L. DAVID and D. I. PAPUC (*)

About positive operators on vector bundles (**)

Introduction

The study of a structure formed by a vector bundle endowed with a field of cones is suggested by the existence of time-oriented Lorentzian manifolds and justified by the wish for a globalisation of the results obtained till now in the study of positive operators (see the monographs of M. A. Krasnosel'skij [4] and [5]).

The first note, where a vector bundle endowed with a field of cones was considered, is probably D. Sullivan [12] of 1976. From 1988, the geometry of a differentiable manifold endowed with a field of tangent cones was studied in D. I. Papuc [6], [7] and [8]. The same author studied the general case of a regular vector bundle endowed with a field of cones ([9], [10]) and considered the case of time-oriented Lorentzian manifolds ([11]). In 1995 L. David studied opearators on a vector bundle endowed with an homogeneous n-hedral cone-field and some spectral properties of positive linear operators on a vector bundle endowed with an arbitrary cone-field ([1], [2]).

1 - Recall of some fundamental results (see [9])

1. Definition

A regular vector bundle is a vector bundle (E, p, M) for which M is a real topological paracompact connected without boundary manifold, dim M = n, dim E = n + m.

^(*) Fac. Mat., Univ. din Timişoara, Bd. V. Parvan 4, Timişoara 1900, Romania.

^(**) Received March 21, 1996. AMS classification 47 H 07.

A field of cones on a regular vector bundle (E, p, M) is a map

$$K: x \in M \to K(x) \subset E_x \subset E,$$
 $E_x = p^{-1}(x)$

such that the following axioms are satisfied:

 A_1 . For every $x \in M$ the set $K(x) \subset E_x$ is a convex pointed closed cone having interior points (in the topological space E_x).

 \mathbf{A}_2 . The sets $\bigcup_{x \in M} \text{Int } K(x)$ and $\bigcup_{x \in M} (E_x - K(x))$ are open subsets of E.

The structure formed by a regular bundle (E, p, M) endowed with a field of cones K will be denoted by [(E, p, M); K].

Remark. A regular vector bundle (E, p, M) has a field of cones if and only if there is a continuous global section of non-zero vectors of (E, p, M). A good example of [(E, p, M); K] is [(TM, p, M); K] where M is a time-oriented Lorentzian manifold and, for any x of M, K(x) is the quadratic cone of non spacelike time-oriented tangent vectors of M.

2. The geometry of a local fibre of the structure [(E, p, M); K].

The pair $(E_x; K(x))$, $\forall x \in M$, is a Krein space ([4]). Hence it follows:

a. There is an ordering relation on E_r :

$$X \le Y \Leftrightarrow Y - X \in K(x)$$
 $X, Y \in E_x$.

The pair (E_x, \leq) is an ordered topological vector space, directed on both sides.

b. For every $Z \in \text{Int } K(x)$, E_x is Z-measurable i.e.

$$\forall X \in E_x \quad \exists \lambda \in \mathbb{R}^+ \mid -\lambda Z \leq X \leq \lambda Z \quad (\mathbb{R}^+ = \{\lambda \in \mathbb{R} \mid \lambda \geq 0\}).$$

 E_x has a norm determined by K(x) and a fixed $Z \in \text{Int } K(x)$:

$$|\cdot|_Z: E_x \to \mathbb{R}^+$$
 where $|X|_Z = \min \{\lambda \in \mathbb{R}^+ \mid -\lambda Z \leq X \leq \lambda Z\}$.

c. The open-balls of E_x in the norm $|\cdot|_Z$ and the open ordered intervals in \leq , both determined by the same $X_0 \in E_x$, $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$ and $Z \in \operatorname{Int} K(x)$, coincide, i.e. $B(X_0, Z, \varepsilon) = (X_0 - \varepsilon Z, X_0 + \varepsilon Z)$ where:

$$B(X_0\,,\,Z,\,\varepsilon)=\big\{X\colon \big|X-X_0\big|_Z<\varepsilon\big\}$$

$$(X_0 - \varepsilon Z, X_0 + \varepsilon Z) = \{ X \in E_x \mid \exists \varepsilon_1, \, 0 < \varepsilon_1 < \varepsilon, \, X_0 - \varepsilon_1 Z \leq X \leq X_0 + \varepsilon_1 Z \}.$$

The three topologies of E_x , the first determined by the structure (E, p, M), the second by the norm $|\cdot|_Z$ and the third by the open ordered intervals, coincide.

3. Global properties of a structure [(E, p, M); K]

A main tool in order to study a structure [(E, p, M); K] is the function $\nu \colon \bigcup_{x \in M} (\operatorname{Int} K(x) \times E_x) \to \mathbf{R}^2$ defined by $\nu(Z, X) = (\alpha(Z, X), \beta(Z, X))$ where:

$$\alpha(Z, X) = \min \{ \lambda \in \mathbb{R} \mid X \leq \lambda Z \}$$
 $\beta(Z, X) = \max \{ \lambda \in \mathbb{R} \mid \lambda Z \leq X \}.$

The function ν is continuous and $\forall (Z, X), (Z, Y) \in \bigcup_{x \in M} (\text{Int } K(x) \times E_x) \text{ has the } fundamental properties:}$

- I. $\nu(Z, \lambda X) = \lambda \cdot \nu(Z, X), \ \nu(\lambda Z, X) = \lambda^{-1} \cdot \nu(Z, X) \text{ for any } \lambda \in \mathbb{R}^+ \setminus \{0\}.$
- II. $\beta(Z, X) + \beta(Z, Y) \leq \beta(Z, X + Y) \leq \alpha(Z, X + Y) \leq \alpha(Z, X) + \alpha(Z, Y)$.
- III. $\nu(Z, Z) = (1, 1)$ $\nu(Z, X) = (0, 0) \Rightarrow X = 0.$
- **IV.** $\alpha(Z, \lambda Z X) = \lambda \beta(Z, X), \beta(Z, \lambda Z X) = \lambda \alpha(Z, X)$ for any $\lambda \in \mathbb{R}$.

Next theorem proves that a structure [(E, p, M); K] can be determined by three *classical* elements: a vector bundle (E, p, M), a continuous global section of non-zero vectors of (E, p, M) and a function defined on E with values in \mathbb{R}^2 .

Fundamental theorem. Let be given a regular vector bundle (E, p, M), a continuous global section ζ of (E, p, M) such that $\zeta(x) \neq 0$ for any $x \in M$, a continuous function $\nu_{\zeta}: E \to \mathbb{R}^2$ satisfying conditions I-IV where $\nu(\zeta(p(X)), X)$ is replaced by $\nu_{\zeta}(X)$.

The three elements (E, p, M), ζ , ν_{ζ} , uniquely determine a structure [(E, p, M); K] where, for any x of M, $K(x) = \{X \in E_x \mid \beta_{\zeta}(X) \ge 0\}$ If in E_x we consider the ordering $X \le Y$ defined by $Y - X \in K(x)$, then

$$\alpha_{\zeta}(X) = \min \left\{ \lambda \in \boldsymbol{R} \, \big| \, X \leq \lambda \zeta(x) \right\} \qquad \beta_{\zeta}(X) = \max \left\{ \lambda \in \boldsymbol{R} \, \big| \, \lambda \zeta(z) \leq X \right\}.$$

We list now some important relations:

 $\mathbf{a_1}$. For any $X \in E_x$ and any $Z, Z_1, Z_2 \in \text{Int } K(x)$ we have:

$$X \in K(x) \Leftrightarrow \beta(Z, X) \ge 0$$
 $X - \beta(Z, X) Z \in \operatorname{Fr} K(x)$ $\alpha(Z, X) Z - X \in \operatorname{Fr} K(x)$.

 $\mathbf{a_2}$. If $X \in B(X_0, Z, \varepsilon) = (X_0 - \varepsilon Z, X_0 + \varepsilon Z)$, then there exists $\varepsilon_1 \in \mathbf{R}$, $0 \le \varepsilon_1 < \varepsilon$ such that

 $\alpha(Z,X_0)-\varepsilon_1\leqslant \alpha(Z,X)\leqslant \alpha(Z,X_0)+\varepsilon_1 \quad \beta(Z,X_0)-\varepsilon_1\leqslant \beta(Z,X)\leqslant \beta(Z,X_0)+\varepsilon_1$ and conversely.

$$\mathbf{a_3}$$
. $|X|_Z = \max\{|\alpha(Z, X)|, |\beta(Z, X)|\}$.

Finally if for the structure [(E, p, M); K] it is given a continuous global section ζ of (E, p, M) such that $\zeta(x) \in \text{Int } K(x)$ for any x of M, then by \mathbf{a}_3 we can

consider $|\cdot|_{\xi}: E_x \to \mathbb{R}^+$ defined by

$$|X_x|_{\xi} = |X_x|_{\xi(x)} = \max\{|\alpha(\zeta(x), X_x)|, \beta(\zeta(x), X_x)|\}.$$

2 - Operators. The cone of positive operators. The structure $(\Omega/\Omega_0; K)$

Definition 1. An operator from a vector bundle (E, p, M) to a vector bundle (E', p', M) is a continuous map $A: E \to E'$ such that we have $A(p^{-1}(x)) \in p'^{-1}(x)$ for any x of M.

We shall denote the set of all these operators by Ω . The set Ω is a real vector space and a module over the ring of real continuous functions defined on M or on E.

As important particular subsets of Ω , we shall consider:

the linear subspace Ω_L of linear operators (morphisms from the vector bundle (E, p, M) to the vector bundle (E', p', M)),

the linear subspace $\Omega_{\Sigma'}$ of section-operators. Every element of $\Omega_{\Sigma'}$ will be defined by a global section of (E', p', M). If $\sigma' : M \to E'$, $p' \circ \sigma' = \mathrm{id}_M$, then the section-operator $A_{\sigma'}$ determined by σ' will be $A_{\sigma'} : E \to E'$, $A_{\sigma'} = \sigma' \circ p$.

Obviously $\Omega_L \cap \Omega_{\Sigma'} = \{A_0\}$, where A_0 is the constant operator determined by the zero global section of (E', p', M).

We shall consider now two structures [(E, p, M); K] and [(E', p', M); K']

Definition 2. A positive operator from the structure [(E, p, M); K] to the structure [(E', p', M); K'] is an operator $A: E \to E'$ such that $A(K(x)) \subset K'(x)$, $\forall x \in M$. The subset of all positive operators of Ω will be denoted by K_{Ω} .

Proposition 1. The set K_{Ω} of all positive operators from [(E, p, M); K] to [(E', p', M); K'] is a convex cone generating Ω .

Proof. Indeed, K_{Ω} is a *cone* (if $A \in K_{\Omega}$ then $\varrho A \in K_{\Omega}$, $\forall \varrho \in \mathbb{R}^+$). K_{Ω} is a *convex set* (if A_1 , $A_2 \in K_{\Omega}$ then $(1 - \lambda)A_1 + \lambda A_2 \in K_{\Omega}$, $\forall \lambda \in [0, 1] \in \mathbb{R}$). K_{Ω} is a *generating set* for Ω . This means that, for every $A \in \Omega$, there are two positive operators A_1 , $A_2 \in K_{\Omega}$ such that $A = A_2 - A_1$. In order to prove this assertion we shall use the function ν (Sec. 1, 3) this function being defined for the structure [(E', p', M); K']. We shall put:

$$A_1(X) = |\alpha(\sigma'(p(X)), A(X))| \cdot \sigma'(p(X)) - A(X)$$

$$A_2(X) = \alpha(\sigma'(p(X)), A(X))| \cdot \sigma'(p(X))$$

where $\sigma' \in \text{Int}(K')_{\Sigma}$. By virtue of relation \mathbf{a}_1 of Sec. 1,3 it follows that A_1 , A_2 are positive operators. Obviously $A = A_2 - A_1$.

Among the positive operators from [(E, p, M); K] to [(E', p', M); K'] we shall consider the set

(1)
$$\Omega_0 = \{ A \in \Omega \mid A(K(x)) = 0 \in K'(x), \ \forall x \in M \}.$$

 Ω_0 is a linear subspace of Ω and we have $\Omega_0 \subset K_\Omega$, $\Omega_L \cap \Omega_0 = \Omega_{\Sigma'} \cap \Omega_0 = \{A_0\}$. Then, we can consider the *quotient linear space* $\Omega/\Omega_0 = \{A + \Omega_0 | \forall A \in \Omega\}$. Let $\pi \colon \Omega \to \Omega/\Omega_0$ be the natural projection and denote $\pi(A)$ by [A]. Then the maps $\pi|_{\Omega_L}$, $\pi|_{\Omega_{\Sigma'}}$ are *injective*. Also, $[A_1] = [A_2]$ if and only if $A_1(X) = A_2(X)$ for any X of K(p(X)).

The last remark permit us to consider the following important subset of Ω/Ω_0

$$(2) K = \{ [A] | A \in K_{\Omega} \}.$$

Obviously, $[A] \in K$ if and only if $A(K(x)) \subset K'(x)$ $(\forall x \in M)$.

Proposition 2. The set K is a convex pointed cone generating the linear space Ω/Ω_0 .

Proof. K is a *cone* in the linear space Ω/Ω_0 . Indeed, if $[A] \in K$ (i.e. $A \in K_\Omega$) and $\varrho \in \mathbb{R}^+$, then $\varrho[A] \in K$ (since $\varrho A \in K_\Omega$). K is a *convex cone*. If $[A_1]$ and $[A_2]$ belong to K, then $(1-\lambda)[A_1] + \lambda[A_2]$ belongs to K for every $\lambda \in [0, 1] \subset \mathbb{R}$. K is a *pointed cone*. If [A] and -[A] belong to K, then A and -A belong to K_Ω . This implies A(X) = 0 for any X of $K(\varrho(X))$, consequently $A \in \Omega_0$ and so [A] = 0. K is a *generating set* for the linear space Ω/Ω_0 . Let [A] be an arbitrary element of Ω/Ω_0 . For any operator A of Ω we proved that there are two positive operators. A_1 , A_2 , so that $A = A_1 - A_2$ (see Definition 2 and Proposition 1). From the last equality it follows that $[A] = [A_1] - [A_2]$.

By virtue of a previous remark we can give

Definition 3. We call *interior of the cone* K and we denote it by Int K the subset of Ω/Ω_0 defined by

(3) Int
$$K = \{ [B] \in \Omega/\Omega_0 \mid B(\operatorname{Int} K(x)) \subset \operatorname{Int} K'(x), \ \forall x \in M \}.$$

Obviously, Int $K \subset K$.

3 - Ordering relation for the structure $(\Omega/\Omega_0; K)$

For the linear space Ω/Ω_0 , we can define, by means of the cone K, an ordering relation (see [4]) namely

$$(4) [A_1] \leq [A_2] \Leftrightarrow [A_2] - [A_1] \in K \text{for any } [A_1], [A_2] \text{ of } \Omega/\Omega_0.$$

Remark. Obviously $[A_2] - [A_1] \in K \Leftrightarrow [A_2 - A_1] \in K$ which is equivalent to

$$(A_2 - A_1)(X) \in K'(x) \Leftrightarrow A_1(X) \le A_2(X)$$
 for any X of $K(x)$

(in the ordering defined by K' for the structure [(E', p', M); K']).

Proposition 3. The pair $(\Omega/\Omega_0; \leq)$ is an ordered vector space, directed on both sides.

Proof. Obviously relation (4) is an ordering relation for the set Ω/Ω_0 and the pair $(\Omega/\Omega_0; \leq)$ is an ordered linear space [4].

In order to prove the last part of Proposition 3, we shall fix an interior section σ' of [(E', p', M); K'], i.e. an element $\sigma'(x) \in \text{Int } K'(x)$ for any x of M. For an arbitrary element $[A] \in \Omega/\Omega_0$, by means of the function ν defined for the structure [(E', p', M); K'] (Sec. 1,3) we can associate to the element [A] two elements of Ω/Ω_0 , namely $[\alpha(\sigma' \circ p, A) \cdot (\sigma' \circ p)]$ and $[\beta(\sigma' \circ p, A) \cdot (\sigma' \circ p)]$, such that

$$[\beta(\sigma' \circ p, A) \cdot (\sigma' \circ p)] \leq [A] \leq [\alpha(\sigma' \circ p, A) \cdot (\sigma' \circ p)]$$

where p is the projection of (E, p, M) and $\sigma' \circ p$ is the section-operator defined by σ' .

For two arbitrary elements $[A_1], [A_2] \in \Omega/\Omega_0$ we shall consider the elements

$$[A_3] = [\min \{\beta(\sigma' \circ p, A_1), \beta(\sigma' \circ p, A_2)\} \cdot (\sigma' \circ p)]$$

$$[A_4] = [\max \{\alpha(\sigma' \circ p, A_1), \alpha(\sigma' \circ p, A_2)\} \cdot (\sigma' \circ p)].$$

By virtue of (5) we have $[A_3] \leq [A_1]$, $[A_2] \leq [A_4]$.

Corollary. If $[B_1]$, $[B_2] \in \text{Int } K$, then there are two elements $[B_3]$, $[B_4]$ of Int K, such that $[B_3] \leq [B_1]$, $[B_2] \leq [B_4]$.

The Corollary is an immediate consequence of relation (5) if we remark that for any [B] of Int K we shall have $\beta(\sigma \circ p, B) > 0$ on Int K(x).

The ordering relation (4) defined on the linear space Ω/Ω_0 permits us to determine topological structures of Ω/Ω_0 .

Definition 4. An ordered open interval centred in $[A^*] \in \Omega/\Omega_0$, determined by an element $[B] \in \text{Int } K$, is a set

Proposition 4. The set of all ordered open intervals determined by the same element $[B] \in \text{Int } K$ is a base of a topology of Ω/Ω_0 , denoted $\tau_{[B]}$.

Proof.

a. Obviously, for every element of $[A] \in \Omega/\Omega_0$ there is an open ordered interval to which the element [A] belongs $([A] \in {}^{\alpha}[A] + \varepsilon[B], [A] + \varepsilon[B])$ for an $\varepsilon \in \mathbb{R}^+ \setminus \{0\}$, arbitrarily fixed).

b. If an element [A] belongs to two open ordered intervals, then it belongs to an open ordered interval included in both these intervals.

First we shall prove that if $[A] \in (A^*] - \varepsilon[B]$, $[A^*] + \varepsilon[B]$ then there is an open ordered interval centred in [A], included in $(A^*] - \varepsilon[B]$, $[A^*] + \varepsilon[B]$.

The assumption implies that there exist ε , $\varepsilon_1 \in \mathbb{R}$, $0 < \varepsilon_1 < \varepsilon$ such that

$$[A^*] - \varepsilon_1[B] \le [A] \le [A^*] + \varepsilon_1[B].$$

Consequently for any ε_1' satisfing $\varepsilon > \varepsilon_1' > \varepsilon_1$ we have

$$[A^*] - \varepsilon_1'[B] \leq [A^*] - \varepsilon_1[B] \leq [A] \leq [A^*] + \varepsilon_1[B] \leq [A^*] + \varepsilon_1'[B].$$

It follows

$$[A^*] - \varepsilon_1'[B] \leq [A] - (\varepsilon_1' - \varepsilon_1)[B] \leq [A] \leq [A] + (\varepsilon_1' - \varepsilon_1)[B] \leq [A^*] + \varepsilon_1'[B].$$

Therefore for any ε^* satisfying $0 < \varepsilon^* < (\varepsilon_1' - \varepsilon_1)$ we get

$$[A^*] - \varepsilon_1'[B] \le [A] - \varepsilon^*[B] \le [A] \le [A] + \varepsilon^*[B] \le [A^*] + \varepsilon_1'[B]$$

and this implies

$$\langle [A] - (\varepsilon_1' - \varepsilon_1)[B], [A] + (\varepsilon_1' - \varepsilon_1)[B] \rangle \subset \langle [A^*] - \varepsilon[B], [A^*] + \varepsilon[B] \rangle$$
.

By virtue of this last result if

$$[A] \in (A_1] - \varepsilon_1[B], [A_1] + \varepsilon_1[B] \cap (A_2] - \varepsilon_2[B], [A_2] + \varepsilon_2[B] \cap (A_2) = \varepsilon_2[B] \cap (A$$

then, for an $\varepsilon^* < \min \{ (\varepsilon_1' - \varepsilon_1), (\varepsilon_2' - \varepsilon_2) \}$, we have

$$\langle A - \varepsilon^*[B], [A] + \varepsilon^*[B] \rangle \subset \langle A_1 - \varepsilon_1[B], [A_1] + \varepsilon_1[B] \rangle \cap \langle A_2 - \varepsilon_2[B], [A_2] + \varepsilon_2[B] \rangle$$
.

The propositions **a** and **b** prove that the set of all open ordered intervals determined by the same element $[B] \in \text{Int } K$ is a base of a topology of Ω/Ω_0 , denoted by $\tau_{[B]}$.

4 - Norms and distances for the structures $(\Omega/\Omega_0; K)$

Definition 5. An element $[A] \in \Omega/\Omega_0$ is called [B]-measurable, $[B] \in \text{Int } K$, if there is $\lambda \in \mathbb{R}^+ \setminus \{0\}$, such that $-\lambda[B] \leq [A] \leq \lambda[B]$.

There are elements $[A] \in \Omega/\Omega_0$ which are not [B]-measurable. The set of all elements of Ω/Ω_0 which are [B]-measurable will be denoted by $\Delta_{[B]}$. This set is a real linear subspace of Ω/Ω_0 .

Proposition 5. The set $\Delta = \{\Delta_{B} \mid [B] \in \text{Int } K\}$, is a covering of Ω/Ω_0 .

Proof. Let [A] be an arbitrary element of Ω/Ω_0 . We must determine an element $[B] \in \text{Int } K$ such that [A] is [B]-measurable (Definition 5).

By means of a positive global section σ' of [(E', p', M); K'], (that is $\sigma'(x) \in \text{Int } K'(x), \forall x \in M$), we consider the positive section-operator $B = \sigma' \circ p$. By means of the function ν defined for the structure [(E', p', M); K'] we have (Sec. 1,3)

(7)
$$\beta(\sigma' \circ p, A) \cdot \sigma' \circ p \leq A \leq \alpha(\sigma' \circ p, A) \cdot \sigma' \circ p.$$

We consider an open local-finite covering of E, $U = \{U_a \mid a \in J\}$, such that $\forall a \in J$ the closure of U_a will be a compact set. We consider also a partition of unity $\{f_a : E \to R, a \in J\}$, subordinated to the convering U. For every $\operatorname{cl} U_a$ $(a \in J)$ we shall consider the numbers:

$$\alpha_a = \max \big\{ \alpha(\sigma' \circ p(X), A(X)) \, \big| \, \forall X \in \operatorname{cl} U_a \big\}, \, \beta_a = \min \big\{ \beta(\sigma' \circ p(X), A(X)) \, \big| \, \forall X \in \operatorname{cl} U_a \big\}$$

and $\lambda_a \in \mathbb{R}^+ \setminus \{0\}$ such that $-\lambda_a \leq \beta_a \leq \alpha_a \leq \lambda_a$. The positive operator we are looking for will be $B = \sum f_a \lambda_a \sigma' \circ p$. By virtue of the relation (7), for every open set $U_a(a \in J)$, and for any X of U_a , we have

$$-\lambda_a\sigma'\circ p \leq \beta(\sigma'\circ p(X),\!A(x))\cdot\sigma'\circ p \leq A(X) \leq \alpha(\sigma'\circ p(X),\,A(X))\cdot\sigma'\circ p \leq \lambda_a\sigma'\circ p\;.$$

Multiplying last relations by f_a and adding these relations after the values of $a \in J$, we obtain $-[B] \leq [A] \leq [B]$.

Definition 6. On the set $\Delta = \{\Delta_{B} \mid [B] \in \text{Int } K\}$ we define relation

(8)
$$\Delta_{[B']} \leq \Delta_{[B'']} \Leftrightarrow \Delta_{[B'']} \subset \Delta_{[B'']}.$$

Remark that $\Delta_{[B']} \subset \Delta_{[B'']} \Leftrightarrow [B'] \in \Delta_{[B'']} \Leftrightarrow \exists \lambda \in \mathbb{R}^+ \setminus \{0\} \text{ such that } [B'] \leq \lambda [B''].$

Proposition 6. Relation (8) is an ordering relation on Δ , directed on both sides.

Proof. Obviously, the relation \leq defined by (8) is an ordering relation. In order to prove that it is directed on both sides, we must prove that for any $\Delta_{[B']}$, $\Delta_{[B'']}$ there are two elements $\Delta_{[B^*]}$, $\Delta_{[B^{**}]}$ such that $\Delta_{[B^*]} \leq \Delta_{[B']}$, $\Delta_{[B'']} \leq \Delta_{[B^{**}]}$ ($[B^*]$, [B'], [B''], $[B^{**}] \in Int K$). But this last relation follows from the relation

$$\forall [B'], [B''] \in \text{Int } K, \exists [B^*], [B^{**}] \in \text{Int } K \Rightarrow [B^*] \leq [B'], [B''] \leq [B^{**}]$$

(see the above Remark and Corollary).

On the set $\Delta_{\{B\}}$, $([B] \in \text{Int } K(x))$ we consider the map

$$(9) \qquad |\cdot|_{[B]}: \Delta_{[B]} \to R^+$$

defined by $|[A]|_{[B]} = \min \{\lambda \in \mathbb{R}^+ \mid -\lambda[B] \leq [A] \leq \lambda[B] \}$, for any [A] of $\Delta_{[B]}$.

Proposition 7. The map (9) is a monotone norm of the linear space $\Delta_{[B]}$ ([4]).

For the linear subspace $\Delta_{[B]}$ of Ω/Ω_0 we consider the quotient space $(\Omega/\Omega_0)/\Delta_{[B]}$. Then, for every class $[A] + \Delta_{[B]} \in (\Omega/\Omega_0)/\Delta_{[B]}$ we consider the map

(10)
$$\begin{aligned} d_{[B]}: ([A] + \Delta_{[B]}) \times ([A] + \Delta_{[B]}) \to \mathbf{R}^+ \\ d_{[B]}: ([A] + [A'], [A] + [A'']) &= |[A'] - [A'']|_{[B]} \in \mathbf{R}^+ . \end{aligned}$$

Proposition 8. The function $d_{[B]}$ defined by (10) is a distance on $(\Omega/\Omega_0)/\Delta_{[B]}$.

References

[1] L. David, About the positive local operators on the sections of a regular vector bundle, Proc. 25th Nat. Conf. Geometry and Topology, Iassy, Romania, September 1995, (to appear).

- [2] L. David, Spectral properties of the positive operators defined on a vector bundle endowed with a field of cones, Sem. Geom. si Topologie, Univ. Timişoara 10 (1995).
- [3] L. DAVID and D. I. PAPUC, About the positive operators on vector bundles, Sem. Geom. si Topologie, Univ. Timișoara 111 (1995).
- [4] M. A. Krasnosel'skij, Positive solutions of operators equations, Noordhoff, Groningen 1964.
- [5] M. A. Krasnosel'skij, J. A. Lifshits and A. V. Sobolev, *Positive linear* systems. The method of positive operators, Heldermann, Berlin 1989.
- [6] D. I. Papuc, On the geometry of a differentiable manifold with a partial ordering (or with a field of tangent cones), An. Univ. Timişora 26 (1988), 39-48.
- [7] D. I PAPUC, Partial orderings on differentiable manifolds, An. Univ. Timişoara 26 (1988), 55-73.
- [8] D. I. Papuc, Ordered tangent structures associated to a differentiable manifold with a regular field of tangent cones, Bull. Math. Soc. Sci. Math. Roumanie 34 (1990), 173-179.
- [9] D. I. Papuc, Field of cones and positive operators on a vector bundle, An. Univ. Timisoara 30 (1992), 39-58.
- [10] D. I Papuc, Field of cones on a tensor bundle and erratum, Proc. 24th Nat. Conf. Geom. and Topology, Timişoara, Romania, July 1994, (to appear).
- [11] D. I. Papuc, About a new metric geometry of a time-oriented Lorentzian manifold, Sem. Mecanica, Univ. Timisoara 44 (1995).
- [12] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Inven. Math. 36 (1976), 225-255.

Sommario

Siano (E, p, M), (E', p', M') due fibrati vettoriali regolari dotati, rispettivamente, di campi di coni K, K'. Un operatore $A: E \to E'$ è una applicazione continua locale, che muta fibre in fibre. Viene studiato l'insieme Ω degli operatori in relazione ai campi di coni K, K' (cono degli operatori positivi, relazione d'ordine, norme e distanze).

* * *