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Affine response functions

for the stress in incompressible elastic points (**)

1 - Introduction

Many authors (R. L. Fosdick and J. Serrin [4], J. E. Dunn [3], F. Bampi and A. Mor-
ro [1], P. Podio-Guidugli [7]) studied and solved the problem to know whether or not in
finite elasticity the response function for the stress could be an affine function of the de-
formation gradient. As the most important finitely deformable elastic materials—the
rubberlike materials—are commonly considered incompressible (see, L. R. G. Treloar
[8]) the above problem needs a particular attention in this case.

The results by J. E. Dunn and P. Podio-Guidugli are applicable to elastic
points subject to internal constraint as defined by W. Noll in [9]—in particular
incompressible elastic points. Indeed, J. E. Dunn and P. Podio-Guidugli are con-
cerned with response functions that satisfy the principle of objectivity and who-
se domain can be an objective manifold. They prove that the constrained affine
elastic points are those with a response function for the Cauchy stress which is
a constant function proportional to the identity tensor, or those with a response
function for the Piola-Kirchhoff stress which is a right-multiplication by a con-
stant symmetric tensor.

Our aim is to study the problem for an incompressible elastic point under the
weaker assumptions on the response function given by H. Cohen and C-C. Wang in
[2] with the hope to get a wider class of incompressible affine elastic points.

We recall that an elastic point is incompressible when all its admissible confi-
gurations have the same mass density. The deformation gradients at these con-
figurations, relative to one as a reference, are called admissible. As emphasized
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by H. Cohen and C-C. Wang, a response function for the determinate stress is
nothing but an arbitrary function that to each admissible deformation gradient
associates one of the possible stress tensors in the corresponding configuration.
This function is not required to satisfy the principle of objectivity, but this prin-
ciple restricts the form such a function may assume. The principle of objectivity
is indeed verified by the set of all possible stress tensors as a function of the de-
formation gradient.

The main result of this note is that the weakening of the assumptions on the
response function does wmot widen the class of incompressible affine elastic
points.

In Section 2 we give a brief summary of the basic notions of the theory of in-
compressible elastic points as given by H. Cohen and C-C. Wang in [2].

In Sections 3 and 4 we are concerned with incompressible elastic points ad-
mitting a response function for the determinate (Cauchy or Piola-Kirchhoff)
stress which is an affine function of the deformation gradient.

In Section 3 we prove that the response function for the Cauchy stress must
be a multiple of the identity tensor by a scalar affine function. Although this re-
sult is slightly different from the above-mentioned one by J. E. Dunn and P. Po-
dio-Guidugli under W. Noll’s assumptions, both results specify the same class of
incompressible affine elastie points.

In Section 4 we prove that the response function for the Piola-Kirchhoff stress
must be a right-multiplication by a constant symmetric tensor—i.e. the same result
of J. E. Dunn and P. Podio-Guidugli under W. Noll's assumptions.

2 - Incompressible elastic points

In this section we recall the basic notions of the theory of incompressible ela-
stic points as given by H. Cohen and C-C. Wang in [2].

Let © be a three-dimensional inner product vector space. The space of all li-
near transformations from < into itself is denoted by Lin and its elements are
called tensors. If A and B are two tensors, their inner product A-B is the trace
of AT B. The subset of Lin of all proper rotations is denoted by Rot. The subspa-
ce of all symmetric tensors is denoted by Sym. The subspace of Sym of all real
multiples of the identity tensor I is denoted by (I). The set of real numbers is
denoted by R.

Let X be an incompressible elastic point and let v, be an admissible local re-
ference configuration of X. The deformation gradient from v to a local configur-
ation v will be denoted by F.
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The set @ of all admissible deformation gradients is given by
1) ¢={Felin |det F=1}.

For each F in @, let §(F) be the set of all possible Cauchy stress tensors in
the configuration whose deformation gradient from v, is . The principle of ob-
jectivity requires the map J to satisfy
) FQF) = Q5 QT

for every F e € and Q € Rot (see [2], Sect. 3).

Let T:¢— Lin be a response function for the determinate Cauchy stress re-
lative to v, i.e. a function such that T(F) e (F). The function T is not required
to satisfy the principle of objectivity.

At each F in @ it is (see [2], Sect. 3)

(3) ) =TF) + {I).

Since each element of J(F') is symmetric, then by (3) we have

4) T(F) e Sym for every F e C.
For each Fin @, let S(F) = J(F)F ~T be the set of all possible Piola-Kirchhoff

stress tensors in the configuration whose deformation gradient from v, is F. By
(2), the principle of objectivity requires the map S to satisfy
5) S(QF) = QS(F)

for every F e C and @ € Rot.

Let S:@— Lin be a response function for the determinate Piola-Kirchhoff
stress relative to v .., i.e. a function such that S(F) e $(F). The function S is not
required to satisfy the principle of objectivity.

At each F in @, since S(F) = T(F)F~T + (IVF~T (see (8)), and S(F) e S(F),
we have
(6) S(F)y=8F) +(I)F~T.

Since S(F)e g(F)F T, then

(M) S FT e Sym for every F e C.

3 - Affine response functions for the Cauchy stress

In this section we find the most general form of the affine response functions
for the determinate Cauchy stress of incompressible elastic points.
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Statement 1. Let X be an incompressible elastic point and let v, be an
admissible local veference configuration of X. Let T be a response function of X
for the determinate Cauchy stress relative to v,.. If T is the restriction to the set
C of an affine function whose domain is Lin, then there exist a real number y
and o tensor I' such that T(F) = (y + ["F)I for all F e c.

Proof. For all Fe ¢ and @ € Rot, by (2) and (3) it follows that
T@QF) +(I)= QTN Q™ + QN Q" = QTP Q" +(I)

hence
®) T(QF) - QT(F)QT e (I).

For each Fe G, let
9) T(FY =Ty +T(F - 1)
where T, e Lin and T:Lin— Lin is a linear function.

Since v, is an admissible local configuration, then I € € and, by (9) and (4) we
have Ty = T(I) e Sym.

Both (8) for F =1 and (9) imply that for any @ € Rot we have

To- QToQT+T(Q-De (1.

This relation is equivalent to require that there exists a function a: Rot—R
such that for all @ € Rot

(10) To— QToQT+T@Q -1 = a(Q)I.
By (10) it follows
To I —QToQT-I1+TQ-N-I=TQ-DI=al@II=3a(Q)

and so

(11) «Q = £ [TQ-D-11.

The map X — T(X)'I is defined on Lin and it is linear. Then, by the Repre-
sentation Theorem for linear forms ([5], Sect. 67), there exists a tensor I” such
that T(X)-I =T-X for all X e Lin. Defining I' = %T, by (11) it follows that
a(Q) =T-(Q —I) for all @ e Rot, and (10) may be rewritten as
(12) To-QT,Q"+T@~-D~[r(Q-DII=0.

For any X e Lin, let F(X) = T(X) — (I"-X)I. This map is linear. By (12) we
have Ty — QT, QT + F(Q — I) = 0 for all Q e Rot. Then we have (see [7], Sect. 3):
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a. there exists a real number ¥ such that Ty =%1

b. for any @ € Rot, F(Q — I) = 0.

From b it follows that F is the null map (see [7], Sect. 2), hence
T(X) = (I'"X)I for all X e Lin. Hence by a and (9), defining y =% — I'- 1, it fol-
lows T(F) = (y + I'"F)I for any FeC.

4 - Affine response functions for the Piola-Kirchhoff stress

In this section we find the most general form of the affine response functions
for the determinate Piola-Kirchhoff stress of incompressible elastic points.

Statement 2. Let X be an incompressible elastic point and let v, be an
admissible local reference configuration of X. Let S be a response function of X
for the determinate Piola-Kirchhaoff stress velative to v,.. If S is the restriction
to the set C of an affine function whose domain is Lin, then there exists a sym-
metric tensor = such that S(F) = FS for all F e C.

Proof. For all FeC and Qe Rot by (5) and (6) it follows
SQF) + (IYQF T =QS(F) + QU)F T
hence
(13) S@QF) - QS(F) e I)F "
For any FeC, let
(14) SFy=8,+S(F-D

where Spe Lin and S: Lin— Lin is a linear function.

Since v .. is an admissible local configuration, then I e € and, by (14) and (7)
we have Sy = S(I) e Sym.

Both (13) for F =1 and (14) imply that for any Q e Rot

Se+8@Q-1-Q5eQ()
ie.

(15) SQ-D-(Q@-DS,eQ().
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For any X e Lin, let L(X) = S(X) — XS,. The map L is linear and we may re-
write (15) as L(Q — ) e Q(J > This relation is equivalent to require that there
exists a function A: Rot — R such that for all @ € Rot

(16) LR-D=UQ)Q.

By the lemma we will prove in Section 5, L is the null map. Then, for any
XeLin we have S(X)=XS,. Hence by (14), defining ¥ =35, e Sym, it follows

SFpy=x+F-DxZ=F3

for any FecC.

5 - Appendix
Now we prove the lemma used at the end of Section 4.

Lemma. Let L:Lin— Lin be a linear map, and A: Rot — R be o function
such that for any Q « Rot we have

amn LR -D=1Q.
Then L is the null map.

Proof. As a first claim we prove that L(I) = 0.

Let {v;, 3, v3} be an orthonormal basis for ¥. If L is a tensor, let [L] denote
its matrix relative to the given basis of ¥ and L; the element 4j of [L].

For every 4,7 =1, 2, 3, by Representation Theorem for linear forms [5]
Sect. 67, there exist LY e Lin such that for all X e Lin the element 4j of [L(X)] is
given by LV-X.

Let Q3 be the rotation through the angle 6 about the axis spanned by v;. Its
matrix is

cos 6 — gin 6 0
[Qs]= [sin 0 cos 0 0f.
0 0 1

It follows from (17) that
(18) [L(Qs — D] = MQ)[Qs].
In particular

19)  AQy)=L%®-(Qs— D)= (L + LE) cos 6 + (LF — LH) sin 6 — (L} + L)
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and L1(Q;—I) = A(Qs) cos 6.

Then for all 8 e R we have

(L + L) cos 6 + (Lgj — Li3) sin 6 — (Lif + Lz3)
= (L + L) cos® 0 + (L3} — LE) sin 6 cos § — (L} + L) cos 6

hence LE+LE=0 Li{+Ly3=0 LE-LE=0 LI{I+LYE=0.

By (19) if follows A1(Qs) =0 and then by (18) L7-(Qs — 1) =0 ie.

(L4 + L) cos 0 + (L — L) sin 0 — (L + L) = 0

for all 6 e R. Hence
(20) Li+LE=0  Lj-Li=0

for 7, j = 1, 2, 8. Considering the rotations @, and @, about the axis spanned by
v; and v, respectively, we get:

@1) Li+Li=0 Li-Li=0
and
(22) Li+LE=0 L-Li=0.

Using (20);, (21); and (22);, the element i of [L(])] is given by
LT =Li+ L+ L= S UL + L) + Wl + L) + Wi + L = 0.
This proves the claim.
Since L(I) =0, then by (17)
(23) L) =1 q for every @ e Rot.
By (23) the function A: Rot — R satisfies the properties:

a. A assumes only a finite number of values, indeed 1(@®) is an eigenvalue of
L and Lin is a finite-dimensional vector space

b. 1 is a continuous function, indeed A(Q) = -;; L@ -Q.

Since Rot is a connected set (see [6], p. 172) then A is a constant function.
Since A(I) = % L(I)-I =0, then 4 is the null function and hence L has con-
stant value over Rot. By [7] Sect. 2, L is then the null map.
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Sommario

In questa nota st determine la forma pi generale che lo funzione risposta per lo
sforzo determinato (di Cauchy o di Piola-Kirchhoff) pud avere, in un materiale elastico
ncomprimibile, asswmendo per essa unae dipendenzo affine dal gradiente di deformazio-
ne. Aleuni autori hanno risolto questo problema per ¢ materiali elastici soggetti a vinco-
lo interno come definito da Noll. Qui si risolve il problema sotto le ipotest piw deboli sul-
la funzione risposta, proposte da Cohen e Wang. I risultati provano che lindebolimento
delle ipotesi non porta ad una pin onpia classe di materiali elastici incomprimibili

affini.



