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1 - Introduction

Let R be the set of real numbers, Z denotes the set of integers and
N=1{0,1,2,...}. As usual, for any function %:N - R we define the forward dif-
ference operators as follows

Au(n) =u(n + 1) — u(n) AFu(n) = A(A* ™ Tu(n)) k=1
A u(n) =un).
For all ke N we use the usual factorial notation
()P =g(s—1)...-(s—k+1) with (s)P=1.

In this paper we are concerned with the oscillatory behavior of solutions of
the nonlinear difference equation

E(5) A™u(n) + 6 a(n) flul(rn))) =0 m=z2, neN

where 6 = 1, a:N [0, ») (a(n)#0 eventually), r:N - Z, 711% r(n) = o,
rn)<sn for n z2ngeN, fR—-R, uf(u) >0 for u =0.

By a solution of E(J) we mean a real sequence % which is defined for
n = rln>1101 r(2) and satisfies E(J) for n sufficiently large. We consider only such so-
lutions which are nontrivial for large n. A nontrivial solution % of E(J) is said to be
oscillatory if for every n, € V there exists an n = n; such that u(n)u(n + 1) < 0.
Otherwise it is called nonoscillatory.

Recently some results concerning the oscillatory behavior of solutions of difference
equations of higher order have been established in papers [1]-[3], [5], [7], [9], [10]. For
the general theory of difference equations one can refer to e.g. [4], [6].
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Our aim in this paper is to obtain sufficient conditions for the oseillation of all
bounded solutions of E'(—1) when m is even as well as for E(1) when m is odd.
These results extend some criteria that have been obtained for E(J) in case
m =2 [8].

2 - Main results

The following theorem characterizes the oscillatory behavior of bounded so-
lutions of E(d) (ef. [9], Theorem 1 and Theorem 2).

Theorem 1. If the following conditions hold:

L |[ftw)| is bounded away from zevo if |u| is bounded away from
zero

IL > n” lan) = »
0

then for m even (vesp. odd) all bounded solutions of E(1) (resp. E(—1)) are
oscillatory while for m odd (resp. even) all bounded solutions of E(1) (resp.
E(-1)) are either oscillatory or tending monotonically to zero as n— .

In view of Theorem 1, the problem of establishing conditions under which
the bounded and nonoscillatory solutions vanish, makes sense only for difference
equation E(—1) when m is even, as well as for E(1) when m is odd. These equa-
tions ecan be unified in the following form

E A™u(n) + (=)™ a(n) flulrn) =0 mz2,nelN.

To obtain sufficient conditions under which all bounded solutions of E are
oscillatory we need the following

Lemma. Let v:N— (0, ©) be a bounded sequence and for some m = 2
(=D™A™v(n) = 0 for every n e N and 4™ v(n) is not identically zero for large n.
Then for every neN and i=1,...,m — 1
) (=1)id'v(n) >0
and for all n,qe N with n = q
(n—gq+m—1)0m"D

o A" Ly(n).

@ (@)= (-1)" !

Proof. By the assumptions, we see that A%v (i=1,...,m — 1) is of con-
stant sign for all large # and (—1)™ 4™ 'v is a nondecreasing sequence.
We show that (—1)™"1A™ 19(n) >0 for neN. In fact, if there exists
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ny € N such that (—=1)" 14" ly(n;) =c¢ <0, then (—=1)" 14"~ 1y(n) < ¢ for
n = ny, which leads to the contradictory conclusion that hm v(n) = x o,
Also, if for some n;eN A™ 'v(n;) =0, then there is 7’L2 > 7, such that
(=1 tA™ ly(ng) <0 or 4™ y(n) =0 for all » = n, which is impossible.

Further, it is easy to see that if for some 7,0 < i <m — 1,4 v(n) 4 1u(n) > 0
for all large n, then nlig& v(n) = = o, which contradicts our assumption. This
proves (1).

Next, by using the formula (ef. [4], p.41 or [2])

m -2 (7)
v(g) = E (—1) uﬂ*div(n +1)
St }713 (k= q+m+2)™ D A" y(k)
m—2) =, 1

for every n,ge N with n = g, and (1), we get

(_1)7n—1Am-1v(n) n
Lk — -9 (m —2)
m —2)! 2, (mgrm=2)

v(g) =
from which we obtain (2).

Theorem 2. Assume that

111. f 18 a nondecreasing function

f

a>0

f( 5 <
V. %[n —~rn) + 11" taln) = «.

Then all bounded solutions of E are oscillatory.

Proof. Assume, for the sake of contradiction, that E has a bounded non-
oscillatory solution % and without loss of generality, we may suppose that u is
eventually positive. Then there is n; € NV such that u(#(n)) > 0 for every n = n,.
Thus from E it follows that (~1)"4™wu(n) = 0 for n = n,. Then, by Lemma, for
every % = m; we have

(3) (—1)idtun) >0 i=1,...,m—1.

In addition, since condition V implies II and also I is satisfied so, by Theorem 1,
we must have ”li_r}L u(n) =
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Next, from the equality (comp. [4], p.41)

] m ~1 o (p.._n_*_i_k)(i”k) )
k — 1Nk i
A*un) = E‘k( 1) G Alu(p + 1)
4
_1ym~k I i\m k-1 gm .
+(-1) (m_ 1.]2)1(3 n+m-—k-1) A™u(j)

where p=Zn=n,, 0<k<m, for k=1 with regard to E we obtain

i-1
Auln) = ZE‘, (~1) G-

Atu(p +1)
5)

s §<J—%+m 2)" 2 a () fulr(H .

Choose 1, > m; such that r(n) = n, for all n = n, and let & > n, be fixed. So, by
(3), from (5) we have

L S (j—n+m=2)""2 a(HFur()

(6) —Au(n) = (')7’1,—2)— i

where n; <n <k.
Dividing (6) by flu(n)) and summing from %, to k, we get

ko —Au(n)
n=m  flu(n))
1 S 1 — (m ~2)
@ > (m — 2)! nznl flu(n)) ]En(] n+m—2) a( 5 flulr(H)
1 S - FUE)
= T 1N - 2
> 1 12 0D, 5;} (f=mtm =22 ==

By the assumptions we see that

—A’U/(%) wln) d_’LL
flu(n)) \Wn flu)

Thus noting that f(u(r()) = flu(n)) for r(j) <n <j, ny <j <k, we conclu-
de from (7) that

’n?'nl.

» w(ng)
S Gor)tm-Dm Ve m-1) J S
j=mng 0 f( )

which contradicts V. This completes the proof.

Theorem 3. If condition 1 holds and



[5] BOUNDED OSCILLATIONS OF DIFFERENCE EQUATIONS 37

VI. r is ¢ nondecreasing sequence
VIL lim sup p Z (k= r(m) +m—1)""Yalk) > (m - 1L,
n—s o 7'(11)

where Ly=lim sup ——

u—>0 f( )

then all bounded solutions of E are oscillatory.

Proof. Let % be a bounded nonoscillatory solution of E which can be sup-
posed eventually positive. We note that condition VII implies II.

In fact, if > »™ ! a(n) < o, then
0

O0<Ilmsap 2 (k—7r®n)+m—1)""Yqk)

n— o k=rn)

Slimsup > (k+m— 1)V qak)

n—w  k=rHn)

< 2™~ 1lim sup 2 E™=1a(k) =

N> f=r(n)

which is a contradiction. Thus, by Theorem 1, we must have nl:l})l%c u(n) = 0. Also,
we see as previously that (8) holds. Further, by (4), one can write

m -1 (1)
wg) = 3 (- 1y P2 i1
._(——l $ (m—l) m
+ DN . 2 k—q+m-1) A™u(k)

for n =2 g = n,, with regard to E and (1), we get

1 < . _ (m—1)
u(q) = e ’Eq (k-qg+m—1) alk) flu(r(k)).

Now we choose n, = n; such that r(n) = n, for every n = n,. Therefore

u(r(n) = (—1—5,— ) 2( (o= 7(n) + m — D™D g (k) fu(r()), n=n,.

Since u is a decreasing sequence for n = n, we get

u(r(n) o furk) &

— — 1Ym~1)
WD G D B Tt 4 BT DR 0B
that is
(m-1lz inf M i (k—rm) +m—1)""Yqk)

u<su@®)) U pim
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and so
n
> (k—rmn)+m—1)""Dak)< (m—1)! su S
D
k= (n) 0 << ulrir(n)) f(’LL)

But since u(n)—0, as n— « the last inequality contradicts condition VII.
Thus the proof is complete.

Corollary 1. Consider the linear difference equation of the form
E, A"u) + (=D L am)u(r(n) =0 m=z2,nelN

where a and r are defined as before with r satisfying VI. If we have

limsup > (k—7r®n)+m—1)""Yalk)>(m-—1)!

n-— o f=rn)

then every bounded solution of E, is oscillatory.
Theorem 4. Suppose that conditions I and VI are satisfied and

VIIIL. lim sup Z (r(n) = (k) + m — D)™V a(k) > (m — 1) Ly
n— 0w f=rn)
where Ly is defined in VII.
Then all bounded solutions of E are oscillatory.

Proof. Suppose that E has a bounded nonoscillatory solution » and let
u(n) > 0 eventually. Moreover, since for all large » and every k with r(n) < k < n,
(k) = m — 1 we have

0srn)—rk)+m-—-1<k.
Then from VIII we derive limsup > k™ 'a(k) >0, which, in view of

n—> 0 k=rn)

lim 7(n) = o, implies II. Thus, by Theorem 1, we must have nli_r)nw u{n) =0.In

addition, as in the proof of Theorem 2 we see, by the Lemma, that there exists
n, € N such that (8) holds and

(n—gq+m-—1)m"V
(m - 1)!

® ul@=(-n"! A™u(n) forn=q=mn, .

Thus for every k,n with r(n)<k<n and m=mn,=n, we have
r(n) = r(k) = n;, and therefore, by (8), we have

(r(n) — rk) + m — 1)m=-b

D! A" Y u(r(n)).

&) u(r(e) = (=" 1
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Next, from E we get

n

(=D)"A™ run + 1) =A™ rutrm)l = 2 ) a (k) flu(r(k))

kE=rn
for every n = mn, and so, by (3) and (9), we have

flu(rk))) En: a(k)u(r(k))

n —_——
ezrvm)  wu(r(k)) k2rm

. Slu) 1 oame
g (mil)' 0<u<1£cl(f;-(r(n)» U (=pm=iam=tutrn)

( _ l)m - IA m—1 ?,l,(’l‘(’)?/)) >

S ) = (k) + m — 1) g k)

k= r(n)

and consequently
n

( )(r(n) — (k) +m— 1" Vg (k)< (m - 1)

P — N =N .
k= r(n 0 < u<u(r@rn)) f(’M,) ’

But, since nlgnw u(n) =0 and nli_r}nm r(n) = o« this inequality contradics VIII.
Thus the proof is complete.

Corollary 2. Every bounded solution of E, is oscillatory if

lim sup . _i( )(r(n) — (k) +m— D"V k) > (m - 1)

n— %

and VI holds.
From Theorems 3 and 4 we obtain the following

Corollary 3. Consider the difference equation of the form
E, A" un) = (=1)" a(n) flu(n)) m=z2,nelN

where a and f are defined as before.
If condition 1 kolds and lim sup a(n) > Ly, where Ly is defined in VIL then

N —> O

every bounded solution of E, is oscillatory. In particular, every bounded so-
lution of the equation

A" y(n) = (1) a(n)u(n) m=22,nelN,

18 oscillatory if lim sup a{n) > 1.

N —> &
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Sommario

Il lavoro contiene alcune condizioni sufficienti perché tutte le soluzioni limitate di
certe equazioni alle differenze risultino oscillatorie.



