreversibility in the particle collision. In the present context the equivalent
formulation is that, if an encounter (x', ') — (2, &' + y' — x) occurs with a given
probability, the inverse encounter (x, '+ y' — a)—(z’, ¥') must be endowed
with exactly the same probability. We are thus led to the following definition of
microscopic reversibility

(10) n@,yHy,yse) =g e +y -,z +y —x; )

for any V(z',y', x)e ®.
If this condition is used into (1), it is not difficult to show that the collision
term I can be recast in a kind of kinetic form

11
If, f1= —Ofofﬂ(x, (e, y; &) f(x) f(y)dx' dy

11
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Appropriate additional algebra leads also to

1
Of e IS, flde

3 Jlo@ + 0@ +y'— o) = 9@) — g(y")]

@, y )y, y's o) fe)f(y) de' dy' do
=~ Jlo@ + 9@ +y' = 2) ~ 9@ ~ p(y")
L@@ +y' = o) = fa )y Nnt’, y )i, y's o) da’ dy' do

for the production of any property ¢, function of x, due to encounters.

]

(12)
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Equation (12) implies that a function ¢ satisfying
(13) p@) + o' +y' —a) =)+ oly) Ya,y x)ed

is necessarily a collision invariant, i.e. there is no net production of ¢ in an en-
counter, a property which has been established already for ¢ =1 and ¢ =,
which evidently fulfil equation (13).

It is possible now to show by standard methods that, if ¢ is restricted to the
class of the continuous functions on [0, 11, all solutions of (13) are just linear com-
binations of 1 and 2. In fact, equation (13) must be in order also for x'+ ' < 1 and
x = 0. Since @ is also bounded, for ¢(x) = exp[(x)] (exp[@(0)])~! we get

(14) ¢’ +y") =)oy’
with ¢(x) > 0 for any x. Setting ¢(1) = e* and @(x) = e *¢(x) yields
(15) O’ +y)=d@HP(y') D=1

from which @(x) = 1 for any rational  in the interval [0, 1], and then &(x) =1
identically. The only continuous solutions to (14) are ¢(zx) = e**, with 1 arbitrary
real number, which all satisfy (18) with arbitrary ¢(0). Since relaxing the condi-
tions '+ y’ < 1, & = 0 can only restrict the class of solutions, the continuous so-
lutions to (13) constitute just the two parameter family u + Az, with x4, A e R.

Moreover, if fis smooth enough to have the involved integrals make sense (in
particular, if f is positive), equation (12) gives

1 1 f@)f' +y' - w)
1 r=7
Jog NILS, fldw= = Jlog = v

Tfle)fle'+y' ~x) — fle)flyn, y )y, y;e)de’ dy' de <0

ie. the Boltzmann inequality relevant to the present context.

If additionally the functions # and y are assumed, as usual, to be almost every-
where positive, then the equal sign is in order, if and only if log f satisfies condi-
tion (18). The same requirement is also sufficient for I[ f, f1 to vanish, in force of
equation (11).

(16)

3 - Equilibrium states and stability

If, in the class of admissible solutions to equation (1), we introduce the
functional

1
amn Il’[f]=0ff10gf<71~’1c
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then, following a solution of (1) itself, standard algebra leads to the H-theo-
ren

1
(18) H[f] =Oflogf1[f, fldx <0

by which H is a good candidate to prove dissipativity and to provide a Liapunov
functional.

In particular, there follows that equilibrium distribution functions, defined by
ITf, f1=0, are only those functions for which log f satisfies equation (18), and
this constitutes the present version of the detailed balance principle. In the class
of the continuous functions, the only equilibrium distributions are thus the «?
family of Maxwellians [4], exponential functions of dominance

19 fu(x) = a exp(bx),

with ¢ > 0 and b real, but otherwise arbitrary. Then H vanishes at the equilibria,
and is negative at any other f.

The constants a and b are in a one to one relationship with the two conserved
quantities ¢ and w. Using in fact (19) for f in (3) yields easily

-b
b _, w=0"=1%b _ pqy

20 =
€0 ¢ b(l—e?)

which are valid also in the limit b — 0. The second is a transcendental equation for
the exponent b, where

2
" coshb —1— b?
@1 F'(b) = 5 >0 for any b
2b%sinh?® -
2
so that F' is monotonically increasing versus b, ranging between its asymptotic
limits 0 at — o and 1 at + o, with F(0) = % Therefore, the unique root b of

equation (20) is positive or negative according to whether the average dominance

per individual is greater or less than 3 producing an increasing or decreasing

function of & as Maxwellian. For u = %, individuals are equally distributed over
all values of dominance.

In order to guarantee relaxation to the equilibrium characterized by the same
values of ¢ and  of any initial distribution, one has also to prove that H is actually
a Liapunov functional, namely that it attains its minimum at that equilibrium for
all admissible distribution functions which share the same values of the total
amounts of population and dominance.
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To this end we evaluate H[ f] for fin such a class, and set & = (f— fi) far',
with 2 > —1. Owing to the fact that

1 1
(22) [ hfyde =0 fzhfyde=0
0 0
it is not difficult to obtain

1
(23) H{f1 - H[ ful =0f{[1 + h(x)] log[1 + h(x)] — h(x)} fiy () dec .

Analogously to equation (16), the content of the curly brackets is a positive defi-
nite funetion of 2 for —1 < h < + o, vanishing at # = 0 and positive elsewhere.
There follows that the right hand side of (23) is equal to zero for f = fy;, and is po-
sitive for any other f in the considered class.

The required minimum property is so established.

4 - Possible generalizations

The previous theory can be extended in several directions. The most imme-
diate one concerns the possibility of a multi-species society, in which individuals
of each species may interact, according to the previous scheme, with individuals
of any other, equal or not, species.

The evolution equation for the distribution vector F={f,i=1,2,..., N}
would read as

af N 1
== = —filw,t) 2 [y, 9)fi(y, Hdy
8t i=10
(24) N 11
+ _ZIOIOfmj<x',y'>wij<x',y'; ) fi(@', Ofi(y', Hde' dy’ = LIF, f]
i~
with
1
(25) i@y ) =n(y'sx") Ty, ye)de=1.
0

One may introduce now
1 1! 1 X
26) o;=[fite,)dx o= 2 0; = 0 Jafi(w, t)de U=73 2 0t
0 i=1 iy i=1

where all g; are constant because of (25). The symmetrization (3) is not permissi-
ble here.
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Conservation of dominance can be introduced by imposing that, if &' under-
goes a transition to x, the transition y'— x' + ' — @ must take place for its part-
ner. There follows that each v, must have the same support @ as for single
species, and that

@D oy, y o =y(y, e +y —x) V', y's2)e®, Vi, j.

This implies
1

@28) g,y +gply,xe)=a'+y gy, y)=Jeyp;@, y’;e)dx
0

for any pair 4,7 and any dominance x', y¥'. By integration of (24) one gets

d ) 11 ' ' 7 ’ ' 7 1 ' ’
©29) = Ofof[gijwc Ly =2 g, y ), Dy, ) de' dy

di

l! M<
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which is nonzero in general. The average dominance over all species is instead
conserved under the only assumption that equation (28) holds, since

du 1 &
a2 i + g;; -
'mj(x Y )ﬁ-(ac', £y, de' dy' =0.
Under the additional hypothesis of microreversibility
@B yy,yIny@, y e =ns@ e +ty -y e +y' —w )

for any (', ', x) e ® and any ¢, j one has

N
E / w; (@) I [f, Flde
=10
1 & &
=5 2 2 Jlw@) + e+ y = o) = w@w') = w(y")]
t=1J7=1a@
o g,y D@,y o) file)f(y')de' dy’ do
N N
= -1 22 Jlw@ + w g = o) —w@) -y
t =l@

L@ fi@' +y' =)= file) iy, y)y; (', y's x)de’ dy' da
from which all vectors w = {w;(x),7=1,..., N} such that
33 w@+tw +ty —o)=we)+w(y) V', y xv)ed Vi, j

are collisional invariants.
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Futhermore, upon defining

N 1
(34) Hif}= '; Offi log f; da
one gets, after some algebra
. N 1 1 N N J‘%(m)]‘}.(m'—{—y’——x}
= log £, L[f, flde = — =
(35) Al l_;ofogfl ilf, fldw 4 E‘l 12:1 a{bg L@ (yh

Lfi@) fiw +y' — @) = fi@ ) iy Ny, y )@, y';s ¢)de' dy' de <0.

Skipping all details, it is possible to prove that the equilibrium distribution
vectors f, defined by I[f, f] =0, coincide with the solutions of the equation
H[f]1=0, and are those for which the vector {log f;} satisfies (38).

Again, in the class of the continuous functions, one ends up with the
Maxwellions

(36) fiy (@) = a; exp (bx)

where the exponent b must be the same for all species, as imposed by (33) itself.
The N -+ 1 free constants a; and b are related one-to-one to the N + 1 first inte-
grals g; and u

b et—1+9

eb—lg * b(l—e™?) ®)

(37 a; =

where the transcendental equation for b is the same as for (20). In particular, the
average dominance u; in the general species is, at equilibrium, the same for all
species and equal to the overall average value u.

In this multispecies frame it is possible to model also the presence of a back-
ground species (i = 0), taking part in the interactions but not being appreciably
affected by any variation due to encounters. One could even consider the linear
problem of a single population embedded in a much larger host population and
deal with the equivalent of the linear (neutron) Boltzmann equation

ar

1
(38) i —v(x) flx, 1) +0fv(m')k(x’, ) f(x', Odae' =I[f]

with
1 1
v(x) =0fnm(x, Wh(ydy ve)k(x', x) =0fmo(x’,y’)wm(x’,y’; ©)foly')dy'

1
(39 Jk(x', x)de=1.
0
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Linearity makes the mathematical problem much easier, but several of
the previous results fail. For instance o is conserved, but % is not, in general,
even if there is global dominance conservation in each encounter, since there
could be transfer of dominance to or from the host population. Assuming
Jo(®) = ay exp (byx) and taking the functional (17), it is not difficult to show that

1
H[f]=f10gﬂ[f]dw
(40)

11

1
= - = lo

f( [f(’b) ~hor — Al ye N Jv(x Y k(a!, x) e da’ du

without any definiteness in sign. Even more, if f has the form a exp(bx),
a >0, be R, one can easily show that

<0 for b > max (0, by) or b < min(0, b;)
(41) Hlae®™1=0 forb=0or b=1b,
>0 for min (0, by) < b < max(0, by).

Other possible generalizations might concern the treatment of other pheno-
mena which are typically modeled in mathematical biology, like birth and death
processes (with an age variable in addition to the time variable), male and female
behaviors, predator-prey systems, migration effects, and so on.

Another important generalization is related to space inhomogeneity and bor-
der effects, with additional space variable(s).

Space dependent problems have been actually considered already [2], even
though for a rather particular interaction model. This matter will hopefully be
subject of future investigation.

5 - Further remarks and comments

It could deserve some attention verifying if the conservation and microre-
versibility conditions, (8) and (10), are fulfilled in the most popular interaction
models quoted in the literature. In most of these models # is taken to be constant
(a kind of Maxwell molecule assumption of kinetic theory [4]), whereas the proba-
bilities ¢ are limiting cases, in distributional sense, of continuous statistical distri-
butions when a variance tends to zero, and are given by Dirac delta functions.
For instance the model [3]

42) w(x',y's 1) = ole — Blx’, yl

prescribes deterministically the final dominance of ¢’ after an encounter with the
y' partner. Since in this case g = 3, condition (8) is satisfied whenever, for any
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x' 20,y <1, there results
max(0,z' +y' - 1)<B@’,y)<min(x'+y’,1) and B, yH+py,x)=2"+y".

As regards condition (10) for microreversibility, it is seen to imply the necessary
condition

(43) BBy ), a' +y' — B,y ) =u V', y', e [0, 1].

It is verified at once that such a complicated functional equation is satisfied by
Blx’,y') =2 and by B(x’, ¥') = y', in which cases equation (10) is also actually
fulfilled. But both cases are trivial, since they describe either conservation of pre-
collisional dominances, or their exchange, thus without any net variation of domi-

d
nance distribution (equation (1) would collapse in fact to B_Jt[ = 0).

On the other hand, it is only matter of careful and patient analysis to show
that equation (43) is always violated whenever S(z’, ') is either internal or ex-
ternal to the interval (min(z’, ¥ '), max(x', ¥')). Therefore, there are no nontriv-
ial mieroreversible models of the kind (42).

Of course, this is not surprising at all. Take for instance ' > y'. Any conser-
vative model in which g(z’, ') > ¢’ (and then g(y’', ') < y') describes a dicta-
torial society in which the stronger partner takes advantage of its power in order
to improve its rank. If instead g(x', ') < x' the individuals behave democratical-
ly, and help weaker partners. In both cases microscopic reversibility has not to be
expected, but the irreversible microscopic behavior should enhance the global ir-
reversible trend that was guaranteed by the H-theorem.

Another very popular model is the one which allows for the possibility of win-
ning or losing an encounter, and getting a prize or a penalty for it, respectively
[5]. More precisely

) ye yio)=p,y)ox—z -Wa' y)+ply,e)ole—a'+Lx',y")]

where W, L >0 are the win/loss functions,' subject to the constraints
' +W',y')<1 and o' - L(x',y') =0, and p(x',y’), 0sp<1, is the
probability for x’ to win, with p(z’, y') + p(y’, #') = 1. There results .

(45) g,y =o' +p,y" YWk’ y")—ply, L&', y")

so that condition (8) for conservation of dominance is satisfied for any p by the
very understandable option L(z', y') = W(y', 2').

In the same way as for (42), the microreversibility condition can be seen to
yield the necessary condition on W

(46) W(y' = W', y'), 2"+ Wk',y)=Wk',y") Vo', 9y e[0, 1]
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Such an information is sufficient, for instance, to rule out microreversibility for
the simple case W(x', y') = ey’ (1 — '), for any ¢ > 0 [5].

We would like to conclude by reporting without details some results relevant
to a model, which can be dealt with analytically to some extent, and provides a dif-
ferent example of equilibrium distribution and of trend to equilibrium.

With 5 = constant, suitable scalings of variable allow to set # =1 and o = 1.
Take (42) for v with

47 B,y =ax'+ (1 - )y’ O<a<l

namely an example of conservative democratic microscopically irreversible
behavior.

Another typical tool of kinetic theory, the moment method, can be convenient-
ly applied. Introduce power moments

1
(48) M, () = ;17 [ & fle, t) de n=0,1,..
Yo

with My = const. =1 and M, = const. = . Taking moments of equations (1)
yields the moment equations

. n
(49) M, +M,= 2, a*(1 - a)* " *M,M, _, n=23,..
K=0
solvable in cascade, each linear in its unknown. Introduce the generating function
of the moments

n=

© 1
(50 Gz, t) = zoann (t) = [e” flx, t)de
0

where z is a complex variable. Then summation of (49), multiplied by 2", over n
leads to the partial-functional equation for G

1) %% + Gz, b) = Glaz, ) GI(1 — @)z, £]

with G(0,#)=1 and (%g)(o, t)=u. Equilbrium states are defined by

G(z) = G(ar) GI(1 — a)z], where G(z) is analytic at z =0. Therefore its
logarithmie derivative y(z) is analytic in turn, and satisfies the linear equation
y(2) = ay(az) + (1 — a) y[(1 — a)z], that is easily seen, by series expansion, to
be solved uniquely by y(z) = constant = %, from which G(z)=e*.

We have correspondingly M, = u™(n!)~!, which allows to prove, on the basis
of (48) and of the Weierstrass theorem, that f(x) = d(x — u) is the associated
equilibrium distribution. It is a limiting case in which all individuals possess ex-
actly the average dominance u.
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Local stability analysis for (50) is easily performed by Liapunov’s first

o

method. Setting G(z,t) =e“[1 + H(z, t)], with H(z,{) = > 2"h, (1), the lL-

nearized equation for H is neE

0H _

(52) T + H(z, t) = H(az, t) + H[(1 — a)z, t)]

and is solved by

(53) H(z, 1) = 2 2"k, (0)e 1~ «" (=@l = O(em2et =)

n =
which shows exponential asymptotic stability, with relaxation time
1
2a(1 —a)’
References

1] N. BeLLomo and G. ForNI, Dynamics of tumor interaction with host immune
system, Report No. 29/1993, Dip. di Matem. Politecnico Torino, Torino 1993.

[2] N. BeLroMo and M. LacHowrrz, Mathematical biology and kinetic theory evolu-
tion of the dominance in a popolation of interacting organisms, in Nonlinear
kinetic theory and mathematical aspects of hyperbolic systems, V. C. Boffi, F.
Bampi and G. Toscani eds., World Scientific, Singapore 1992.

[3] 7. BrzEZNIAK and L. PREZ10SI, On the Cauchy problem for a biological model on
the distibution of dominance in a population of interacting organisms,
preprint.

4] C. CERCIGNANI, The Boltzmann equation and its applications, Springer, New
York 1988.

[5] E. JAGER and L. A. SEGEL, On the distibution of dominance in populations of so-

cial organisms, SIAM J. Appl. Math. 52 (1992), 1442-1468.

Sommario

L'equazione di Boltzmann della teoria cinetica e lequazione per Uevoluzione della
dominanza in biomatematica sono basati su concetti analoghi, di nature statistica. In
questa ottica vemgono esaminati i tipict concetti cinetici di invarianze e di microre-
versibilita, che generalmente sono ignorati nell'ambito biologico. In particolare, viene
derivato e analizzato un «teorema H». Si indicano pot alcune possibili generalizzazioni a
situazioni pin complesse e si discutono, infine, alcuni esempi.






