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Maximal submodules

of finitely generated modules (**¥)

1 - Introduction

We are concerned with determining all maximal submodules of a given
finitely generated module over a Dedekind domain R. We do this in general, and
are able to show consequently that if R is a Dedekind domain with |R/pR| fi-
nite for a particular prime element p of R, then given any finitely generated
module F, there are only finitely many maximal submodules K for which F'/K is
bounded by p. Moreover, we are able to give a precise description of the possi-
bilities for K in this case. Once we resolve the problem for finite rank free modu-
les, the remaining issues follow from standard arguments.

Mainly our results pertain to counting the number of maximal submodules of
F, a free R-module of rank =, and although our results go through under the
general context mentioned initially, the assumption R/pR is a finite field when p
is a prime element of R brings forth the strength in the discussions below. For
example, such is the case when R is a subring of an algebraic number field since
R/7R is finite for any 0 # » € R. Furthermore, the results obtained here are ap-
plicable elsewhere such as in the subject of extending R-homogeneous functions
to homomorphisms.

(*) Dept. of Math., Auburn Univ., Auburn, AL. 36849, USA; Dept. of Math., Texas A
& M., College Station, TX. 77843, USA.
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2 - When R is a principal ideal domain

Throughout this section, F' will represent R™ where R is a PID and we will
be concerned with describing the maximal submodules K of F. For any
submodule K of F, the stacked basis theorem applies. This means there is a ba-
sis %, ..., ¢, of F" and elements k;, ..., k, of R for which the non-zero elements
among k%, ..., k, &, constitute a basis for XK. We will refer to the basis
Xy, ..., %, a8 a stacked basis for F' over K in this case.

Our first comment is just a direct application of the stacked basis theorem.

Proposition 1. KcF is maximal if and only if there is a prime p of R
and a basis xy, %s, ..., &, of F such that px,, xs, ..., ¥, is « basis for K

Proof. To prove that K is maximal, just note that in the present case we
have F'/K = R/pR. To prove the converse, we remark that by the stacked basis
theorem, there is a basis %, ..., x, of F and elements k,, ..., &k, of R such that
kyx, ..., k,x, is a basis for K. Because K is maximal, all but one of k,, ..., k,
are units and the remaining k; must be prime.

When F/K = R/pR we will refer to K as p-maximal. Actually one can be
very explicit concerning the p-maximal submodules of F'; our intent will be rea-
lized in Theorem 1. A submodule H of F is called pure, written H <] F', if for any
0 = re R and x € F with rx € H, one has « € H. The following is well-known and
follows easily from the stacked basis theorem.

Lemma 1. If x e K is such that {(x) <F, then (x) is a direct summand
of K.

Proof. By the stacked basis theorem, there is a basis x;, ..., x, of F and
ring elements k,, ..., k, for which the nonzero elements among kyx, ..., £, %,
form a basis for (x). Then, only one of k,x,, ..., k, %, is nonzero, say k,;x, # 0,
and since k;x; € (x) < F, x; € (x). This implies k; is a unit and %, @,, ..., ¢, is a
basis for F'. The restriction to K of the projection map from F onto (x) is split by
the embedding of (x) in K.

We remark that for any basis @y, ..., ¢, of F' and ring elements ay, ..., @,,
the collection %y, ©y — as24, ..., 4, — @, %, constitutes a basis for F.

Lemma 2. Ifxe K extends to o stacked basis @ = %y, s, ..., X, for F over
K, then for all as, ..., a, e R, &, ©3 — 0o, ..., &, — a, % is @ stacked basis for I
over K.
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Proof. Let ko, ..., k, belong to R, such that x, ks, ..., k, 2, is a basis
for K. Then x, koo — ksas, ..., k @, — k,a,x is also a basis for K, and
2, X — Usl, ..., &, — @, & is a basis for F.

Given a submodule H of F, the pure submodule of 7 generated by H is
(HY, ={xeF|rxeH, for some nonzero reR}.

Following the usual convention, we will use the notation e,, ..., ¢, to represent
the standard basis of F.

Theorem 1. LetS be a complete set of representatives of cosets in B /pR fora
given prime p of B. Then, K ¢ F is p-maximal if and only if there exists an index 1,
and k; e S for j # i, such that {e; + kje; |j = i} U {pe; } is a basis for K.

Proof. We prove first the existence of an index ¢ as required in the state-
ment. By Proposition 1, there is a stacked basis «;, ..., x, for F such that

a;
DLy, Tz, ..., &y is a basis for K. Regarding x; € R" as an n-tuple, write x; = (,] )
where the = represents entries of the don’t care variety.
Case 1: p + a; for some j = 2.
Since e; belongs to span {xy, ..., &, }, ged(ay, ..., @,) =1. In this case,
ged(pay, as, ..., @,) =1, so there are elements u, ..., u, of R, for which
n
wypay + u;a; = 1. Then, @ = uypey + ... +u,2, = (1) eK.
2

Clearly this implies that (x) <\ F, so by Lemma 1, K = (x) @ K, for a particu-
lar submodule Ky. With Fy = (Ky)., (x) N Fy = {0} and (x) @ F, properly con-
tains K, and due to the maximality of X, (x) @ F, = F. We may, of course, obtain

a stacked basis ¥z, ..., y, for Fy over K,. Let b; = first entry of y;, viewing
y;e R" (as above). By Lemma 2, since «, %s, ..., %, is a stacked basis for F'
over K, %, 4o — bo2, ..., Y, — by is a stacked basis for F over K. Therefore,

since y; — bjx e D> Re; for 1 22, K= (x) D K' where K' = KN @, Re; is
a maximal submodule of F' = &;.,Re;.

By induction, for some index ¢ = 2, and representatives k; e S,j # 1,j = 2, we
have that {e; + k;e; | =2, j=1i} U {pe;} is a basis for K'. Let ¢; = j** entry of
x e R™, and define, k; = 0 (temporarily) for notational purposes. Select k; to be
the residue mod p of —2;55¢;k;in S and let b € R so that pb = —k; — 25 2¢k;.
Using Lemma 2 one can then replace x in the basis

{ZY/'} U {ej + lﬂjei [] = 27.7 # 7’} U {pei}

for K, by ' =& — 2,5 ¢;(e; + kje;) — bpe;. Noting that »' = e; + k,e;, we now
have obtained a basis as prescribed in the statement of the theorem.
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Case 2: pla; for all j = 2.

In this case K =Rpx,®Rx,® ... D Ry, CRpe, @ (D;-,Re;) so that
K = Rpe, ® (®;:,Re;) by the p-maximality of K.

The proof of the converse is very short. Given the basis for K as stated,
{e; + kje; |7 # i} U {e;} is a stacked basis for F' over K. By Proposition 1, K is
p-maximal.

From the above theorem there are only finitely many p-maximal submodules
of R™ in the situation that R/pR is finite. In order to give a precise accounting of
this number, we now investigate which basis’ of the form presented in Theorem
1 yield the same p-maximal submodule.

Lemma 3. Let K have basis {e; + kje, |j = 1} U {pe,} with k;eR, for
j=2, and set k= -1. Given i#1, the set {e;+le|j=1i}U {pe}
with ;e R forms a basis for K if and only if the system of equations
kil = —k mod p (j #1) is satisfied.

Proof. Since without loss of generality we can assume i = 2, we start from
the basis {e; + lje; |j > 2} U {pe, }. Represent ¢; + ;e; as pce; + 22 c;(e; + k;ey)
with ¢, ..., ¢, € R. First assume j > 2 (ie. j # 1). Comparing coe/fﬁcients leads
to ¢; =0 for each i =7, 1,2, ¢; =1, pe; + I_go ¢;ik; =0, and ¢, = ;. Assimilating

these conditions leads to one equation pe; + ks + k; = 0. Thus kyl; = —k;mod p
for each j > 2.
For j = 1 the representation e; + l; e, = pcie; + 2, ¢;(e; + kie;) leads to the
i>2

conditions ¢; = 0 for i = 3, and pe; + 2, ¢;k; = 1. These conditions reduce to the
iz2

singleton pc¢; + I, ks, = 1. Since k; is defined as —1, then [k, = —k;mod p as
claimed.

To prove the converse, let K' have basis {e; + lje;|j =i} U {pe; }. If we
show that K' ¢ K, then by the p-maximality of K' (Theorem 1), K' = K. For
each j different from 4, there exists a; e R which provides k;l; + k; + pa; = 0 in
R. This equation allows e; + [je; = pa;e, + (¢; + k;e;) + [i(e; + k;ey) from which
e; + l;e; € K follows. Also, e, + le; = pa,e;, + l;(e; + k;e;) € K.

We will refer to a basis for K of the form {¢; + kje; | # i} U {pe; }, for some
i, where each k; represents a coset in R/pR, as a staggered basis for K. Also, a
different staggered basis for K {e¢; + l;e,, |j = m} U {pe,, } where [; for all j = m
are representatives of cosets in R/pR (i.e. i # m) will be called an alternate stag-
gered basis for K.
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Let S denote a complete set of representatives of cosets in R/pR. If K has
the staggered basis {¢; + k;e; |j = i} U {pe; } with each k; € S for a particular i,
along with the alternate staggered basis {e; + ;e; |j = i} U {pe; } where [;e S,
for all j = 4, then we must have k; = [; for all j. This is due to the fact that if some
kj=1l;, then (kj—1)e;=e;+ kje; — (¢ + lje;) e K and 0 = k; — [; is relatively
prime to p. This will allow e; = u(k; — ;) ¢; + vpe; € K (for some %, v € R) contra-
dicting the maximality of K.

Theorem 2. Suppose K has a staggered basis {e; +kje;|j = i} U {pe; }.
Take m to be the number of coefficients k; for j # i, which are non-zervo. Then, K
has exactly m distinct alternate staggered bases.

Proof. We may assume that ¢ =1 for ease of discussion and we will first
consider the case m > 0. Recycling the use of the index %, suppose that
{e;+ lie;|j =i} U {pe;} is an alternate staggered basis for the submodule
K = span {{e; + k;e, |j # 1} U {pe, } }. Then, taking k; = —1, Lemma 3 applies
and L;k; = —k;modp, for each j = 1. Because m > 0, the linear equations could
not be fulfilled if k; = 0, so an alternate basis like the one prescribed cannot
exist under these circumstances. On the other hand, if k; # 0, then there is ex-
actly one choice for the sequence of numbers [;, j # ¢ and that is when [;e S is
congruent to —kjk.flmod p. This implies that there is exactly one alternate
staggered basis for each index ¢ with k; # 0. Note that we are not counting k, in
this instance.

If m=0, then K= Rpe, @ (D;-,Re;). All of the linear congruences
lik; = —k;modp, j # i obtained from Lemma 3, can be satisfied in this case, ex-
cept when j = 1. Therefore, K has no alternate staggered bases.

If 6= |R/pR| is finite, then there are nd" ' staggered bases available.
However, this number far exceeds the number of p-maximal submodules
of F.

Theorem 8. Suppose that 6 = |R/pR| where p is a prime element of R.
Then F has exactly 6" 1+ ...+ 6 + 1 distinct p-maximal submodules.

Proof. As above, let S constitute a complete set of representatives of
cosets in R/pR. Every p-maximal submodule is determined by some staggered
basis B = {e; + kje; |j # i} U {pe; } where k; € S by Theorem 1. Given such a ba-
sis, set k; = —1 as in Lemma 3. Then, by the support of the basis B we mean
{j|k; # 0} (here, we are counting k;). From Lemma 3, every alternate staggered
basis B' = {e; + lje,|j #t} U {pe,} for span B has the same support as B.
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Therefore, we can refer to the support of a p-maximal submodule K as the sup-
port of B when B is a staggered basis for K.

We now count the number of unequal p-maximal submodules whose support
is a given subset I¢{1,2,...,n}. Let m = |I|. If m =1, there is only one
p-maximal submodule supported by I = {i}, namely, pRe; ® (D, .; Re;). There
are n distinct maximal submodules of this type, one for each 7 =1, ..., n.
Assume m > 1, and without loss of generality, I ={1,2, ..., m}.

We claim that every staggered basis supported by I belongs to a p-maximal
submodule with a staggered basis of the form

B={e¢+kies|2<sjsm}U{e|j>m}U{pe} keS.
Let B'={ej+Lelj=i,1<sj<m}U{e|i>m}U {pe;}

be a staggered basis supported by 7. After setting ;= —1, define k; by setting
k;e S equal to the representative of [;l;' computed in RB/pR for 2 < j < m. By
Lemma 3, spanB = span B’. There are exactly (6 — 1)~ ! staggered bases of
the form B = {e; + kje; |2<j<m} U {e;|j >m} U {pe, }, one for each choice
for the ordered sequence ks, ..., k,, from S\pR.

Finally, there are (6 — 1)™ ! staggered bases supported by I ¢ {1, ..., n} of
cardinality m > 1, which are in 1 — 1 correspondence with the unequal p-maxi-
mal submodules supported by I. From this and the computation from the case
m =1, there are then exactly 2, (%) (6 — 1" '+ 7n unequal p-maximal

m =2

submodules. Recall 2 (%)c’” = (1 + ¢)*, which affords

m=0

3 (M) -1 = S (n) (65111)1” _ 5”—7@(§6_—11)— 1

m=2 m=2
0" =1
51 -m+n=0""1+...4+6+1 un-

and consequently there are exactly
equal p-maximal submodules.

3 - Generalizations and applications

We are now able to extend the results from Section 2 to finitely generated
modules over Dedekind domains. Of course the stacked basis theorem does not
hold over Dedekind domains, but when considering maximal submodules, we
may localize the problem at prime ideals. Throughout this section, B will denote
a Dedekind domain.

Given a module M and a prime ideal P of R, a P-maximal submodule of M is
a submodule K such that M/K = R/P. Of course, every maximal submodule of
M is P-maximal for some prime P of E. We present some of the consequences of
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Section 2 under the current context. Recall that any finitely generated module
M decomposes as M =T @ M' with T torsion, and M’ projective.

Lemma 4. Let M be finitely generated and K a P-maximal submodule of
M. Write M=T'® M, where T' = @Bp .pTp.. Then K=T"' & K, with K,
P-maximal in M,.

Proof. Because M/K = R/P while the order ideals of elements in T’ are
coprime with P, we must have T’ ¢ K. From above, T'' is a direct summand of
M, so a general computation reveals that K = T' @ K, with K, = K N M, when
M=T'® M,. The remainder then follows easily.

By ug (M) we will mean the minimal number of generators required to gene-
rate M as an R-module.

Theorem 4. Let R be Dedekind with a non-zero prime ideal P and let
M be a finitely generated module. With M =T' @ M, as in Lemma 4, and
n = up,(Mp), we have:

1. Let wxy,...,x, from M, generate Mp= (My)p as an Rp-module.
The P-maximal submodules of M are precisely the submodules of the
form K=T'® X; N\ M) where X; is the Rp-submodule of M generated by
{a; + kj; |7 = i} U {pa;} for some i, where p e R satisfies pRp = PRp.

2. If 6= |R/P| < », then M has precisely 6" ' + ... + 0 + 1 P-maximal
submodules.

Proof. The proof of 2 follows directly via Theorem 3 once we sub-
stantiate 1. Let K represent a P-maximal submodule of A/. We note that
M=T'&MpN M) and it then follows from Lemma 2 that K =T' @ K, for
Ko=KNMpNM=KpN M. It remains to show that Kp=X; for some i.

We have now reduced consideration to the case that R is a local PID and
M = M, is finitely generated with maximal submodule K = Kp. Set F' = R™ and
define a map from F'— M by sending e; > ;. Call the kernel of this map L. Evi-
dently K arises as the image of a maximal submodule of F' containing L.

If L & pF where pR is the prime ideal of R, say « € L\pF, then it is not hard
to check that {x) <\ F. From Lemma 1 we find that (x) is a direct factor of L and
F, so (F/{z))/(L/{x)) = M, contradicting the minimality of n. Thus, L ¢ pF' and
hence L must be contained in every p-maximal submodule H of F. The remain-
der of the proof is a consequence of the correspondence theorem and Theo-
rem 1.
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A long standing problem in combinatorial group theory is to count the num-
ber of subgroups of a finite abelian p-group.

Corollary 1. A finite abelian p-group with a minimal number of n gene-
rators, has exactly p"~ '+ ... +p+ 1 maximal subgroups.
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Sommario

St prova che, se R & un dominio di Dedekind ¢ |R/pR]| ¢é finito per un elemento pri-
mo p di B, allora, dato un modulo finitamente generato F, esiste solo un numero finito
di sottomoduli massimali K per cui |F/K| ¢ lUmitato da p.

Si indica poi il numero dei sottomoduli massimali di F, con F R-modulo libero di
rango n. In particolare & intervessante il caso in cui R/pR & un campo finito.



