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Simpson points in normed spaces (**)

1 - Introduction

The main subject of this paper is the study of the so called minimax set.

A way to describe this set is to consider the situation where there is a given
set of customers at fixed positions and where each customer will purchase one
unit of commodity from the firm closest to his location. The problem for a firm is
to choose a location that will garantee to it at least as many customers as to its
competitor, regardless of where its competitor locates (see [3], [6]).

These problems lead to the following model: for any position x in the set of

alternative locations X define W(x) = sup W(y, @) where W(y, x) is the number
yeX

of customers who prefer y to x. A Stmpson point is a point which minimize W(x)
on X and the minimax set is the set of Simpson points (see [3], [8D).

By identifying customers as voters and firms as candidates and by assuming
that each voter will vote for the candidate closest to his position the above
question leads to the problem in voting theory of the existence of a candidate’s
position that is unbatible in an election (see [4], [5], [9D.

The minimax set problem will be studied from a theoretical point of view.
The set of alternatives will be a real normed space X, the distance will be mea-
sured by the norm and the set of customers will be a compact non singleton set
A c X with a probability measure m on the Borel o-algebra of A supported by
the whole set (that is: for every open set V c X satisfying VN A # @, we have:
m(VNA) > 0).

For x,yeX, we consider the set A(y,x)={aecA: ly—a| <|x-al}
and define Wy(y, ) =mAwy,x)), W, (x) =sup Wy(y, ) and for ke (0, 1]
C.={xeX: Wale) <k} yeX

We simply write W(y, ) and W(x) when no confusion can arise.

(*) Ist. di Matem. di Ing., P.le J. F. Kennedy, Pad. D, 16146 Genova, Italia; Ist. di
Scienze Mat. Fis. Chim., Via Luecini 3, 22100 Como, Italia.
(**) Received June 14, 1996. AMS classification 90 A 28.
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Note that a point « belongs to C, if for any other location ¢ the percentage of
users who prefer x to y is not smaller then 1 — k. Obviously C; = X.

The following properties of C, are easy consequences of the above definitions
except the last result which is taken from [3]:

1. There exists ky > 0 such that C, =0 for k< k.

2. If m({a}) >0 (aeAd) then aeC, if k>1—-m{{a}).

3. CncCy, if ky<k,.

4. C, is a bounded and closed subsed of X for any ke (0, 1).

If X is a finite dimensional space and there exists k € (0, 1) such that C, = g,
then the last two properties imply that C, forms a nested family of compact sets.
Therefore the set of Simpson points is a non empty proper subset of X.

Now the following question seems to be natural: are, in general, the sets C;
non empty for some k e (0, 1)? Partial results are known. In particular in [1] it
is proved that if z e int (convex(A)) then W(x) < 1 if X is a finite dimensional
Hilbert space and in [3] some constructions of C, are given for finite sets A
when X is a two-dimensional polyhedral space.

Our paper is divided in two parts. In the first one we give definitions and
preliminary results, in the second one we prove a general result.

2 - Notations and preliminary results

Let X be a real Banach space and X* its topological dual. Put

B'(x,")={yeX: 0<|z—y|<r} and S={zeX:|f=1}.
If A is a subset of X, then we indicate with int (4) its interior. If x, ¥ € X, we set

g It tll — [l
t

v + Lyl — ||
@, y) = inf . e

£\ 0 t

We list some properties of the function t (for other properties of the function
see [2], [7]):

L o, y) =sup {ft|feX* [Ifl =1, flo) = ]|}
2. t(dx, py) = ur(x,y) for leR, u=0
3. 1: XX X—R is upper semicontinuous.

Now we give a formula to describe the function W(x) in a different
way.
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Theorem 1. W, (x) = supm({a e A: (a — =, y) <0}).

yeS

Proof. If x,yeX and 1e{0,1], set y; =Ay + (1 — ) and let 1, <41,
with 4, 1,e (0, 1].

The convexity of f(t) = |la — « + t(x — y)|| implies that A(y,,, ©) > A(y,,, ®).
In fact if @ e A(y,,, %) then

fO1) = f(sha) < 8f(A2) + (1 — 8) f(0) < sf(0) + (1 = $)7(0) = f(0)

that is [la —a + A, (@ — )| < |le — 2| and so a € A(y;,, @).
In particular we have A(y, x) c A(y,, «) for any A e (0, 1]. This implies the
monotonicity of W(y,, ) and so ;hn}) W(y;, x) exists. Moreover
AN

Wy, ) < hm W(yﬂ, ) < sup lim W(y;, x)

ey ANO

and so W(x) < sup lim W(y,, x).

=y AN0
But obviously W(x) = W(y,,x) for any Ae(0,1] and y #« and so
Wi(x) = hm W(y,, ). This implies W(x) = sup hrré W(y;, ®) and therefore

ST

W(x) = sup hr% W(y;, x).

x2y 4

Let now ae U A(y;, x), hence there exists A1e(0,1] such that
la —  + Az - y)|| = llo — 2|
7 <0

la — 2+ Az — )| — ||a —2f<0 and so Inf
that is (e — x, ¢ — y) < 0.

Conversely if 7(a — 2, x — y) < 0, recalling the definition of 7, we have imme-
diately that there exists 1 e (0, 1] such that: lo —2 + Ax — )| = lo — 2| < 0
and so a e A(y,, x).

Finally we obtain {aeA|t(a — 2,2 —y) <0} = AgoA(yz, 2) and so

m{aecA|tla —x, x —y) <0}) = m(.l;JOA(?/l’ x)) = }i\r}})W(yh x).

Now sup m({a e A|t(a — =, x — y) < 0}) = sup hm W(y;, ©) = W(x). Repla-

YR Y= ’v
cing ¥ by « — ¥ and using the second property of the functlon 7 listed above we
obtain our result.
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Since in inner product spaces we have =(x, ¥) = (v, ¥) |z ! as a consequence
we have
Corollary 1. Let H be an inner product space; then for x e H we have
W4(x) = supm{aeA|la, y) < (z, 1)}).

yeH

3 - A general result
This is our main result.

Theorem 2. Let X be a finite dimensional normed space and A be a com-
pact subset of X. Iff xeint(A) then Wy(x) < 1

Proof. By translation it is not restrictive to suppose that « =0 and by
Theorem 1 W,(0) <1 if there exists « > 0 such that
m({aed|t(a,y) =0}) =2 a for every yeS.
Suppose, by contradiction, that there exists a sequence {y, } of unit vectors
such that m({a € 4; ©(a, y,) 2 0}) < %

Since X is finite dimensional, we can suppose that {y,} converges to
some y,eS. Let now ¢ >0 such that B'(0,e)cA; then we have again

m{aeB' (0, £); a, ,) > 0}) < =. Let now v, yeX with & = 0 and fe X*

be a support functional at z, i.e. a functional such that ||f]| = 1 and f(x) = ||z|.
Then we obtain

ke + gl — Nl _ 1S+ ] — el f@) +£ty) — fx)
t - t - t

= f(y)

=f( )+ fly — ) 21— |fly - =) =1 -y~ .
Fp + 7@ = 1 |f(y ol lly I I
Thus ©(z, y) =1 - |y — ”i—”H This implies
{aeB'(0, &) llﬂ—zTl ~yull <1} c{aeB'(0, &) w(a, y,) = 0}.

Let now E = {a e B'(0, ¢): l|ﬁ — | < %} Then if a € E and if n > ng
we have

a a - 1 -
” Ha” ?/n“ S ” ”a” Yo H + ”?/0 ?/n“ < 9 + ”?/0 Yn ” <1
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so ae{aeB'(0,&): Hﬂ—gl—l =yl < 1} for n > n,. So we have:

(1]
(2]

(3]
(4]
[5]
(6]
[7]
(8]
(9]

m(E) < lim m({ae B’ (0, ey |y —wull <1h=0.

This is a contradiction since £ is an open subset of A and the measure is sup-
ported by A.

=@
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Sommario

I punti di Simpson si presentano in modo naturale nella teoria delle competizioni
locali. Vengono date condizioni per Uesistenza di toli punti in un quadro astratto di spa-
21 normatt di dimensione finita.
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