BŁAŻEJ SZMANDA (*)

Bounded oscillations of difference equations (**)

1 - Introduction

Let R be the set of real numbers, Z denotes the set of integers and $N = \{0, 1, 2, ...\}$. As usual, for any function $u: N \to R$ we define the forward difference operators as follows

$$\Delta u(n) = u(n+1) - u(n) \qquad \Delta^k u(n) = \Delta(\Delta^{k-1} u(n)) \qquad k \ge 1$$

$$\Delta^0 u(n) = u(n).$$

For all $k \in \mathbb{N}$ we use the usual factorial notation

$$(s)^{(k)} = s(s-1) \cdot \dots \cdot (s-k+1)$$
 with $(s)^{(0)} = 1$.

In this paper we are concerned with the oscillatory behavior of solutions of the nonlinear difference equation

$$\mathbf{E}(\delta) \qquad \qquad \Delta^m u(n) + \delta \ a(n) \ f(u(r(n))) = 0 \qquad \qquad m \ge 2, \ n \in \mathbb{N}$$

where $\delta = \pm 1$, $a: N \to [0, \infty)$ $(a(n) \not\equiv 0 \text{ eventually})$, $r: N \to \mathbb{Z}$, $\lim_{n \to \infty} r(n) = \infty$, $r(n) \leq n$ for $n \geq n_0 \in \mathbb{N}$, $f: \mathbb{R} \to \mathbb{R}$, uf(u) > 0 for $u \neq 0$.

By a solution of $E(\delta)$ we mean a real sequence u which is defined for $n \ge \min_{i \ge 0} r(i)$ and satisfies $E(\delta)$ for n sufficiently large. We consider only such solutions which are nontrivial for large n. A nontrivial solution u of $E(\delta)$ is said to be oscillatory if for every $n_0 \in N$ there exists an $n \ge n_0$ such that $u(n)u(n+1) \le 0$. Otherwise it is called nonoscillatory.

Recently some results concerning the oscillatory behavior of solutions of difference equations of higher order have been established in papers [1]-[3], [5], [7], [9], [10]. For the general theory of difference equations one can refer to e.g. [4], [6].

^(*) Inst. of Math., Poznán Univ. of Technology, 60965 Poznán, Poland.

^(**) Received March 11, 1996. AMS classification 39 A 10.

Our aim in this paper is to obtain sufficient conditions for the oscillation of all bounded solutions of E(-1) when m is even as well as for E(1) when m is odd. These results extend some criteria that have been obtained for $E(\delta)$ in case m=2 [8].

2 - Main results

The following theorem characterizes the oscillatory behavior of bounded solutions of $E(\delta)$ (cf. [9], Theorem 1 and Theorem 2).

Theorem 1. If the following conditions hold:

I. |f(u)| is bounded away from zero if |u| is bounded away from zero

II.
$$\sum_{0}^{\infty} n^{m-1} a(n) = \infty$$

then for m even (resp. odd) all bounded solutions of E(1) (resp. E(-1)) are oscillatory while for m odd (resp. even) all bounded solutions of E(1) (resp. E(-1)) are either oscillatory or tending monotonically to zero as $n \to \infty$.

In view of Theorem 1, the problem of establishing conditions under which the bounded and nonoscillatory solutions vanish, makes sense only for difference equation E(-1) when m is even, as well as for E(1) when m is odd. These equations can be unified in the following form

$$E$$
 $\Delta^m u(n) + (-1)^{m+1} a(n) f(u(r(n))) = 0$ $m \ge 2, n \in \mathbb{N}$.

To obtain sufficient conditions under which all bounded solutions of E are oscillatory we need the following

Lemma. Let $v:N \to (0, \infty)$ be a bounded sequence and for some $m \ge 2$ $(-1)^m \triangle^m v(n) \ge 0$ for every $n \in N$ and $\triangle^m v(n)$ is not identically zero for large n. Then for every $n \in N$ and i = 1, ..., m - 1

$$(1) \qquad (-1)^i \Delta^i v(n) > 0$$

and for all $n, q \in \mathbb{N}$ with $n \ge q$

(2)
$$v(q) \ge (-1)^{m-1} \frac{(n-q+m-1)^{(m-1)}}{(m-1)!} \Delta^{m-1} v(n).$$

Proof. By the assumptions, we see that $\Delta^i v$ $(i=1,\ldots,m-1)$ is of constant sign for all large n and $(-1)^m \Delta^{m-1} v$ is a nondecreasing sequence.

We show that $(-1)^{m-1} \Delta^{m-1} v(n) > 0$ for $n \in \mathbb{N}$. In fact, if there exists

 $n_1 \in \mathbb{N}$ such that $(-1)^{m-1} \Delta^{m-1} v(n_1) = c < 0$, then $(-1)^{m-1} \Delta^{m-1} v(n) \le c$ for $n \ge n_1$, which leads to the contradictory conclusion that $\lim_{n \to \infty} v(n) = \pm \infty$. Also, if for some $n_1 \in \mathbb{N}$ $\Delta^{m-1} v(n_1) = 0$, then there is $n_2 \ge n_1$ such that $(-1)^{m-1} \Delta^{m-1} v(n_2) < 0$ or $\Delta^{m-1} v(n) = 0$ for all $n \ge n_1$ which is impossible.

Further, it is easy to see that if for some $i, 0 < i < m-1, \Delta^i v(n) \Delta^{i+1} v(n) > 0$ for all large n, then $\lim_{n \to \infty} v(n) = \pm \infty$, which contradicts our assumption. This proves (1).

Next, by using the formula (cf. [4], p. 41 or [2])

$$v(q) = \sum_{i=0}^{m-2} (-1)^i \frac{(n-q+i)^{(i)}}{i!} \Delta^i v(n+1) + \frac{(-1)^{m-1}}{(m-2)!} \sum_{k=q}^n (k-q+m+2)^{(m-2)} \Delta^{m-1} v(k)$$

for every $n, q \in N$ with $n \ge q$, and (1), we get

$$v(q) \ge \frac{(-1)^{m-1} \Delta^{m-1} v(n)}{(m-2)!} \sum_{k=q}^{n} (k-q+m-2)^{(m-2)}$$

from which we obtain (2).

Theorem 2. Assume that

III. f is a nondecreasing function

VI.
$$\int_{0}^{\pi a} \frac{\mathrm{d}u}{f(u)} < \infty, \quad \alpha > 0$$
V.
$$\sum_{0}^{\infty} [n - r(n) + 1]^{m-1} a(n) = \infty.$$

Then all bounded solutions of E are oscillatory.

Proof. Assume, for the sake of contradiction, that E has a bounded non-oscillatory solution u and without loss of generality, we may suppose that u is eventually positive. Then there is $n_1 \in N$ such that u(r(n)) > 0 for every $n \ge n_1$. Thus from E it follows that $(-1)^m \Delta^m u(n) \ge 0$ for $n \ge n_1$. Then, by Lemma, for every $n \ge n_1$ we have

(3)
$$(-1)^{i} \Delta^{i} u(n) > 0 \qquad i = 1, ..., m-1.$$

In addition, since condition V implies II and also I is satisfied so, by Theorem 1, we must have $\lim_{n\to\infty} u(n) = 0$.

Next, from the equality (comp. [4], p. 41)

$$\Delta^{k} u(n) = \sum_{i=k}^{m-1} (-1)^{i-k} \frac{(p-n+i-k)^{(i-k)}}{(i-k)!} \Delta^{i} u(p+1)$$

$$+ (-1)^{m-k} \frac{1}{(m-k-1)!} \sum_{j=n}^{p} (j-n+m-k-1)^{(m-k-1)} \Delta^{m} u(j)$$

where $p \ge n \ge n_1$, $0 \le k < m$, for k = 1 with regard to E we obtain

(5)
$$\Delta u(n) = \sum_{i=1}^{m-1} (-1)^{i-1} \frac{(p-n+i-1)^{(i-1)}}{(i-1)!} \Delta^i u(p+1)$$

$$-\frac{1}{(m-2)!} \sum_{j=n}^p (j-n+m-2)^{(m-2)} \alpha(j) f(u(r(j))) .$$

Choose $n_2 > n_1$ such that $r(n) \ge n_1$ for all $n \ge n_2$ and let $k > n_2$ be fixed. So, by (3), from (5) we have

(6)
$$-\Delta u(n) \ge \frac{1}{(m-2)!} \sum_{j=n}^{k} (j-n+m-2)^{(m-2)} a(j) f(u(r(j)))$$

where $n_1 \le n \le k$.

Dividing (6) by f(u(n)) and summing from n_1 to k, we get

$$\sum_{n=n_1}^k \frac{-\Delta u(n)}{f(u(n))}$$

$$(7) \geq \frac{1}{(m-2)!} \sum_{n=n_1}^{k} \frac{1}{f(u(n))} \sum_{j=n}^{k} (j-n+m-2)^{(m-2)} a(j) f(u(r(j)))$$

$$\geq \frac{1}{(m-1)!} \sum_{n=n_2}^{k} a(j) \sum_{n=r(j)}^{j} (j-n+m-2)^{(m-2)} \frac{f(u(r(j)))}{f(u(n))}.$$

By the assumptions we see that

$$\frac{-\Delta u(n)}{f(u(n))} \le \int_{u(n+1)}^{u(n)} \frac{\mathrm{d}u}{f(u)} \qquad n \ge n_1.$$

Thus noting that $f(u(r(j))) \ge f(u(n))$ for $r(j) \le n \le j$, $n_2 \le j \le k$, we conclude from (7) that

$$\sum_{j=n_2}^{\infty} (j-r(j)+m-1)^{(m-1)} a(j) \leq (m-1)! \int_{0}^{u(n_1)} \frac{\mathrm{d}u}{f(u)} < \infty$$

which contradicts V. This completes the proof.

Theorem 3. If condition I holds and

VI. r is a nondecreasing sequence

VII.
$$\limsup_{n \to \infty} \sum_{k=r(n)}^{n} (k-r(n)+m-1)^{(m-1)} a(k) > (m-1)! L_f$$

where $L_f = \limsup_{u \to 0} \frac{u}{f(u)} < \infty$

then all bounded solutions of E are oscillatory.

Proof. Let u be a bounded nonoscillatory solution of E which can be supposed eventually positive. We note that condition VII implies II.

In fact, if
$$\sum_{0}^{\infty} n^{m-1} a(n) < \infty$$
, then
$$0 < \limsup_{n \to \infty} \sum_{k=r(n)}^{n} (k - r(n) + m - 1)^{(m-1)} a(k)$$

$$\leq \limsup_{n \to \infty} \sum_{k=r(n)}^{n} (k + m - 1)^{(m-1)} a(k)$$

$$\leq 2^{m-1} \limsup_{n \to \infty} \sum_{k=r(n)}^{\infty} k^{m-1} a(k) = 0$$

which is a contradiction. Thus, by Theorem 1, we must have $\lim_{n\to\infty} u(n) = 0$. Also, we see as previously that (3) holds. Further, by (4), one can write

$$u(q) = \sum_{i=0}^{m-1} (-1)^i \frac{(n-q+i)^{(i)}}{i!} \Delta^i u(n+1) + \frac{(-1)^m}{(m-1)!} \sum_{k=q}^n (k-q+m-1)^{(m-1)} \Delta^m u(k)$$

for $n \ge q \ge n_1$, with regard to E and (1), we get

$$u(q) \ge \frac{1}{(m-1)!} \sum_{k=q}^{n} (k-q+m-1)^{(m-1)} a(k) f(u(r(k))).$$

Now we choose $n_2 \ge n_1$ such that $r(n) \ge n_1$ for every $n \ge n_2$. Therefore

$$u(r(n)) \ge \frac{1}{(m-1)!} \sum_{k=r(n)}^{n} (k-r(n)+m-1)^{(m-1)} a(k) f(u(r(k))), \quad n \ge n_2.$$

Since u is a decreasing sequence for $n \ge n_1$ we get

$$u(r(n)) \ge \frac{u(r(n))}{(m-1)!} \inf_{k \ge r(n)} \frac{f(u(r(k)))}{u(r(k))} \sum_{k=r(n)}^{n} (k-r(n)+m-1)^{(m-1)} a(k)$$

that is

$$(m-1)! \ge \inf_{u \le u(r(r(n)))} \frac{f(u)}{u} \sum_{k=r(n)}^{n} (k-r(n)+m-1)^{(m-1)} a(k)$$

and so

$$\sum_{k=r(n)}^{n} (k-r(n)+m-1)^{(m-1)} a(k) \leq (m-1)! \sup_{0 < u \leq u(r(r(n)))} \frac{u}{f(u)}.$$

But since $u(n) \to 0$, as $n \to \infty$ the last inequality contradicts condition VII. Thus the proof is complete.

Corollary 1. Consider the linear difference equation of the form

where a and r are defined as before with r satisfying VI. If we have

$$\lim_{n \to \infty} \sup_{k = r(n)} \sum_{k = r(n)}^{n} (k - r(n) + m - 1)^{(m-1)} a(k) > (m-1)!$$

then every bounded solution of E_1 is oscillatory.

Theorem 4. Suppose that conditions I and VI are satisfied and

VIII.
$$\limsup_{n \to \infty} \sum_{k=r(n)}^{n} (r(n) - r(k) + m - 1)^{(m-1)} a(k) > (m-1)! L_f$$

where L_f is defined in VII.

Then all bounded solutions of E are oscillatory.

Proof. Suppose that E has a bounded nonoscillatory solution u and let u(n) > 0 eventually. Moreover, since for all large n and every k with $r(n) \le k \le n$, $r(k) \ge m-1$ we have

$$0 \le r(n) - r(k) + m - 1 \le k.$$

Then from **VIII** we derive $\limsup_{n\to\infty}\sum_{k=r(n)}^n k^{m-1} a(k) > 0$, which, in view of $\lim_{n\to\infty} r(n) = \infty$, implies **II**. Thus, by Theorem 1, we must have $\lim_{n\to\infty} u(n) = 0$. In addition, as in the proof of Theorem 2 we see, by the Lemma, that there exists $n_1 \in N$ such that (3) holds and

(8)
$$u(q) \ge (-1)^{m-1} \frac{(n-q+m-1)^{(m-1)}}{(m-1)!} \Delta^m u(n)$$
 for $n \ge q \ge n_1$.

Thus for every k, n with $r(n) \le k \le n$ and $n \ge n_2 \ge n_1$ we have $r(n) \ge r(k) \ge n_1$, and therefore, by (8), we have

(9)
$$u(r(k)) \ge (-1)^{m-1} \frac{(r(n) - r(k) + m - 1)^{(m-1)}}{(m-1)!} \Delta^{m-1} u(r(n)).$$

Next, from E we get

$$(-1)^m [\Delta^{m-1} u(n+1) - \Delta^{m-1} u(r(n))] = \sum_{k=r(n)}^n \alpha(k) f(u(r(k)))$$

for every $n \ge n_2$ and so, by (3) and (9), we have

$$(-1)^{m-1} \Delta^{m-1} u(r(n)) \ge \inf_{k \ge r(n)} \frac{f(u(r(k)))}{u(r(k))} \sum_{k = r(n)}^{n} a(k) u(r(k))$$

$$\ge \frac{1}{(m-1)!} \inf_{0 < u \le u(r(r(n)))} \frac{f(u)}{u} (-1)^{m-1} \Delta^{m-1} u(r(n))$$

$$\cdot \sum_{k = r(n)}^{n} (r(n) - r(k) + m - 1)^{(m-1)} a(k)$$

and consequently

$$\sum_{k=r(n)}^{n} (r(n) - r(k) + m - 1)^{(m-1)} a(k) \leq (m-1)! \sup_{0 < u \leq u(r(r(n)))} \frac{u}{f(u)}, n \geq n_2.$$

But, since $\lim_{n\to\infty} u(n) = 0$ and $\lim_{n\to\infty} r(n) = \infty$ this inequality contradics VIII. Thus the proof is complete.

Corollary 2. Every bounded solution of E_1 is oscillatory if

$$\lim_{n \to \infty} \sup_{k = r(n)} \sum_{k=r(n)}^{n} (r(n) - r(k) + m - 1)^{(m-1)} a(k) > (m-1)!$$

and VI holds.

From Theorems 3 and 4 we obtain the following

Corollary 3. Consider the difference equation of the form

$$E_2 \Delta^m u(n) = (-1)^m \alpha(n) f(u(n)) m \ge 2, n \in \mathbb{N}$$

where a and f are defined as before.

If condition I holds and $\limsup_{n\to\infty} a(n) > L_f$, where L_f is defined in VII, then every bounded solution of E_2 is oscillatory. In particular, every bounded solution of the equation

$$\Delta^m u(n) = (-1)^m a(n) u(n) \qquad m \ge 2, n \in \mathbb{N},$$

is oscillatory if $\limsup_{n\to\infty} a(n) > 1$.

References

- [1] R. P. AGARWAL, Properties of solutions of higher order nonlinear difference equations II, An. Sti. Univ. "Al. I. Cuza" Iasi 29 (1983), 85-96.
- [2] R. P. AGARWAL, Difference calculus with applications to difference equations, General Inequalities 4, Oberwolfach 1983, Internat. Schriftreihe Numer. Math. 71, Birkhauser, Basel 1984.
- [3] R. P. AGARWAL, Properties of solutions of higher order nonlinear difference equations, An. Sti. Univ. "Al. I. Cuza" Iasi 31 (1985), 165-172.
- [4] R. P. AGARWAL, Difference equations and inequalities, Dekker, New York 1992.
- [5] G. LADAS and C. QIAN, Comparison results and linearized oscillations for higher-order difference equations, Internat. J. Math. Math. Sci. 15 (1992), 129-142.
- [6] V. Lakshmikantham and D. Trigiante, *Theory of difference equations*, Acad. Press, Boston 1988.
- [7] Z. H. Li, A note on the oscillatory property for nonlinear difference equations and differential equations, J. Math. Anal. Appl. 103 (1984), 344-352.
- [8] B. Szmanda, Oscillatory behaviour of certain difference equations, Fasc. Math. 21 (1990), 65-78.
- [9] B. SZMANDA, Note on the oscillation of certain difference equations, Glas. Mat. 31, (1996), 115-121.
- [10] E. Thandapani, Oscillation theorems for higher order nonlinear difference equations, Indian J. Pure Appl. Math. 25 (1994), 519-524.

Sommario

Il lavoro contiene alcune condizioni sufficienti perchè tutte le soluzioni limitate di certe equazioni alle differenze risultino oscillatorie.

* * *