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ELENA RUBEI (%)

Characterization of the morphisms between Jacobians
induced by morphisms between Riemann surfaces (**)

Introduction

Let X' and X be two compact connected Riemann surfaces of genus ¢’ and g
respectively, with g’ 2 g = 1. If f* X' — X is a holomorphic surjective map, ob-
viously finduces a map between the corresponding Jacobians: F: J(X') — J(X);
F is a group homomorphism and is holomorphic.

One can wonder which may be necessary and sufficient conditions for a map
F: J(X')-> J(X) to be induced by a holomorphic map from X' onto X. This pro-
blem was suggested to me by F. Bardelli, to whom I am greatly indebted also
for some helpful discussions. In this paper we give two answers to this question
(respectively Theorem 1 in Sec. 1 and Theorem 2 in Sec. 2). Both imitate Torel-
li's theorem, the first one in a set-combinatorial sense, the second one in a topo-
logical sense.

The hypotheses of Theorem 2 can be easily and almost completely translated
in polynomial equations in the entries of the matrix representing # and of the
period matrices of X' and X. Then perhaps the second characterization of the
morphisms between Jacobians induced by morphisms between Riemann surfa-
ces may have some utilizations.

For instance, perhaps it may be useful to give an upper bound on the num-
ber of the morphisms between two fixed Riemann surfaces and also on the num-
ber of the morphisms between a fixed Riemann surface and an other Riemann
surface varying among the ones of a same fixed genus.

Besides, Theorem 2 (together with equations resolving Schottky problem)

(*) Via IV Novembre 5, 57025 Piombino, Italia.
(**) Received, March 19, 1996. AMS classification 14 H 40.
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may be useful to see
Hol(g', 9) = {(4, f, B): Ae N, , BeN,, f: A— B holomorphic surjective map}

as an open of some components of the set of zerces of some equations in
(9, X RY'9 % DCg)/ ~, where 91, and 9%, are the moduli spaces of Riemann
surfaces respectively of genus g’ and g and 9, and ¢, are the Siegel upper half-
spaces and ~ is the equivalence relation given by the action of the modular
groups.

From the following remark we see that for g = 2, 8 the maps between Jaco-
bians induced by maps between Riemann surfaces are few.

Remark 1. Let D{ be the subset of J1(, corresponding to the set of the
Riemann surfaces C such that there exists a map ¢: C — B, with B, abelian va-
riety of dimension g and such that ¢(C) generates B, as group. In [1] Colombo
and Pirola proved that for g = 1, 2, 3 the set D{. is dense in Ji(,.. Then D} is a
countable union of analytic subvarieties in 91, .

Besides we know that, for g = 1, 2, 8, almost all abelian varieties of dimen-
sion g are Jacobians of Riemann surfaces.

Fixed g’ and g with g = 2, by the Hurwitz formula we know that there are
only a finite number of natural numbers, that may be the degree of a map from
a Riemann surface of genus g’ to a Riemann surface of genus g. Thus the space
Ry, o Parametrizing the holomorphic surjective maps from Riemann surfaces of
genus ¢' to Riemann surfaces of genus g has a finite number of connected
components.

Let g = 2, 3. Consider the map R, ,— I, associating to every element of
Ry g, [1 X' — X the first Riemann surface X'. By the previous remarks, the
image of such map is contained in a finite number of components of D{.. Since
D{. is a countable union of analytic subvarieties, there is a not finite number of
components of D{. such that for everyone of their elements, which represents a
Riemann surface S, any map from J(S) onto an Abelian variety of dimension g
(which is generically a Jacobian) is not induced by a map between Riemann
surfaces.

Notations. In all the paper X' and X will be two compact connected Rie-
mann surfaces of genus ¢’ and g respectively, with g’ = ¢ = 1. In all the paper
J(X') means a fixed representative of the class of the Jacobian of X’ in the set
of principally polarized abelian varieties up to isomorphisms. Analogously for
J(X).

Fix a point @' of X'; in all the paper let v be Abel’s map of X' from @'. The
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image in J(X') under v of the positive divisors on X' of degree d < d will be de-
noted by V¢; its translate by an element o e J(X') will be denoted by V¢. Ana-
logously fix a point @ of X and in all the paper let 4 be Abel’s map of X from Q.
We define W? = u(X@) and W = W? + b. Set (W)* = —W{ + u(Z), where Z
is a canonical divisor on X.

In general, if A is a subset of a Jacobian and ¢ an element of this Jacobian, we
define A, =A + t. ‘

Let @' be the polarization on J(X'), given by the intersection of 1-cycles on
X', and let 6’ be the dual polarization on Pic® (X'), which can be computed as
follows: let {a;, b;);—1. , be a symplectic basis of H,(X',Z) and let
{a, b }i=1. 4 be the dual basis of H*(X', Z). In the universal covering of
Pie®(X') we consider the coordinates s;, s;;, dual to {a;”, " }; we have

g
6' = _Z ds; A ds; ;.. We call w and 6 the analogous polarizations respectively

i=1

on J(X) and on Pic® (X).

Remark 2. Let F be a holomorphic map J(X') — J(X) such that F(0) = 0,
(thus F'is a homomorphism). Obviously F is induced by a holomorphic map from
X' onto X if and only if there exists K € J(X) such that (V') = W! + K. In this
case one can see easily that, if g = 2, there is only one map inducing F' and evi-
dently this map is x 7! o(F|y1 — K)ow.

1 - A first answer to the problem

Generalizing Martens’ proof of Torelli’s theorem ([3]), we have a first not ob-
vious answer to our problem.

Theorem 1. Let F: J(X')—J(X) be a holomorphic map such that
F(0) = 0. Assume also that there exists K e J(X') such that F(VE~1) = W9~ L
Suppose that if F(VY) ¢ W™, then F(V') N W{ ™' is equal to g points counted
with multiplicity and their sum is b + const. Then there is a holomorphic sur-
jective map f+ X' — X inducing either F or —F.

Remark 3. Evidently if F is a map: J(X') — J(X) induced by a holomor-
phic map from X' onto X, then F' satisfies the hypotheses of Theorem 1.

Proof of Theorem 1. In the proof we use the lemmas in [3]. By Remark
2 in the Introduction, it suffices to prove that F(V') is a translate of W

Let = be the smallest integer such that F(V') c W2+ or F(V') c (W 1)* for
some a. (We have r < g — 1 evidently). We want to show that = 0.
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First let’s suppose that F(V!)c Wi+l
Let xeW!, yeWY ™ 1""; we set b=a+2 —.

Claim 1. Unless W.*'cW{ ™, we have
FVHNAW! '=FvHnNw! 'NnW: = (F(VHN W) U(FVHNS)

where S =W, 1N (WIZ5)* Observe that F(V') N W, ., depends only on &
and F(VY)N S depends only on y.

The result follows by virtue of Lemma 4 in [3].

Claim 2. Fixed x in W, we have that F(V') ¢ Wi~ ! Jor almost all choices
of y in W9~ 177, that is for almost all choices of b in —WILS5 (and therefore
Wit ¢ Wi~ " for at least the same y and b). Namely defining

A(x) = {be —WILL) such that F(VY) ¢ Wi '}

we have that —WILY5 — A(w) is a Zariski closed subset of — W95} and the
dimension of each of its components is less than g — 1 —n

Proof. The set, —WY %7} — A(x) which is a Zariski closed set, is a proper
subset of — W47, because if F(V')c WY ™' for any be WILL7], then by
Lemma 3 in [3] we have that F(V')c Wi, . and this is absurd for the assum-
ption on 7. Clearly each of the components of —W? 7] — A(x) has dimension
less than g — 1 — 7; if not it would be equal to all — WY 47} since —W9i L) is
irreducible.

Claim 3. For any m < g we have dim F(V™) = m.

Proof. If m=g—1, it is obvious by the hypothesis of the theorem
F(vy~ 'Y= Wv-1. Consider the case m < g — 1. We have
g—1=dimF(V? ") =dim[F(V™) + F(VI~ 1 =™ < dimF(V™) + dimF(V9 -1~ ™),

If by absurd dim F(V™) < m then, since dim F(V?~!1~™) < g — 1 — m, it would
be inpossible that dim F(VY~!) =g — 1, so we have proved our claim in this
case.

Finally, if m =g, for some ¢ we have

FvH=F(U WV 4= U W '+ F@)=W "'+ FVYY.
se V! seV!

F(V?9) is irreducible; so if it had dimension ¢ — 1, then W/ "y F(s) = Wi~ ! for
every s e V1. But this implies F(s) = 0 for every s e V', that is V' c Ker ' and
this is absurd.
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Claim 4. Fized x in W', F(V') N W], . contains at most one point.

Proof. If not, as b varies in A(x) (whose complement in — WY %77 is a Za-

riski closed subset such that the dimension of each of its components is less than
g — 1 —7), the sum of the g points of F(V') N W{ ~! varies in a translate of
F(V9~%) (by Claim 1) and then, by the fact that the sum of the points of
F(VY) N W{*is equal to b + const, we should have an inclusion of (W9 !~ 7)*
in a translate of F(VY™%), say (W?~'~")* c F(V{~%). Then we have:

FVY c N{FE'): ve V9 2} = translate of N{F&"}): ve VI~ %}
= translate of N{(F& ") _:ue F(V§~%)} = translate of N{W iue F(v§—2)}

c translate of N{W?%,: uwe (WY ' 7")*} = translate of (W")*

by Lemma 3 in [3]. But the fact that F(V!) c translate of (W")* is absurd for
the assumption on 7.

Claim 5. There exist two distinct points of WY, say «' and ", such that
FOVYNW!, . and F(VY) N Wi, .- contain at least one point each (and then
exactly one point each by the Claim 4).

In fact, as x varies in W', W/, describes all W} *! (which contains F(V!));
but F(V') cannot be contained in W7, for a certain « by the assumption
on 7. So we can find ' and z” with ' # x” such that F(V) N W), . = @ and
FVYNWr, . =0.

Claim 6. There is a translate of F(V') intersecting W' in two distinct
points.

Proof. Let us consider ' and z” found in Claim 5. We can take y in
W9~ 1-"suchthata +2' — y e A(x’) and a + &" — y € A(x"). With this choice of
y, we have:

FVONWETE oy =EFVH N Wi, ) UETVHNS)

FOVMYNW ey =EFEVHNWi, ) UEFETH)NSI)
y

where F(VY) N W], .. and F(V') N W[, .- consist only of one point, denoted by
Q(z') and Q(x"), respectively.

Since, subtracting the sum of the points of F(V') N W{; -, from the sum
of the points of F(V)NW¢: ll."_y, we obtain Q(z") — Q(x'), we derive
(a+a"—y)=(a+2" —y)=Q")— Q(x’) and then " — Q(z") =z’ — Q(x").
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We remember that ', 2" € W' and Q(z"'), Q(x") € F(V'). Consequently, the-
re exists & such that F(V}) N W'o {z', «"} and, since ' = x”, this concludes the
proof of Claim 6.

At the beginning of the proof we have supposed F(V') c W *L If F(V1) is
contained in (W} *1)* we can prove in an analogous way that there exists a
translate of F(V') which intersects W' in two points.

Now we are ready to end the proof of Theorem 1.
In Claim 6 we have proved that F(V}) N W'>{x', 2"} with ' = a". By
Lemma 4 in [3] we have: W' N WYt = W7~ 2U (WZ2.)*. Besides

WIZP MWL = (F(VE D)) e N EVE D)) w2 F(VEDS).

Therefore F(VE~%), being irreducible, is contained either in W9~ 2 or in (W 32%.)*

Let’s suppose F(V§_ h) is contained in W9~ 2; then F(VL_%) = W92 becau-
se, by Claim 3, dim F( fr ,1) is g — 2.

Finally: W'=N{W%, " weW?’ 2} =N {FV} ")_,: ue F(VEZ3)} > F(V})
(the first equality is Lemma 3 in [3]). So F(V}) = W! (because, by Claim 3, they
have the same dimension).

If we consider the second possibility, that is F(VEZ%) c (WS35 )%, we can
prove, in a completely analogous way, that F(V?') is contained in a translate of
—W?' (and hence equal).

Now the proof of Theorem 1 is complete.

In [2] Debarre shows that, if C is a Riemann surface of genus g and W9 ¢
the image of the symmetric product C¥ %) by the Abel-Jacobi map in J(C), as
usual, one has that any effective algebraic cycle in J(C) with class w®/d! is a
translate of either W7~ ¢ or —W9~? (where w is the polarization on J(C), given
by the intersection of 1-cycles on C). So we can weaken the hypotheses of Theo-
rem 1, applying the theorem of Debarre to X. We obtain

Theorem 1'. Let F: J(X')—J(X) be a holomorphic map such that
F(0) = 0 and assume that F(VY 1) has class w. Suppose that, if F(V') ¢ W§ ™},
then F(VY) N W{ ™! is equal to g points counted with multiplicity and their
sum is b + const. Then there is a holomorphic surjective map f: X' — X indu-
cing either F or —F.

2 - A second answer to the problem

In order to enunciate the second theorem, which is the second answer to our
problem, it is useful to make some remarks.
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Remark 4. If F' is a holomorphic not constant map: J(X') — J(X) such
that F(0) = 0, the number deg (F|: V' — F(V')) is well defined and doesn’t
depend on the base point from which we consider Abel’s map v (because F' is an
homomorphism).

Remark 5. Let f be a holomorphic map from X' onto X and let
F. J(X')—-J(X) and P: Pic® (X)—> Pic®°(X') the maps induced by f. We
have:

1. degFlvl = degfq_e—fd

2. F.: Hy(J(X'), Z)— Hy(J(X), Z) is such that F,([V']) =d[W']
3. P*: H*(Pic®° (X'), Z)— H*(Pic° (X), Z) is such that P*(8') = do.

Remark 6. Let F: J(X') — J(X) be a holomorphic map such that #(0) =0
and P: Pic® (X) — Pic® (X') its dual. Then, for any n e N we have

F (V') =n[W'] < P*(0')=n6.

In fact for every Riemann surface C we have:
H,(J(C), Zy= AN*H,(J(C), Z) = A?H,(C, 2)
H?(Pic° (C), Z) = NPHY(Pic° (C), Z) = N*H,(C, Z)
and [u(C)] € H,(J(C), Z) corresponds to 8 € H2(Pic® (C), Z), because [1(C)] is
equal to >a; Ab; in the isomorphism H, (J(C), Z) = AN*H,(C, Z); then we
have
Hy(J(X'"), Z) = H*(Pic® (X"), Z)
7. P
H,(J(X), Z) = H?(Pic® (X), Z).

The maps F', and P* are the same map, if we read them in the isomorphism
H,(J(C), Z) = N*H,(C, Z) = H*(Pic® (C), Z).

Theorem 2. Let F be a holomorphic not constant map J(X')— J(X)
such that F(0)=0. Define d=degF|yn and be P the dual map of F.
Let also P*: H*(Pic°(X'), Z) — H?2(Pic° (X), Z) be such that P*60'=d0
(ie. Fo: Hy(J(X'), Z)— Hy(J(X), Z) is such that F.([V'])=d[W'].

Then there is a holomorphic surjective map f: X' — X inducing either F
or —F.

Proof. Define D = F(V'). D is an irreducible analytic subvariety of dimen-
sion 1. If [D] denotes the foundamental class of D, we have F',.((V']) = d[D]. On



48 E. RUBEI [8]

the other hand, by the hypothesis we have that F, ((V']) = d[W!]. Therefore
d[W'] =d[D] and then [W'] =[D].

Matsusaka’s theorem ([5], [4]) tells us that, if in an abelian variety A of di-
mension g with prineipal polarization 1 there is an irreducibile curve of minimal
class (that is, it corresponds to A9 "' /(g — 1)! by Poincaré duality), then A is its
Jacobian, the curve is canonically embedded in A and A is the canonical
polarization.

Take J(X) as A, w as 4, D as the curve of the minimal class. Then calling D
the Riemann surface associated to D, we have a biholomorphism B: J (D) = J(X)
such that:

B*w = canonical polarization of J(D)

B(image of Abel's map of D in J(D)=D.

Then, by Martens’ proof of Torelli’s theorem ([3]) (that is by Theorem 1 of this
paper in the case ¢ = ¢'), we have that D = F(V') is equal either to a translate
of W' or to a translate of —W?. This concludes the proof of Theorem 2 (by Re-
mark 2 in the Introduction).

Remark 7. Both F and —F are induced by maps from X' onto X if and
only if X is hyperelliptic.
In fact for every Riemann surface C of genus g = 2 we have that u(C) is
equal to a translate of —u(C) if and only if C is hyperelliptic.

Remark 8 The hypotheses of Theorem 2 can be easily and almost comple-
tely translated in polynomial equations in the entries of the matrix representing
F and of the period matrices of X' and X.

Proof. As in the previous part of the paper, let X' and X be two Riemann
surfaces and g’ and g their respective genuses; let ¢’ = ¢ > 2. We will denote

F={F:J(X')— J(X) such that F(0) = 0, is holomorphic, F .[V']=deg F|y:[W'1}

and @ = {P: P dual of Fe J}.

If F e 5and P is its dual, let’s consider the maps lifting F and P to the uni-
versal coverings; we call ¥ and P the (unique) matrices expressing these maps
in the bases on R{ay, by, ...} and {a,’, b, ...}; P is the transpose of F. We can
regard the P’s as points of M(2g' X 2g, R) = RY'",

The P’s are clearly matrices with entries in Z, so they belong to the lattice
ZY9'9 in RY'9.
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Being the P’s and the F’s holomorphie, the lifting maps of the P’s and of the
F’s are C-linear. So the P’s with P e & belong to the 2¢’ g-subspace of the C-li-
near maps; precisely:

we call 4 the matrix giving the change of bases from the basis of the lattice
of J(X") {ay, by, ...} to the basis {e;, ie;, ...} where {e,, ..., ¢, } is a complex
basis of the universal covering of J(X'); we call B the analogous for J(X); with
this notation, the C-linearity of the lifting map of F is equivalent to:

(BPPA™ V) 1ok 1=BP'A )y 0 (BPTA Yy oy = —(BP'A ™Y 9k 1

for i=1,..,9gand k=1, ..,9".

Clearly the condition P* 6’ = m8 is the same as ﬁtHggf? = mHy,, where we
denote with H,, the matrix 2s X 2s, whose entries are

1 ifi=4+1 and j odd
(Hys)y=—1 ifi=j—1 and j even
0 otherwise .

This concludes the proof of Remark 8.

Thus perhaps the characterization of the maps between Jacobians indu-
ced by maps between Riemann surfaces of Theorem 2 may be useful to give an
upper bound on the number of the holomorphic surjective maps between two fi-
xed Riemann surfaces.

Let us ecall

Hol(X', X) = {f: X' — X holomorphic surjective}.

Since a map F: J(X') — J(X) may be induced at most by one map from X' onto
X, in order to estimate the cardinality of Hol(X', X), it is sufficient to estimate
#{F: J(X')— J(X) induced by holomorphic maps from X’ onto X}, which is
equal to # Fif X is hyperelliptic, to § # Fif X is not hyperelliptic. As usually the
symbol # denotes cardinality.

Indeed in finding this estimate we use only Remark 5 and not Theorem 2.
But the fact that the hypotheses of Theorem 2 are sufficient (apart from a sign)
for a morphism between Jacobians to be induced by a morphism between Rie-
mann surfaces, tells us that if we succeed in using completely these conditions,
we have a good estimate.

Perhaps, analogously, fixed X' of genus ¢’ and fixed g with ¢’ = ¢ = 2, one
may find an estimate of the cardinality of

Hol(X',g9)={f: X' — X: f holomorphic surjective, X Riemann surface of genus g}.
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Besides, Theorem 2 (together with equations resolving Schottky problem)
may be useful to see

Hol(g', g)={(4, f, B): Ae i, , BeM,, f: A— B holomorphic surjective map}
as an open of some components of the set of zeroes of some equations in

(96, X R*'9 X 9(,)/ ~, where 3¢, and 9, are the Siegel upper half-spaces and
~ is the equivalence relation given by the action of the modular groups.
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Sommario

Siano X' e X due superfici di Riemann (compatte e connesse) di genere g' e g rispet-
tivamente, con g’ = g = 1. Se f+ X' — X é una mappa olomorfa surgettiva, ovviamente f
mduce una mappa fra le corrispondenti Jacobiane. Ci si pud chiedere quali siano condi-
zioni necessarie e sufficienti affinché un’applicazione F: J(X')— J(X) sia indotta da
un’applicazione olomorfa da X' su X. In questo lavoro si danno due risposte a questa
questione.



