Riv. Mat. Univ. Parma (5) &5 (1996), 159-168

MARIA GROPPI (¥)

A variational formulation of the oblique dipole layer model

for cardiac potentials (**)

1 - Introduction

The spreading of the excitation in an anisotropic bidomain model for the car-
diac tissue can be macroscopically described by the evolution of the trasmem-
brane and extracellular potentials that are solutions of a reaction-diffusion
system (RD-system), characterized by fast reaction and slow diffusion [3], [4].

During the excitation process, also called depolarization phase, the trasmem-
brane potential exhibits a traveling wavefront behaviour, characterized by a
propagating internal layer. The so-called excitation wavefront is the macroseo-
pic surface related to this layer and may be considered the median surface of the
layer. Starting from the knowledge of the execitation wavefront S, at time ¢, a
Sfur-field approximation of the extracellular potential % can be obtained, by
means of the so-called oblique dipole layer model [4], [5], [6]. This macroscopic
model is suitable for simulations of potentials at a distance from the cardiac elec-
tric sources, mainly localized on the excitation wavefront. The model can be de-
scribed by an elliptic equation for the extracellular potential % coupled with
jump conditions on S;.

In this work we consider the Neumann elliptic problem with jump relation-
ships representing the oblique dipole layer model. We propose a variational for-
mulation which is suitable for a finite element approximation of the oblique dipo-
le layer model, and we investigate existence and uniqueness of a weak
solution.

Numerical simulations of extracellular potential distributions obtained from
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this model of cardiac sources appear in [7]. In a simplified three-dimensional
model of anisotropic myocardium we computed the approximate solution by
means of the Galerkin finite element method applied to the weak formulation
presented in this paper. Using isoparametric elements of degree one we built an
adaptive mesh with respect to the shape of the wavefront surface.

The author gratefully thanks P. Colli Franzone and G. Di Cola for pointing to
this problem and for providing many suggestions during the research.

2 - The far-field model for the extracellular potential

Let © € R? be an insulated three dimensional block of ventricular myocar-
dium and let W(x, t) = 0 be the equation of the surface of the excitation wave-
front S; propagating in the cardiac tissue. We suppose that S; is a regular and
orientable surface. Let Q,, 2,c Q be, respectively, the resting and the activa-
ted sides of S; at time ¢, defined by

1 Q,.={xeQ|W(x,t) <0} Q.,={xeQ|W(x,t)>0}.
_ VW oo . . . .
Letn= — VW be the unit normal to S, directed toward the resting region 2.

For a function f regular outside S;, we consider the jump through the surface
Si:[fls,=f"—f¢, where f" and f* are the traces of f on S; taken from 2, and
2, respectively. Then it follows that the extracellular potential « satisfies the
elliptic boundary problem and jump conditions [4], [5]:

(2) div(MVu) =0 in Q-8
~ n"M;n

(3) [u]S[ - ’v[) nTMn

(4) [n"MVuls, = v, divs, ©

(5) nL MV =0 on 982

where: M, (x), M, (x) are the conductivity tensors in the intra- and extracellular
media (i.e the two interpenetrating continuous conducting media composing the
bidomain macroscopic model for the cardiac tissue). They are defined as:

(6) M; =M ,(x) =0t 1+ (o] “(x) — op*(x)a,(x)af (x)

with ob¢(x), o ®(x) conductivity coefficients parallel and transverse, respect-
ively, to the cardiac fiber direction (assuming axial symmetry around fiber), and
a;(x) unit vector tangent to the fiber passing through point x
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M =M(x) =M, + M, is the bulk conductivity tensor

v, is the plateau value of the transmembrane potential v (and we set the re-
sting value v, = 0)

n, denotes the outward unit vector normal to the boundary 02

o is the tangential vector field given by

N o=(fM;—;M,)n=M;n— ;Mn with ;.=

T

n’Mn
and divg, is the surface divergence operator.

Equations (2), (3), (4) define the oblique dipole layer model suitable for far-
field potential simultations, given the excitation wavefront S, and the tensor M;,
M,. By means of a perturbation analysis it has been shown in [3] that relation-
ships (2), (8), (4) represent an approximation of zero order of an appropriately
scaled form of the RD-system, in which a dimensionless small parameter
appears.

Under the assumption M = o1 this reduced potential model was introduced
by P. Colli Franzone et al. in [5], [6] and an existence and uniqueness result for
the solution, up to an additive constant, was established in [2]. It was proved
that the solution belongs to the Sobolev space W%“E'Z(Q), for any ¢ > 0.

3 - Weak formulations for the oblique dipole layer problem

We now investigate existence conditions for solutions of the problem (2)-(5),
which are acceptable in a physiological point of view, and we propose two equi-
valent weak formulations.

In order to study the problem (2)-(5) let us introduce the regularity
hypotheses:

H,. ©1is an open connected bounded domain of R®, with Lipschitzian boundary

H,. For each x, the unit vector a;(x) tangent to the fiber passing through
that point is a function a;:Q — R® of class C'(Q)

H,. The conductivity coefficients o} °(x), o} °(x):Q — R? are functions of
class C'(Q) and the following property holds

8 0<i;,Sof(x)<apt(x) <4, VxeD
where: Aio=mino}°(x)  A;,=max obe(x)
Q Q

H,. For each fixed x, M; ,(x) are symmetric positive definite matrices; they
have at most two eigenvalues: o} °(x) > o} “(x) > 0, and they are diagonalized
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by the same unit matrix A(x) = [a,; (x), a;(X), az(x)], where a, (x), a,(x), a3 (x)
are three mutually orthogonal unit vectors with as(x) parallel to a;(x).

For semplicity of notations, in the sequel we will omit the dependence on x
of all quantities, when it is not necessary. For a fixed ¢ let W(x, ) =0 be the
equation of the surface of the excitation wavefront S; and let us denote by Q,,
2, respectively the region behind and ahead S; (see (1)).

First, we remark that a realistic model of the extracellular potential must gi-
ve rise to bounded potentials. Using results of potential theory and of elliptic
boundary problems (see [9], [8]) and proceeding as in [2], the boundedness of u
is garanteed if S;is a closed surface; otherwise, if S;is an open surface, the impo-
sition of some geometrical constraints on the wavefront boundary 8S; with re-
spect to the fiber orientation on 09 is required.

" More precisely, if S; is an open surface, having the rim on 39, in [2] it has
been noted that % is bounded if and only if

) o'n,=0 on 8.S;

where n, is the unit vector tangent to S; and perpendicular to the rim 957 and @
is the tangential vector on S; (i.e. @’n =0) defined in (7). '

We now discuss under what kind of geometrical hypotheses the boundedness
condition (9) is verified. In a physiological point of view, we can assume that the
boundary 82 represents the epi-endocardium surfaces, and then it is correct to
suppose that the fibers are tangent to 09, that is

(10) nb a,(x)=0 VxedQ.

The following theorems hold:

Theorem 1. If n} a;(x) = 0 Vx € 39Q, then the wavefront surfaces S, are
perpendic ular to 3R, that is nkn =0, '

Proof. We notice that the wavefront surfaces S, defined by W(x,t) =0
are isopotential sets with respect to the fransmembrane potential v, ie. at time

v

t, if point x satisfies W(x, £) = 0, then v(x, t) = const. = Ep
Supposing W of class C' (), we can locally define S, as ¢ = t(x). Supposing
moreover W strictly increasing with respect to ¢ and differentiating v(x, t), for

(x, t) € S; we obtain

vw

Vx’l)-l'at’l)'(-— aW)zo
t
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Neumann boundary conditions for the potentials », % solutions of the RD-
system imply that (see [3], [4] for motivation and derivation)

-VW

0=n5M,;Vv = —3,vn5M; ( W

) on 392 N 35,

hence n5M; VW =0 on 92 N 3S;.

Since VW is parallel to n, where n is the unit vector normal to S;, we obtain
nsM;n =0 on 392 N 38S,.

Now, if nka;(x) =0 Vxe dQ, then using (6) we obtain

0 =n5iM;n = oinbn + (¢} — o)) (nba)(af n) = ginkn

which is the thesis.

Remark 1. In a physiological point of view, the orthogonality of S; and 0%
is the generic collision situation with the epi-endocardial surface.

Theorem 2. If nha;(x) =0 VxedQ, then the boundedness condition
o’n, =0 on 38, holds. :

Proof. First, we rewrite the quantity o’ n; in equivalent way. We define:
o,= 0+ of o, = ot + of
and then we have M = 0,1+ (0, - 0,)aaf .

Then, using (4) an easy calculation show that

ol T
1y Mi= 5 M+ (o} - 5 oD aal
hence
7 i 7.2
_nMn o i 01 (aj n)
(12) pi= Tt = Tt t (ol glob+ S
Then we obtain
n"M;n .o a’n |
o=Mn-— L Mn = (o} -~ = ohaln[a, — Mn]
‘ n” Mn g TV ' n’Mn
from which:
7
(13) o', = (o — —Zf o) alm)afn, — 20 o Mn,]

(14) n’Mn, = o,n"n, + (0, — o)(af n)(af n;).
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We remark that if nba,(x) = 0, then from Theorem 1 n5n = 0, and since we
have 38, c 3R, then nk 7, = 0 on 8, where 17, is a unit vector tangent to 3, and
oriented in such a way that the triplet (n, ny, 7;) is orthogonal and right handed.
Then we obtain

nbt =nhn=nba,=0.

Hence ny, is parallel to n,, and thus afn, = 0.
Since n”'n, = 0, from (13), (14) it is easy to see that aln, = 0 on 385, is equi-
valent to

(15) o'n,=0 on 38,
which is the thesis.
Now we first consider the variational formulation of (2)-(5). Let Sy be the wa-

vefront surface at fixed time ¢. Multiplying each side of (2) for a test function
ve WH2(Q) and integrating over Q,U 2, we obtain

0= [vdiviMVa) dx + [ vdiv(MVu)dx
Q, Qq

= [ o(a™MVu)y do - [ v(nTMVu)* do — [ (Vo)’ MVudx — [ (Vo)” MVudx.
Q, O,

a0, 30,

Imposing Neumann boundary condition (5) on 92 we obtain

fin"MVulgvdo — [ (Vo) MVudx — [ (V0" MVudx = 0.
S; Q, Q,

Then we consider the wvariational formulation of the problem (2)-(5):

T

. n"M;n
Find we W-2(Q,) x Wh2(Q,), [uls=7v, ML

, such that
(16)

[ (V)" MVvdx + [ (Vu) MVodx = [(v,divs, @) vdo

Q, Q4 St

for amy test function ve Wh2(Q).

For the solvability of (16) a compatibility of data is required [10]. More preci-
sely the compatibility condition

am fvp divg,wdo =0
St

must be verified.
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Applying the divergence theorem to the manifold S; embedded in 2, if S;is a
closed surface, then (17) is satisfied; otherwise, if Sy is open, then
18 f v, divg;0do = [ nlwds
St 38;
and so the compatibility condition is assured under the hypoteses of Theorems

1, 2. From (16) uniqueness follows up to an additive constant.
Moreover we can consider the equivalent formulation:

Find e WH2(Q) such that

(19)
[y Mvvdx = [(v, divg @) vdo — [ (V&) MVwdx
o Si Q.

TMin
for any test function ve Wh2(Q), where e WH2(R,) and a = v, i}-————
90 n' Mn

An easy calculation shows that, up to an additive constant, we have » = % in
Q,and v =% + a in 2, and we show that » is independent of the kind of pro-
longation of @ in Q, in the following theorem

on

n’M;n
n’Mn
in 8, let @, Wy be the solutions of (19) related to a,, @, respectively and

Theorem 3. Let@,, ds e W 2(2,) be two prolongations of a = v,

’Zl/h:'ljl:h 'l’n.Qa uh='L~Lh+&h ?/)’L.QT h=1,2.

Then, up to an additive constant, we have u; = up in 2.

Proof. We consider the function z = u; — u, defined as
Z=Za=’[l;1'"’l:(jg inQa, z=z,.=(ﬁ1—272)+(&1—&2) inQ.].
and define the following bilinear forms:

(20) alu, v) = [ (V)" MVu dx

Q

21 a,(u, v) = f(Vv)TMVu dx a, (U, v) = f(Vv)TMVu dx.
Qq

2,

From the equivalent weak formulation (19), written for u; and u,, by subtrac-
ting we obtain:

@, (2p, V) + 0y (24, v) =0 Yoe Wh2(Q).
We notice that z,e W'2(R,), 2, W'2(Q,) and, since on S; we have
4, =0y = a, then:

2 |5 = (W — )]s, = 2a |
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hence z € Wb 2(Q), and moreover a(z, v) = 0 for any v € Wb 2(Q). Setting v = z, it
follows that: (Vz)T MVz = 0 almost everywhere on 2 and since M is not singular,
then z = constant on Q.

4 - Existence of weak solutions

Now we prove the existence of a solution of the variational problem (19), up to
an additive constant; this will follow from the Lax-Milgram theorem [10].
Setting V= Wb 2(Q), let F:V — R be defined as

©@2) F) = [, divg®)vdo - a,(@, v)
St

with a, given by (21), @ prolongation of « in W*2(£,). Then (19) can be rewritten
as

23) Find ueV suéh that a(u, v) = F(v) for any v of V.
The form a:V X V— R is bilinear and is moreover continuous. In fact we
have:

la(u, v)| < |[VolLeg) [Mx) Va Lo

1.2(Q)

S IMx) V|2 dx)f < (M) [Vu|? do)f < max [ M|l Vu
0 0 Xe
where || M(x)| is the euclidean norm of the matrix M(x). From hypotesis H; we ha-
ve |[M(x)| = ol (x) + of (x) and setting A .. = max (o} (x) + of(x)), we obtain
xe
|a (e, )| < Amax [|V0ll2co) | V2ell2) S Amax [V llv | V]l -

The functional F'(v) given by (22) is linear and also bounded. In fact, setting
B = v, divs;w we have

LSy +’1mm<”a”le(Qr)”v”W‘z(Q,) .

|IF@)| =|[Brdo— [ (Vo) MV dx| < ||B]lzsllv
St Q,

L2y < Clvllwzo

hence [F@)| < CUBlLzsy + Amax lallwr2 o)) 1oy -

From the trace theorem (see, for example, [10]) it follows ||v

We notice that the bilinear form a(u, v) is not V-elliptic. Indeed for any con-
stant ce V, ¢ = 0 we have a(c, ¢) =0 while |cy> 0.
Then we define

24) Q={geV|[qdx=0}.
Q
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This set is a closed subspace of the Hilbert space V and is the orthogonal
complement (in L 2?norm) of the real constant function space P. From hypothesis
H;, since 2 is an open connected bounded domain with Lipschitzian boundary,
then the Poincaré-Wirtinger inequality holds (see [1])

(25) lu — %z < Cl|Vau]|e Vu e Wh2(Q)

1 f udx. Hence it follows

where % =
(el o

lullzzo < ClVull2 g Vue@.

Now we can show that a(u, v) is @-elliptic. From hypothesis H; it follows
that the minimum eigenvalue of matrix M(x) is oi(x) + 0§ (x).
Setting A, = min o} (x) + 0¢(x), since M(x) is symmetric then
Xe &2

a(g, @) = [(VQ)"M(x) Vgdx = Ay | | Vg|? dx.
Q (o}
By (25) we obtain

min

A
IVglf= + lglf: = ylql
2C

lmin
b
a(q, q) 5

with y = min {4 /2, A /(20)}, || - lp being the restriction of the V-norm to
the subspace @. Hence we can conclude that the bilinear bounded form a(u, v)
is Q-elliptic.

From the Lax-Milgram theorem the existence and the uniqueness in @ of the
solution of (23) can be deduced if only if we have F(c) = 0 for any ¢ € P [11]. Mo-
re explicitly:

f(vp divg;w)cdo — a,(a, ¢} =0 V constant ¢ € P.
S

The second term is clearly null if ¢ is a constant, so the above condition is ve-
rified if and only if the compatibility condition (17) holds. Then the geometrical
assumptions stated in Theorems 1, 2 ensure the existence of a unique solution in
Q. We are now in position to state the result proved above.

Theorem 4. Under hypotheses Hy, Hy, Hs, Hy, if S; is a closed surface or
if the hypotheses of Theorems 1, 2 hold, then there exists a unique solution i
e @, with @ given by (24), of the weak problem a(u,v)= F (@) for any v
e WL2(Q), with a(-,-) and F(-) given by (20), (22).
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Sommario

In questo lavoro si considera il modello dello strato di dipoli obliquo per i potenziali
cardiaci extracellulari. Le soluziont risolvono un problema di Newmann ellittico e rela-
zioni di salto sulla superficie del fronte di eccitazione. Di questo problema si propone
una formulazione variazionale idonea all’approssimazione di Galerkin mediante ele-
menti finiti e si studiano Vesistenza e Uunicitd delle soluzioni deboli.
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