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Special identities with («, )-derivations (**)

1 - Introduction

Throughout this paper, B will be a prime ring with nonzero ideal U and sym-
metric Martindale ring of quotients @, = Q,(R), right Martindale ring of quo-
tients @, = Q, (R), maximal right ring of quotients Q,,, = @,..(R) and extended
centrotd C. See K. 1. Beidar, W. S. Martindale III and A. V. Mikhalev [1] and W.
S. Martindale III [7] for the definitions and basic properties of Q,, Q,, @, and
C. We denote by U(R) the group of invertible elements of the ring E.

An additive mapping /2 B — R is called a derivation of the ring E if we have
flay) = of(y) + fle)y for all x, y e R. We shall denote by Aut@), the automor-
phism group of the ring @, and set

A(R)={aeAut Q| there exist nonzero ideals I; and I, of R such that I,ca(l;)cR}.

We note that every automorphism of E can be extended uniquely to an auto-
morphism of @, (Lemma 1, [6]), and we shall make no distinetion in what follows
between these two automorphisms for brevity.

Let «, f e A(R). An additive mapping f: R - @ is called an (a, f8)-derivation
of R if flay) = ala)fly) + flx)fly) for all x, y € B and there exists a nonzero
ideal I of K such that f(I) cR. For example, a — f is an («, B)- and a (8, a)-
derivation of R. Given a fixed element ¢ € R, the mapping ad,, ;(a): B — R defined
via ad,, g(a)(@) = alx)a — af(x) for all x e R is also an (a, )-derivation of R.

For t e U(Q,) and f: R — Q,,., the mappings fi: R — Q,,, and tf: R — Q,,,
are defined via (fi)(x) = flx)t and (#f)(x) = tf(x) for all x € R. The following
statements can be verified easily and will be used without further references.

(*) Dept. of Math., National Cheng-Kung Univ., Tainan, 701 Taiwan, Rep. of China.
(**) Received June 17, 1996. AMS classification 16 W 25. The author expresses his gra-
titude to prof. K. I. Beidar and prof. W.-F. Ke for their advice and encouragements.
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Remark 1. Let f be an (a, ff)-derivation and ¢ e U(Q,). Denote by Inn(t)
the inner automorphism of @, induced by ¢. Set 6 = Inn(¢)x and y = Inn (¢ *)S.
Then:

1. a fis an (1, o "!p)-derivation of R
2. t7!'fis an (6, B)-derivation of R
3. fi lis an (a, y)-derivation of R.

We remind the reader that for a nonzero (a, ff)-derivation f and a nonzero
(y, 0)-derivation g, the notation «f = g» means that f and ¢ are equal as deriva-
tions, which asserts that, besides f(x) = g(x) for all xe R, a=y and B =06 as
well.

Lemma 1. (Lemma 3, [4]). Let f be a nonzero (a, B)-derivation of U into B
and g an (y, 8)-derivation of U into R. The following conditions are equiva-
lent:

1. fle) =glx) for all xe U

2. either f=g or there exists a teUQ,) such that o =Inn(t)q,
B=Inn(@)y, flx)=(alx)— yx)t and glz) =1t(5(x) — f(x)).

In 1993 M. BreSar (Lemma 2.3 [2]) studied an identity f; (x) 2 () = f3(x) fi (y)
for all 2, ¥y e R where fi's are nonzero derivations of R, and showed that there
exists a A e C such that f; () = A "1, (x) and f;(x) = Af; (x) for all x € R. Recent-
ly, J.-C. Chang (Lemma 1 [4]) considered a more general case where f; and f; are
(a, p)-derivations, f; is an («, a)-derivation and f; is a (B, 8)-derivation. He
proved that there exists a t € U(Q,) such that f;(x) = f; (x)t ~! and f; (x) = tf; ()
for all x € B. Our goal is to prove the following generalization of BreSar’s and
Chang’s results.

Theorem 1. Let R be a prime ring with nonzero ideal U and f; # 0 an
(a;, B;)-derivation of R, 1=1,2,8,4 Suppose that fi(x)fo(y) =fi(x) fi (y)
for all x,y e U. Then there exists a te U(Q,) such that f3(x) =fi(x)t™! and
fi(x) = tfs (x) for all x e R.

The above theorem rests on the following result, which has an independent
interest.

Theorem 2. Let R be a prime ring with nonzero ideal U, a, b e @, \ {0},
=0 an (a, f)-derivation and g =0 a (y, 0)-derivation of R. Suppose that
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af(x) — bg(x) =0 for all xe U Then there exists o te U(Q,) such that
b=at"}, and one of the following statements holds:

1. glx) =tf(x) for all x € R and either y = Inn(t ') a, & = 8 or there exists
a se UWQ,) such that f=Inn(s 1)y, 6 =Inn(st Ha

2. there exists a qe @, such that aqg =0, f=ad, s(q) and g =tad, s(q)

The study of identities with derivations goes back to 1957 when E.C. Posner
[9] proved that a prime ring B with nonzero derivation d is commutative if it
satisfies the identity [[d(x), ], ¥] = 0 for all z, ¥ € K. Since then, more than 50
papers have been published on the related matters, and there are theories deve-
loped on rings with generalized identities [1], [6], on Hopf algebras action on
rings [8], and on commuting additive mappings [2], [3] and Chapter 9 [1]. Be-
sides the mentioned applications, Theorem 2 is motivated by results of 1. N.
Herstein [5], M. BreSar [2], J.-C. Chang [4] as well as some others.

In order to state an important result of V. K. Kharchenko and A. Z. Popov
[6], which will be used in the proofs of Theorem 1 and 2, we need the following
definitions.

First of all, we call a (1, f)-derivation of R a skew derivation (connected with
B). If there exists a nonzero ideal I of R such that 5(I) ¢ R, we consider the set
Ly (R)={f|fis a skew derivation of @, connected with S}.

Let e A(R) and g € Q,. The skew derivation ad, ;(q) is said to be inner
(connected with ). Here, 1 denotes the identity mapping of R. The set of all in-
ner skew derivations of R connected with j, denoted by InnLg. is a C-subspace
of Lg(R).

Two automorphisms g, & € A(R) are said to be mutually outer if gh ~! is not
an inner automorphism of Q.

Finally, a set of skew derivations S = {f;, f, ..., f,, } is called reduced if the
following conditions are satisfied:

1. distinet automorphisms connected with skew derivations in S are mu-
tually outer
2. skew derivations in S which are connected with a fixed automorphism j3

are linearly independent over C modulo InnLg.

Since Q,(U) = Q,, the following result is a special case of V. K. Kharchenko
and A. Z. Popov (Proposition 9 [6]).
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Proposition 1. Let {fi, f2, --., fu} be a reduced set of skew derivations
and {hy, ha, ..., b, } @ set of mutually outer automorphisims satisfying an
identity of the type

2} CLJ'(IC)ﬁ; (ﬂ:) bj(k) + Ed” hi(x) e,,-j =0 relU
gy B L7

where CLJ'(k), bjﬁc), di; and e; are coefficients from Q.. Then the following relations
are fulfilled in the tensor product @, QcQ,.:

Sa® @bk =0 2d;Qe;=0 l1sism,gsks<mn.
i 7

In particular, the identities

2 aPab® =0 2dgue; =0 1sism,q<ksn
J

J

are fulfilled in R.

2 - Proofs of the main results

We shall proceed to the proofs of Theorems 1 and 2 with several Lem-
mas.

Lemma 2. Let fand g be (a, §)-derivations of R and a be an nonzero ele-
ment i Q,, such that

(1) af(x) = ag(x) for all xe U.
Then f=g.

Proof. Substituting xy for « in (1), we obtain
aa(x) fly) + af(@) fy) = aalz) g(y) + agx) fly)

for all x e U and y e R. Using (1), we obtain aa(x)(f(y) —g(y)) =0 forallxe U
and y e R. Since a(U) contains a nonzero ideal of R, we get f(x) = g(x) for all
rek.

Lemma 3. Let a,  be elements of A(R) and let a, b, ¢, and d be nonzero
elements of Q,,. such that aa(x)b = cf(x)d for all x e U. Then there exists a
te WQ,) such that a=Inn(t 1) c=at and d=1t"'b. In particular, if
aa(x) = bp(x) for all xe U, then a =0 and a = f.

Proof. Leta;=8""(a),b;=8"1(b),c;=B""(c)di=f ' (d)and ;=5 "
Clearly, a;, b, ¢; and d; are nonzero. Therefore, a,a,(x)b; = c,ad; for
all xe U.
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By Proposition 1, there exists an s € U(Q,) such that a,(x) = Inn(s) x for all
x e R. Thus a,s 'zsb, = ¢;xd;. By Theorem 6.1.2 [1], there exists a 2 e C such
that ¢, = da;s ™! and d, = A ~'sb,. Therefore ¢ = aB(is™*) and d =B(A7's)b.
Let t=pf(is™ ). Then c=at, d=t""b and

a(z) = fInn(s)x) = B(s ~1) Blx) Bls) = BAs 1) Blx) B(A ‘ls) =Inn(t 1) B(x).
In particular, if ca(x) = bS(x), for all xe U then t=1, and so a =0 and

a=f.

Lemma 4. Let a, 8 and 6 be elements of A(R) and let f be a nonzero (a, B)-
derivation of R. If o and b are nonzero elements of Q. such that

(2) af(x) = b(f(x) — d(x)) forallee U,

then theve exists a t e U(Q,) such that 6 =Inn(t e, bt =a and f=t"1(f — 0).

Proof. Substituting xy for x in (2), we obtain
aa(z) fly) + af(x) fly) = af(@y) = b(Bley) — o(xy)).
It follows from (2) that
ac(x) f(y) + b(Bx) — o(x) Bly) = b(B(xy) — o(xy)) xelU,yekR.

Now, substitute xa ~*(a) for = to get
aa(@)b(B(y) — 0(y)) + bBva ~Ha)) — dwa " a)]1Bly) = b(Blra ~(a)y) — dwa " (@)y)).
Therefore, we can write
(3) bo(x) 8o " Ha)(Bly) — 8(y) = aa(x) b(B(y) — (y) xelU,yekR.

Since a # 0, if 6(a " (a)(B(y) — 6(x)) = 0 for all y € R, then = 0 by Lemma 3.
But then f=0, a contradiction. Hence there exists some y’'e R such that
Oa " Ha)(By') — 8(y')) = 0. Then by Lemma 3, there exists a t € U(Q;) such
that 6 = Inn(¢t " a, bt =a and

t™H(0(a T (@)(Bly ") — oy "N = b(Bly") — oy ).

Since 6 = Inn(t Y, t (B — 9) is an (a, B)-derivation of R by Remark 1. With
bt = a, (2) becomes

af(x) = at "1 (B(x) — o(x)) forallee U.

By Lemma 2, we have f=1¢"!(8 — 6) as desired.



114 TUNG-SHYAN CHEN 6]

Lemma 5. Let a e Q. \{0}, and let f and h be nonzero skew derivations
connected with 5 and 0, vespectively, such that

4) af(x) — ailz) =0 JorallxeU.

Then one of the following statements holds:

i f=h
il. there exists a qeQ, such that f= ad; 3(q), h=ad; s(q) and ag=0.

Proof. If {f, h} is a reduced set, then a ® 1 = 0 by Proposition 1, which is
impossible. Therefore, {f, 2} is not reduced, and we have to consider three
cases.

Case I. felInnLg. In this case, there exists a p € Q, such that f = ad,, 5 (D).
Then (4) implies axp — apf(x) — ah(x) = 0. If h is reduced, then « ® 1 =0 by
Proposition 1, which is impossible. Therefore, & € InnL,, ie., there exists a
p' € Qs such that & =ad;, s(p'). Suppose that p =p'. Then we obtain

ap(o(x) — B(x)) = axp — apf(x) — (axp — apd(x)) = af(x) — ah(x) =0
for all e U. If ap # 0, then S = 6 by Lemma 3, and so f= k. Hence i holds. If
ap =0, then ii holds with ¢ = p.

Next, we assume that p # p’. Then (4) implies
(5) axp — apf(x) —axp’ +ap' d(x) =0 xel.

Suppose that § and ¢ are mutually outer. Then either B or 6 is outer, and
so either ap®1 =0 or ap’' ®1 =0 by Proposition 1. Thus, either ap =0 or
ap’ = 0. We consider here only ap = 0, and an analogous argument can be used
for ap’ = 0. Now, (5) implies

ax(p—p')+ap' ox) =0 xelU.
Since p = p’, we have ap’ # 0. It follows from Lemma 3 that 6 is inner, ie.,
0 = Inn(s) for some se UQ,). Now, we can rewrite (5) as
ax(p—p')+ap'stas=0 zxel.
By Theorem 6.1.2 [1], there exists a 1 e C such that p — p' = 1s. Therefore
h(x) =ad; s(p'Nx)=ap' —p'6x) =x(p —18) — (p — A8)s "1as

=ap — ps s = xp — pd(x) = ad; 5 (p)(x) rekR.

Therefore ii holds.
The situation when S and & are not mutually outer will be discussed in
Case III.
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Case II. helInnlLgs. This case is similar to Case I, and we omit the
proof.

Case III. B = Inn(s) o for some s € U(Q,). In this case, set g = hs. Then by
Remark 1, ¢ is a (1, f)-derivation of E. Now, (4) implies

af(x)s = ah(x) s = ag(x) xel.

Hence f'= g(mod Inn Lg). Otherwise, a ® s = 0 by Proposition 1, which is impos-
sible sinee a # 0. Therefore, there exist ceC and be@, such that
g =c¢f +ady z(b), and so af(x)s = ag(x) = caf(x) + axb — abB(x) for all xe U.
It follows that af(x)(s —¢) — axdb + abf(x) =0 for all xe U.

If f¢ InnLg, then a ® (s — ¢) = 0 by Proposition 1, and so s = c. Therefore
=0 and f=h by Lemma 2, and i holds.

Assume felnnlLg. Then gelInnLg, also. Hence, there exist p, p'e @
such that f=ad, s(p) and g=ad; g(p'). Since af(x)s=ag(x), we have
axps — apf(x)s = axp’ — ap’ Bflx); thus

(6) ax(p’ — ps) + apP(a)s —ap' Blx) =0 xelU.

Suppose that 5 is outer. Then ¢ @ (p' — ps) =0 and ap @ s —ap’ @1 =0 by
Proposition 1. It follows that p’ = ps and either se Corap=0=ap'. If seC,
then f =0 and f= k& by Lemma 2, i.e. i holds. Next, assume that ap =0 =ap’.
Then we have

1

Wx)=g@)s™ P =ap's™ ' —p'Blx)s™ =ap — psP(x)s ' = ap — pé(x)

for all xe U, and so k= ad, s(p). It follows that ii holds.

Now assume that j is inner, i.e., § = Inn(¢) for some f € U(Q,). Then (6) be-
comes ax(p’ — ps) + apt *wxts —ap’tlxt =0 for all xe U. If p’ =ps, then
apt “lats = ap’t "'at for all x € U, and so either ap = 0 = ap’ or s € C. Both ca-
ses have been considered above. So, we assume that p’ — ps = 0.

Since a, apt ~*, ts, ap’t ! and ¢ are nonzero elements of @, , by Lemma 6.1.2
[1] we have that {p' — ps, ts, t} is C-dependent. If ¢s and ¢ are C-dependent,
then s e C, which has just been discussed. Therefore we can assume that ¢ and ¢s
are C-independent, and so there exist 4, u e C such that p’ — ps = Ats + ut.

Rewrite (6) as Aaxts + uaxt + apt ‘xts —ap't'xt=0 and obtain
(Aa + apt ) ats = (ap't ' — ua)xt. It follows from the C-independency of ¢ and
ts that la +apt ' =0 and ap’t ™' — ua =0, and so a(p + At) = 0. Hence

f@) = xp — pB(x) = xp — pP(x) — Mp(x) + At 1 at)
=x(p + At) — (p + A) B(w) = ady, (p + At)(x)
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and

ha)=g)s T=ap's 1—p'fla)s "t =alps + Ats + ut)s 71— (ps + Ats + ut) flx)s 7!

=a(p + At) — (p + A)(sp(x)s 1) = a(p + At) — (p + A8) 6(w) = ady 5 (p + A)(w).

Now ii holds with ¢ = p + Af. This completes the proof.
We can now prove Theorems 1 and 2. First we prove Theorem 2.

Proof of Theorem 2. Let x e U and y e B. From af(xy) — bg(xy) = 0 we
have aa(x) fly) + af(x) Bly) — by(x) g(y) — bg(x) 6(y) = 0. Since bg(x) = af(x),
this equality becomes

(N aa(@) f(y) + af(@) Bly) — by(x)g(y) — af(x)d(y) =0 wxel,yekR.

Substituting xy ~1(b) for x in (7), we have
aalzy ~H (D)) fly) + afey ~(DN(B(Y) = 0(y)) = by(x) bg(y) = by(@) af(y)
with x e U, y e B. Thus
(by(@)a — aaley 1O fy) = afey THONBY) — 0(y) wel,yek.

Case 1. Suppose that by(x)a = aa(x)a(y "1(b)) for all xe U. By Lem-
ma 3 there exists a teU(Q,) such that y=Inn(t e, at '=b and
tla=aly "1(b)). Set h=t"'g. Then k is an (a, 0)-derivation of R, and so
af(x) = bg(x) = at ~tg(x) = ah(z) for all xe U. _

Putting a; = a " a), i=a 'f, y=a"'h, f1=a !B and 6; =a 'S, we
have «, f; () — a; by (x) = 0 for all x e U. We note that f; is a skew derivation
connected with 8, and &, is a skew derivation connected with d;. According to
Lemma 5 there are two possibilities:

a. fy=h;. Then f=h; therefore at'=0b, f=0 and f=1"'g.

b. fi=ady 5, (p;) hy=ad; s (p;) and a;p; =0 for some p,e@. Let
p=a(p;) Q. Then ap=0, f=ad, ;(p) and h=ad, s(p), and so g =tad, s(p).

In both cases, the theorem holds.

Case II. Suppose that there exists an x € U with by(x) a — aalxy ~1 (b)) # 0.
By Lemma 4 there exists some te U(Q,) such that 6 =Inn(t ')a and
Ff=t"1(B — ). By symmetry, we have 8 =Inn(s ')y and g = s (6 — ) for
some se U(Q,). It follows that f(x) =t'"lg(x) for t' = =t 'se UQ,) and
for all e R. Thus at' 'g(x) = af(x) = bg(x) for all xe U and by Lemma 2
b= at'"l. The proof is now complete.
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Proof of Theorem 1. Fix an xye U such that f;(x;) # 0. Then we have
fi o) 2 () = fi () fo (y) for all y € U. Again, according to Theorem 2, there are
two cases to consider.

Case I. fo(y)=t"fi(y) for all yeR and fi(xy)t ' =f;(xy) for some

t e U(Q,). Thus
(A@tT = HE@) ) =A@ LW - L@ L) =0 z,yel.

It follows from Lemma 2 and f; # 0 that f;(x)t ' =f;(x) for all x e R.

Case II. fo=ad,, 5, ), fi=tad,, s, (p) and fi(x)p=0 for some
p=prg)eQ and t=tlwy)e UQ,). In particular, a,=Inn(t a, and
fi= ady 0, ().

If play) =play) for all x;, e U such that fi(xy) # 0 and f(x;) = 0,
then fi (x) p(ay) = 0 for all x e U. But then p(ay) = 0 and f; = f; = 0, a contradic-

tion. Therefore, there are xy, x; € U with f;(xy) = 0 and f;(x;) # 0 such that
plg) # pay). Let p; = pla;) and ¢ = t(x;), 1 =10, 1. Since

fo=ad,, p,(py) = ady,, 4, (p1)

we have (py— p1)B2(y) — as(y)Xpy —p1) =0 for all yeU. Since p, # py,
it follows from Lemma 3 that there exists some se U(Q,) such that
B =1Inn(s ') a,. Similarly,

ﬂl = a‘d(q, B4 (t()p()) = ada,;, B4 (tl pl )

which implies the existence of some 7 e U(Q,) such that B, =Inn(r"!)a,.
Therefore:

(8) fo=12ade,, mni1ya (D) Ji=tade, mne-1ya, (P)-
Since f, () 2 (y) = f3(®) fy(y), we have
fil@ady,, mne-He @I =f @) Tad,,, ne-1ye (P)Y) -
Then
(9)  fA@psasy)s = fr@ipra@)r Tt = (L@ - L@Da@)p=0 «,yeU.

Let fi=as'fi, fi=as'fs, p'=az;'(p), s' =as'(s), t' =as'(t) and
7' = ay1(r). We have

(10)  fi@p's'ys' " —fi@t'p'r'yr' = (fi@)=fs@)tNyp' =0 @, yeU.
Suppose that fi (x) = f3 (x)t’ for all e U. Then
filw)=as fi@)=asfi (@ a(t") =fa(x)t xeR.
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Therefore
Ja@)(tfa () — fa(y)) = fi(®@) fo(y) — f3(@) fu(y) =0 v, yelU
and so Lemma 2 implies that if;(x) =fi(x) for all xe R.

Now, assume that there exists an we U such that fi (x) — fs (x)t' = 0.
Since p’ is a nonzero elements of ., Lemma 6.1.2, [1] implies that
p'eCs' 1+ Cr' L

If s'~!and »' ! are C-dependent, then s and 7 are also C-dependent. It fol-
lows that Inn(s~!) = Inn(r '), and by (8), tf; = fi; consequently, f; (&) = f; ()¢
for all # e R, and we are done. If s'! and r'~! are C-independent, then there
exist unique 2 and ux e C such that p’ =us'~! + Ar'~Y, and (10) becomes

f@p's'ys" P =fa@t' p' v yr' " = (ff (@) —fie)t Yylus' '+ Ar'"1) = 0.
Therefore,
[fi@p's'—(fi@—fs@tDulys' ™ [ fs@t'p'r" +(fi @ —Ff@)t ) Alyr' ~1=0

for all z,ye U.

For any fixed x € U, the above equality and Lemma 6.1.2 [1] implies that
Ji@p's"=(fi (@) = f3@tDu and fi@)t'p' v = (ff (®) = fi (@)t") A

If 4 =0, then fi (®)p's' =0 for all ke U and if 1 = 0, then £ (x)t'p'+ =0
for all x € U. In both cases, p = 0, and so f, = f; = 0 by (8), which is impossible.
Therefore 2 and # are both nonzero.

Since p' =us' ' + Ar' !, we have

(fi@) = f3 @)t =F@)p's = f{(@)us' " + 2" )s" = f (@) + fi @i s’
for all x € U. Therefore
fA@Ar'ls' = —fy(@t'u and fi(@)=—fi@)t'us' r'A"1 wxel.

Clearly, ¢ = —ta(u)s "'ra(d) ' e WQ,), and so f, (x) =fz(x)q for all xe U. It
follows from Lemma 2 that f (z) = f; (%) ¢ and so ¢f5(x) = f; (x) for all x € R. The
proof is now complete.
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Sommario

Sia R wn anello primo. In un lovoro del 1993 M. BreSar ha studiato Uidentitd
H@ fo(y) = f3(x) fi(y) per ogni &, y e R dove le f; sono derivazioni in R. Recentemente
J.-C. Chang ha considerato il caso piw generale in cui f ed f3 sono (a, B)-derivaziont, f, &
una (a, a)-derivazione ed f; una (8, f)-derivazione. In questo lavoro viene considerato il
caso generale in cui le f; sono (a;, f;)-derivazioni.

Si dimostra che nell’anello simmetrico di Martindale dei quozienti di R esiste un ele-
mento invertibile t tale che fi(x) = fi(x)t e fi(x) = tfi(x) per ogni x di R.
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