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ALDO G. S. VENTRE (%)

Decomposable expected utility (**)

1 - Introduction

A diffused conviction (see, for instance, M. J. Machina [15], M. Weber and C.
Camerer [24]) is that the Expected Utility theory forms a robust system within
the range of individual decision making under uncertainty, in spite of the deve-
lopment of alternative models of individual choice under uncertainty in light of a
growing body of evidence that individuals do not maximize expected wtility (M.
J. Machina [15]). The descriptive realism, the formal elegance based on the cor-
pus of probability theory and the high normative appeal arouse the attention of
the decision maker towards the methods of EU theory. Furthermore, among the
conceptual motivations that have made EU theory one of the most settled areas
in economics, it is worth mentioning the strong connection between EU and the
subjectivistic approach in probability: indeed, it is known that utility can be in-
terpreted as a probability (e.g. J. L. Fine [4]; D. V. Lindley [11]).

The independence axiom is simultaneously at the origin of both the rigorous
formal setting and the contradictions that sometimes arise between the pre-
seription imposed on the basis of EU and the actual behaviour of the decision
maker (although he had all the information about the prescription). The cause of
discrepancy is that the preference function is a linear functional on the set of
distribution functions. The paradoxes, as the Allais paradox (M. Allais [1]), the
common ratio effect (D. Kahneman and A. Tversky [7]) and others (see also the
survey paper by M. Weber and C. Camerer [24]), that express empirical failures
of the EU theory, synthesize these contradictions and induce some reflections
about the weight that the attitude towards the risk has in decision ma-
king.

(*) Dip. di Cultura del Progetto, Fac. Architettura, Seconda Univ. Napoli, Abazia San
Lorenzo ad Septimum, 81031 Aversa, Italia.
(**) Received September 22, 1995. AMS classification 90 A 10.
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Several generalizations and modifications (e.g. D. Kahneman and A. Tversky
[7], M. J. Machina [13], J. Quiggin [18], Schmeidler [19], [20], I. Gilboa [6], M.
Yaari [26]; see also Fishburn’s book [5] and the paper by E. Karni and D.
Schmeidler [8]) of EU theory have been introduced in order to define a formal
context to interpret decision making motivations, that can be performed on a
wider background, including non-expected behaviour and, for instance, psycho-
logical inputs. These non-EU models capture the non-uniform attitude of the
single decision maker toward the risk. A right environment, in which to study
individual decisions under uncertainty, seems to be a system completing the EU
paradigm with the possibility of taking into consideration other components of a
single person’s behaviour, such as, for instance, unconscious processes.

It is worth recalling the graphical illustration of the property of linearity in
probabilities by representing, for all lotteries (x, p1; @2, P2; @3, P3), X1 < 5 < X3,
by the points of a triangular diagram, the half unit square having axes p,
and p;. In EU scheme the indifference curves are parallel lines. The more risk
averse a person is, the steeper is the slope of the indifference curves. As the de-
gree of risk aversion is defined in terms of utility function independent of the
probabilities and as the utilities are the same in the whole diagram, then the de-
gree of risk aversion is constant, i.e. independent of the locations of the lotteries
(M. J. Machina [14]). The paradoxes mentioned above can be clarified in the tri-
angle diagram by fanning out indifference curves: the lines near the corner
(p1, p3) = (1, 0) are flatter, while the lines near (p;, p3) = (0, 1) are steeper.
Several generalized EU models contemplate such a behaviour of the indiffe-
rence curves in the triangle diagram (for instance D. Kahneman and A. Tversky
[7], M. J. Machina [14]).

Our present aim is to define a sufficiently general framework, where the con-
tributions of risk aversion are also taken into account. Such an evaluation is per-
formed in terms of set functions that are decomposable with respect to suitable
archimedean operations (decomposable measures), that generalize additive mea-
sures; so the context actually includes the probability. Furthermore this ap-
proach successfully combines a wide generality with the concrete possibility to
perform calculations, as required in the applications.

2 - Aims and background

We have mentioned in Sec. 1 that several different modifications and gene-
ralizations of EU theory have been proposed. D. Schmeidler ([19], [20]) intro-
duced a non-additive model that uses the integration operation due to Choquet
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[2], that is an actual generalization of Lebesgue’s one. Analogous tools have
been investigated and applied by I. Gilboa [6] and P. Wakker [23].

Another integration theory with respect to suitable decomposable set fune-
tions, that gives rise to a different actual extension of Lebesgue’s theory too, is due
to S. Weber [25]. We shall deal with the attitudes toward risk and some paradoxical
phenomena (Sec. 4), and the concept of certainty equivalent (Sec. 5) in this general
framework. Let us recall some definitions and results (S. Weber [25], B. Schweizer
and A. Sklar [21]) in order to introduce Weber’s integral.

A binary operation L on the real unit interval J = [0, 1] is said to be a ¢-
conorm if L is non decreasing in each argument, associative, commutative, and
has 0 as neutral element. A t-conorm is said to be archimedean, if it is eontinu-
ous and such that 1(x,x)>x for every z in the open interval (0, 1). An
archimedean {-conorm is called strict, if it is strictly increasing in the open
square (0, 1) The following representation theorem holds

Theorem 1. (C. H. Ling [12]). A binary operation L on J is an
archimedean t-conorm, if and only if there exists a strictly increasing and con-
tinuous function g: J— [0, 1 with g(0) =0, such that

Lz, y) =gV (glx) + g(y))
vhere g~V denotes the pseudo-inverse of g defined by
g™ P (@) = g " (min(x, g(1))).

Moveover L is strict, if and only if g(1) = o,

The function g, called an additive generator of L, is unique up to a positive
constant factor. The following identity holds

(1) g9(g*"Y (%)) = min(x, g(1)).
Example (M. Sugeno [22], S. Weber [25]). For w > —1,
(2) U,(a, b) = min(a + b + wab, 1)

with a, b in J, defines a non-strict t-conorm U, with additive generator

(3) G () = —zlaln(l + wx)
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whose pseudo-inverse is given by

1

E((exp(wy) -1

1

according to whether y <g,(1), or y =g,{(1). In particular, we have
Uy(a, b) = min(a + b, 1), with gy(x) = @.

(4) Gt (y) =

Let (2, ) be a measurable space. A set function m: § — J, with m(8) = 0 and
m(R2) =1, is called (S. Weber [25]) a decomposable measure with respect to a ¢-
conorm L, or a 1 -decomposable measure, if m(A U'B) = m(A) L m(B), where
UY denotes disjoint union. Moreover m is called a o- L -decomposable measure, if
m(US-14,) = L,s1m(4,), where the union above is disjoint and countable. The
notation (o-) L -decomposable will stand for L or o- 1 -decomposable.

The classification (S. Weber [25]) of (o-) L -decomposable measures with re-
spect to archimedean {-conorms depends on the property of the operation L to
be or not strict. In fact, if L is strict, then we have

S gom: f—[0, + o] is an infinite (o-) additive measure, whenever m

is a (o0-) L-decomposable one.
If L is nom-strict archimedean, then one of the following cases
oceur;

NSA gom: f—1[0,g9(1)] is a finite (o-) additive measure such that

(gom)(£2) =g(1)
NSP gom a finite measure with (gom)(Q) = g(1), which is only pseudo-
(0-) additive, ie. it is possible that

(9077?')( U?La lAn) = g(l) < 2(9 0777')(1471 ).

Let now L be an Archimedean {-conorm with additive generator g and m a
o- 1 -decomposable measure on the measurable space (£, 8). Let /2 2 —J be
any measurable function with the normality condition 0 < flx) < 1.

Definition (S. Weber [25]). The integral of f over A is defined for the
two cases:

A. Except for NSP with m(A) =1, let
JfLm=g " (ffd(gom))
A A
P. For NSP with m(4) =1, Q is assumed to be m-achievable (i.e. there
exists a sequence {4, }, with m(4,) < 1, such that Q = U%.,4,), then let
[fim=g"Y% [ fdlgem)).
A ANA

n
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In case A the induced measure gom is additive and the integral is a
Lebesgue integral. In the second part P stands for pseudoadditivity of gom and
the definition is independent of the special choice of {4, }.

Properties of the functional I: f— Qf fLm are

i,  I(14) =m(4), in particular 7(0) =0 and I(1) =1
ii.  h=fimplies I(h) = I(f)
iii. 1=zf+h implies I{(f+ k)= I(f) L I(h)
iv. £, T fae implies I(f,) T I(f)
v. if f, > f a.e. with the furher assumption in case § that there exists a

function A such that 2 =f, and I (k) <1, or in case NSP, X(gom)(4,) < =,
then I(f,) — I(f).

Relations between Choquet’s and Weber’s integrals have been sfated (S.
Weber [25]). The Choquet’s integral is additive for comonotonic functions (C.
Dellacherie [3], D. Schmeidler [19], [20]), while in general this is not the case, so
it could be suggested to use Weber’s integral because of the persistence of sev-
eral formal properties of Lebesgue’s integral and decomposability property iii,
that allows to combine the single expectations.

3 - Expectation

3.1 - The formal setting

Let us introduce a non-EU model making use of Weber’s integral. We con-
sider a set of lotteries with outcomes between ¢ and b, —© < g <b < + ». We
can therefore suppose from now on, without loss of generality, that vN — M util-
ity funetion « fulfills normality condition 0 < u(x) < 1 on [a, b]. If the value of
the functional
(8) E,(wy=Iu)=[flm

® A

is assumed as the numerical utility index representing preferences, then the
complete ordering axiom for preferences over lotteries is preserved. Further-
more a continuity requirement (M. Weber and C. Camerer [24]) is satisfied: in-
deed, due to the continuity of g, g ~* and «, given the lotteries X, ¥, Z, such that
X is preferred or indifferent to Y and Y is preferred or indifferent to Z, there
exists a probability p such that Y is indifferent to pX + (1 — p) Z. In general in-
dependence does not hold, because of the loss of linearity in probabilities.
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The following equivalence, that holds for integrals 7 with respect to decom-
posable measures

Ju Lm = [u L my if and only if m; (y < x) S my(y < 2)

for any increasing utility function u, 0 < u(x) < 1, replaces the fulfilment of
stochastic dominance principle. It is worth recalling (see Sec. 2) that in case NSA
the composition g - p is a probability measure. This takes account of the subject’s al-
teration of p by means of the function g and restores a new probability measure
g op. For sake of simplicity let us deal, in the examples, with discrete probability
distributions P = (p;) over a fixed outcome set {x; }. Therefore, the preference
functional (5) assumes the form £, (u) = I(u) = g ~* (O, %; ¢(p;)) in the case A of the
definition. Incase P, B, (u) = I(u) = ¢V > w(w;) g(p;)), where the A,’s be-
long to the power set of Q. " A

Thus the behaviour of the decision maker consists in choosing a suitable ad-
ditive generator g and maximizing the preference functional, i.e., solving the op-
timization problem max(F, (u)), with the maximum taken over the lotteries.
Furthermore equation (5), in case A, yields a standard expectation with respect
to the additive measure gom (up to the order preserving inversion g ~!).

Let us consider an example related to the case that the set function gom is
finite and pseudo-additive. Let 1 (a, b) = min(a + b, 1), @ = N be the set of po-
sitive integers, B the power set of N, and the measure of a subset A of N be de-
fined by m(A) = min( —7;&@;, 1), with a the number of elements of 4 and fixed #*
in N. Then m is o-1-decomposable with additive generator g¢g(x) =1z and
g P(y) =min(y, 1). One has gom =m, that is pseudo-o-additive. Indeed,
given the disjoint subsets A and B of N, with b the number of elements of B,
and a + b >n* it results gom(A U B) =1, and

b 1)>1=g(1).

gom(A) + gom(B) = min(—r,%;, 1) + min( o

An application of such an evaluation is as follows. It is known that, when
counting red corpuscles in 1 mm? of human blood, what is important is that the
threshold of 5 millions be approximately reached. Now, for instance, if ¢ red cor-
puscles have been counted in a given sample C, with ¢ >5,000,000 = »*, the
C L 1=1
Let w(x) denote the utility to have x red corpuscles (in 1 mm?® of blood), say an
increasing function over N, taking constant value 1 in a suitable right neighbour-

hood of 5,000,000; therefore for the expectation one has u(c)gom(C) = 1 = u(n*).

value of the measure associated to the sample is gom(C) = min(
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Let us recall that alterations in the probabilities p were also suggested (J.
Quiggin [18] and M. Yaari [26]) by means of modifications in the probability di-
stributions, that reflect the adjustment in the perception of the decision maker.
In the prospect theory by D. Kahneman and A. Tversky [7] a preference func-
tion which is separable into the components is defined. The preference function
here defined in terms of Weber’s integral, what enables us to deal with nonli-
near preferences and infinite or continuous outcome set, is expressed in terms of
Lebesgue’s integral with respect to a composition gom (that is a (o-) additive
measure).

In the case that g om is a measure on a segment A = [a, b], generated by an
absolutely continuous monotone function F, one gets

Jud(gom) = fulx)dF(z) = [u(z)F' (x)dz.
A A A

Remark that an upper bound for E, when g is convex is given by
E,(w)<s g toud(gom)=E(g ' ou)

where E denotes (additive) expectation with respect to the measure gom.

3.2 - Indifference curves

Let us suppose now u strictly monotone and twice differentiable, with se-
cond derivative continuous. If 7; and r, denote the risk aversion degrees of g!
and u ™!, respectively, and

(6) > T,

then g ™! ow is a risk averse utility function (J. W. Pratt [17 1, R. L. Keeney and
H. Raiffa [9]). Thus, if ¢ and » satisfy (6) near the certaintly, a behaviour that is
coherent with the maximization of £, takes risk aversion into account. This fact
suggests to investigate whether the maximum principle, in the present non-ad-
ditive setting, can help to describe some paradoxical patterns.

To this purpose let us consider the t-conorm U, . The expected utility of the
lottery L = (uy, py; s, po; u3, P3), using the probability g, op instead of p, is
given by

(D B = g7 Cigu)) = (- )Xexp(SwIn(1 + wpi) - 1)

or F, (L) =1, following (4).
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Equation (7) entails that individual indifference curves in the (p;, p3) trian-
gular diagram are represented by

(8) (14 wpy (1 + wps Y2 (1 + wpg ) — 1= cw

with constant ¢ and p, =1~ p; — ps.
In order to get some information about the shape of the indifference curves (8),
let us consider the special case 0 = & = (1 + wp, ). By putting k = (we + 1) b7},

H=FkY%s and s= %, equation (8), for w # 0, assumes the form
(9) ps=Hw 1(1+wp) —w?.

Some computational difficulties remain even in the simplified equation (9):
let just observe that H is a function of w. However we can easily find that, for

—1 < w <0, the function (9) p3 = ps(p;) is decreasing and concave, p; < — 1

W
and the whole diagram (when the variables range into the reals) has the vertical
asymptote p; = — —7/15 (> 1) and the horizontal asymptote ps = — %

For instance, when w = —0.5, ¢ = 0.6, %; = 0.8, it is p; = ~ 0.54 and the in-
tersection of the whole diagram with p; axis is ~ 1.83.

The curve can be plotted like in Figure 1.

For w > 0, the function p; in (9) is decreasing and convex, p, > —w ' (< 0)

and vertical and horizontal asymptotes have equations p; = —w ™! and
ps=—w L

P

1

0 1 P1

Fig. 1.
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Fig. 2.

In Figure 2 some indifference curves for negative w and positive w are plot-
ted. Fanning out is represented by the two families of curves: precisely the ten-
dency for risk aversion is mainly associated with the values w < 0, while that for
risk seeking with the values w > 0. These behaviours are related with the action
of the inverse function of g,, that is concave or convex according to negative or
positive w, respectively.

Some comments are now in order. The present non-EU model becomes more
fllexible because of the twofold transformation: that one originated by the utility
function and the other due to the transformation of the probability. This allows to
take into account different psychological aspects of the decision maker. The utility
transformation acts over the wealth W of the individual and his risk attitude: evalu-
ating a lottery X means to compute z in equation E(u(W + X)) = w(W + z).

The EU model captures how the subject evaluates the consequences of the
presence of X over his economic situation. The t-conorm operator transforms
probability evaluations, so that optimistic or pessimistic behaviours of the deci-
sion maker can be incorporated. More precisely, on a first level two mental atti-
tudes of the subject must be put about the consequences and the relations be-
tween the decision maker and the destiny. The consequences of a lottery influ-
ence the utility function by means of the transformation of the monetary
amounts; therefore we get a risk love or a risk aversion that is economie in na-
ture. The decision maker, when elaborating the synthesis procedure, transforms
probability evaluations, obtaining a risk love or a risk aversion that is psycho-
logical in nature.
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On a second level we look at the effects of the two components, for instance ob-
serving how the decision maker estimates lotteries. If the combined effects of the
two transformations lead to z < E(X), then the subject reveals risk aversion tout
court. Such a risk aversion may come either from a double aversion or from the oc-
currence of a single aversion, provided that this one prevails over the other.

4 - Common ratio effect and Allais paradox

Let now deal with some decision problems, that put in evidence failures of the
classical EU paradigm. We shall rank the preferences between lotteries by the de-
cision rule derived from the maximand Ey;, . It is possible to explain cases included
in the general pattern termed the comwmon ratio effect and the Allais paradox.

Les us start first by recalling that the common ratio effect is a phenomenon
involving pairs of prospects of the form:

L =0,1-9,X,0;Y,0) versus M =(0,1-¢;X,0;Y, ¢q)

L' =0,1~-r;X,m;Y,0) versus M' =(0,1-7r¢;X,0; Y, rq)
for0 <r<1,p>qgand0 < X <Y. The classical EU model prescribes choices of
L and L', if the indifference lines are steep, or else M and M, if they are flat,
whereas a systematic tendency of the individuals for choices to deviate from
these prescriptions is observed. For instance (D. Kahneman and A. Tversky [7)),
assuming that X = 0.3, Y =04, p =1, ¢ = 0.8, r = 0.25 (X and Y are expressed in
units of 10,0008), the greatest part of polled individuals prefer L over M and M’
over L'. By applying (8) to this numerical case, we get, for w= —0.5

E, (L)=¢"'(-2(03)In0.5) = ~ g ~1(0.416)

E,(M)=g"'(—-2(04)In0.6) =~ g ~1(0.409),
and from monotonicity of g ~!, the preference of L over M; while, for w = 0.5
E, (L'Y=¢"'(0.61n1.125) =~ ¢ ~1(0.071)
E,(M')=¢"1(08In(1.1) =~ g ~1(0.076)

ie. a preference of M’ over L',
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It is worth remarking that a preference of M’ over L' is induced also by the
value w = —0.5, indeed E, (L') =~ ¢~1(0.080), E, (M') =~ g~1(0.084).

An analogous setting of the preferences is performed when dealing with the
Allais paradox:

a=(0,0;0.1,1;05,0) versus b = (0, 0.01; 0.1, 0.89; 0.5, 0.1)

and ¢ =1(0,09;01,0;05,0.1) versus d=(0,0.89;0.1, 0.11; 0.5, 0).

Contrary to the preference settings under EU hypothesis, we get from (8),
for w= —0.5

E, (a)=~g~1(0138)  E,(b) =~g 1(0.118)
E,(¢) =~g71(0.051)  E,(d)=~g 1(0.011).

This exhibits a preference of @ over b and ¢ over d, which agrees with the modal
preferences of the subjects.

Of course the tediousness of the computation of a non-expected utility in-
creases when linearity is abandoned. For instance, in order to evaluate also risk
attitudes, we have to face the problem of indifference curve tracing. This can be
done only by a detailed analysis of equation (9) and a systematic plotting of in-
difference curves. Different t-conorms can be used and, in any case, the resul-
ting model has to be investigated, whether it can fit the data better than the
standard EU model (M. J. Machina [15]). To this purpose the user, e.g., the deci-
sion analyst or the decision maker, of such a non-EU model should be in a posi-
tion to tune the different parameters at his disposal and select the indifference
curves. That can be easily done by a simple inspection of the drawings, which
can be automatically plotted.

5 - Certainty equivalent

Let X be a random money amount having support X and vN — M like utility
function %. Following the setting due to I. H. LaValle [10] and L. Peccati [16],
we shall deal with the concepts of certainty equivalent from both the seller’s and
the buyer’s sides, in our non-additive context.
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The concepts of Seller Certainty Equivalent (SCE) and Buyer Certainty
Equivalent (BCE) will be now defined, following the classical pattern, by the
equations in z

w(z) =FE | (X)) w(0)=F, (WX —2))

respectively.

Let m denote a o- L-decomposable measure on (2, 8) and u a utility fune-
tion, whose range is the interval J = [0, 1]. We are now able to prove the fol-
lowing existence theorems for SCE and BCE. We shall also state uniqueness
conditions in particular cases.

Theorem 2. If the utility function w fulfills the conditions:
i. w is defined in an interval [a, b] that includes X
ii. u is continuous and strictly monotone

then the SCE for X ewists; in cases S and NSA it is unique

Proof. The result follows from conditions i and ii and strict monotonicity
and continuity of g.

Theorem 3. Let X be bounded and %y = inf(X) and x, = sup (X). If the
utility function w fulfills the following conditions:

i. u 1s defined at least on the interval [a, b, where a = xy—x; and
b= Xy — Xp
ii. wu is continuous and strictly monotone

then the BCE exists. It is unique in cases S and NSA.

Proof. Letusputw(z)=FE, (u(X — z)). By properties v and ii (Sec. 2), w is
continuous over [a, b] and monotone. The theorem follows from continuity of u.
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Sommario

St propone un «nonexpected utility model» per la rappresentazione delle preferenze,
nel quale si usa un’'operazione di integrazione non additiva, ma decomponibile rispetto a
wna conveniente operazione archimedea (una conorma triangolare). Si mostra che alcu-
ne deviaziont dal modello dellwiilita atftesa, come il paradosso di Allais e l'effetto del
rapporto comune, st possonc descrivere entro questo paradigma.




