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On pseudoconvexity of Reinhardt domains (**)

1 - Introduction

Let D be an open connected bounded domain in C? and let us denote by
log |D] = {(x,, ®)|(e™, ™) e D} c R?

its logarithmic image.
When D is Reinhardt, that is invariant under the maps

(zl7 z2)_>(ei0121y eiagzz), VGI, 92 ER
the following is a classical statement.

Theorem 1. Assume (0,0)eD. Ther D is a domain of holomorphy
if and only if it is complete (that is (20, 23) e D implies that the bidisc
{lz1] < |20], |22| < |28} is contained in D) and is log-convex (that is log |D|
18 a convex set).

The aim of this note is to show that, in such a theorem, the hypothesis of log-
convexity is the essential point, while the requirement of completeness may be
considerably weakened, being almost (but of course not entirely) a by-product of
the other hypotheses. In other words, we prove several properties enjoyed by
any log-convex Reinhardt domain (even not eontaining the origin): such proper-
ties imply, in particular, that a Reinhardt domain D, whose closure D has non
empty intersection with all coordinate hyperplanes z; = 0, is log-convex if and
only if D is complete.

It this note, we show that the properties of logarithmically convex Reinhardt
domains bring to an interesting pair of conclusions:

(*) Dip. di Matem. V. Volterra, Univ. Ancona, Via delle Brecce Bianche, 70100 Anco-
na, Italia.
(**) Riceived December 22 1995. AMS classification 32 F 15.
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a. the hypothesis of completeness in Theorem 1 may be replaced by a much
weaker one, i.e. an hypothesis which we call of weak completeness (see Defini-
tion 1 and the observations below)

b. any Reinhardt domain, even not containing the origin, is pseudoconvex if
and only if it is log-convex and satisfies some suitable hypothesis on its intersec-
tions with the coordinate hyperplanes (see Theorem 1).

However, we have to remark that the characterization of arbitrary pseudo-
convex Reinhardt domains is not new and it has been reached with a different
approach by R. Carmignani in [1]. But our main object was to reach a proof that
is based only on elementary tools and on geometric properties of convex sets.
For this reason, in order to be clear and easily followed, we expose all argumen-
ts dealing with Reinhardt domains in C?% being aware that, mutatis mutandis,
they can be easily repeated in any other dimension.

In order to state precisely our results, we need

Definition 1. Let D be a Reinhardt domain in C? and let us define

a, (D)= min_|z] az(D) = min_|2s] .
(21,0)eD (0,22)eD

Then D is called weakly complete if the following two conditions are sati-
sfied:
(0, 0) is not an isolated point of CZ\D;
for any (p, 0), p =0 and (0, ), ¢ %0, in D, we have:
{21, 0), |2;| € (a, (D), |p])}cD
{(0, 21), |22 e (a2(D), g} cD.

Furthermore, we will denote by D the smallest Reinhardt domain which is wea-
kly complete and contains D.

Remark 1. Note that, in practice, given a Reinhardt domain D, it is possi-
ble to determine D by filling in all the possible holes of the sets D N {z; =0}
and DN {z; =0}. Also note that if D is complete, then a,(D) = ax(D) = 0.

The characterization of pseudoconvex Reinhardt domains in C? which one
can obtain from the properties of log-convex domains is

Theorem 2 (Main Theorem). If D is a bounded connected Eeinhardt do-
main in C® then:
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1. D is pseudoconvex if and only if it is log-convew

2. D is pseudoconvex if and only if D is pseudoconvex and one of the follo-
wing identities occur

a. D=D b. D =D\{z =0}
c. D=D\{z,=0} d. D=D\{z,2,=0}.

Remark 2. As already mentioned, Theorem 1 is only for Reinhardt do-
mains in C% but the proof can be directly repeated for domains in C%, for any n.
The only difference is that the number of possible identities to be satisfied by D
and D is in general 2" instead of just 4.

Remark 3. As announced, for what concerns the Reinhardt domains
which do contain the origin, Theorem 1 implies that weakly completeness plus
log-convexity is equivalent to completeness plus log-convexity (see also Lemma-
ta 1, 2 and Corollary 1).

2 - Pseudoconvexity of weakly complete Reinhardt domains

The goal of this section is to show that a weakly complete Reinhardt domain
is pseudoconvex if and only if it is log-convex (Corollary 2 and Proposition 1).
This, in particular, will prove the part 1 of the Main Theorem.

In the following statements, unless differently stated, D is a log-convex
bounded Reinhardt domain in €% and D is its closure.

Lemma 1. Let P = (0, b) and R = (a, ) be two points of D, with b, a and
B strictly positive real numbers. Then D contains all points with coordinates

(v, B) with y [0, al.

Proof. P = (0, b) is a limit point of a sequence of points P, = (a,, b,) e D,
with a, real positive and different from 0. Being D log-convex, any segment
with endpoints P, = (log a,,log b,) and Q = (log a,log B) is entirely included in
log |D|. Since log a,, tends to — « and log b, tends to log b, all such segments
tend to the unbounded half-line

L= {(t,Jog B)|t e (— w,log al} clog |D| .

This implies that any point with coordinates (y, 8) with y € [0, a] is in the closu-
re of exp [, i.e. in D.
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Lemma 2. Let P=(0,b), Q@ =(c, b) and R = (a, B) be three points of D,
with b, ¢, a and B strictly positive real numbers and B > b. Then, D contains
the set {(0, y), y e[b, A1}

Proof. Being D log-convex, log |D| contains the segment

{P(ty=(tlogc+ (1—t)log a,tlog b+ (1—1t)logB),tel0, 11}.

Thus, D contains the points P(f) = (c’a! ¢, b4 ~?). Lemma 1 implies, in parti-
cular, that P, = (0, y) e D with y = b8, for any .

Corollary 1. Suppose that (0, 0) and P = (0, B) are in D (B positive real
number). Then D contains any point P,=(0,y) with y [0, B]1cR.

Proof. Let Q, = (¢, b,) be a sequence in D which tends to (0, 0) and let
R, = (a,, B») a sequence which tends to P (all coordinates of the points may
be assumed to be positive real numbers and with b, < 8,)). By Lemma 1, the
points P,, = (0, b,) are in D; from Lemma 2 applied to the triple of points P,, Q,
and R,, we may infer that D contains the points of the form (0, y) with
v elb,, B]). Since b, tends to 0 and §,, tends to S, we get the conclusion.

Lemma 3. Let P = (a, b) € D, with a and b positive real numbers. Then
P admits a neighborhood Up so that Up N D is pseudoconvez.

Proof. By hypothesis there exists a straight line
Lif(ty, tp) = aty + Bty + log |¢] =0
. such that:
1. f(og |P|)=0 2. f(og |z|)> 0 for any ze D\{z,2, =0}.

The function 4(z) = cz{2§ — 1 is holomorphic on a suitable ball By centered
at P, vanishes at P by 1, and does not vanish at any point @ € Bp N D since, by
2, log |czf28| > 0 for any zeD.

Note that, for any other point @ of 3D N Bp a function which is holomorphic
on D N B, and which vanishes at @ exists for the same reasons. So, all points of
oD N B, are essential for Bp N D, as well as all points which are in dBp. This
implies that Bp N D is pseudoconvex.
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Lemma 4. Let us suppose that D is log-convex and weakly complete. If
(0, 0) € 3D, then either {2z, =0} N D = {(0, 0)} or {z,=0}ND = {(0, 0)}.

Proof. Suppose not and let (0, b) and (¢, 0) be two points in D, with b and
¢ positive real numbers. By Lemma 1, for any point (a, 8) in D with a and 8 po-
sitive real numbers, all points with coordinates (y, B), with y € [0, ] are in D.

Then, we apply Lemma 1 (with the reversed order of the coordinates) in or-
der to show that, for any y e [0, a], the points (y, 8), with & € [0, 8], are in D
too. Since D is a Reinhardt domain, the whole polydisc

?={(z, )| |21 <a, |2| < B}

is included in D. So a,(D) = a,(D) = 0 and, as D is weakly complete, the point
(0, 0) may belong to dD only if it is an isolated point of C%\D. Contradiction.

Lemma 5. Let D be log-convex and weakly complete and let P = (0, b) (or
P = (b, 0)) be a boundary point of D, with b non negative real number. Then, P
18 an essential point for D.

Proof. When b = 0, the statement is a direct consequence of Lemma 4. As-
sume then that b > 0: we want to show that there is no point @ = (a, b) in D
with @ # 0 complex number. From this, we will deduce that the funetion
(22 — b)™! is holomorphic in D and not extendible around P.

Suppose that @ = (a, b) e D, with @ # 0. Since D is Reinhardt, we may sup-
pose that a is positive real. D is open and hence it contains, for a convenient
£ >0, the set

A ={(a,P)|Belb—¢ b+el}.
From Lemmata 1 and 2, this implies that
B, = {(y,ﬁ)|/3’e[b-s, b+el and yel0,al}

is a subset D. This implies also that a, (D) < b — ¢, and, by weakly completeness,
that P = (0, b) is inner to D. Contradiction.

Corollary 2. If D is log-convex and weakly complete, then it is pseudo-
convex.

Proof. By Lemmata 3 and 5, any boundary point P of D, with nonnegative
real coordinates, admits a neighborhood Up such that Up, N D is pseudoconvex.
Any the other point of 3D fullfils this property because the map

(21, 22) — (3i91z1 , emzzz)
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is an automorphism of D for any pair (8,, 02). So D is pseudoconvex (see Propo-
sition 3.3.10 in [2]).
To show the reverse implication, let us first recall that:

(%, %) € dlog |D| implies that (e™, ¢™) e 8D\{2;2, = 0}

(21, 25) € OD\{z12, = 0} implies that (log |2,],log |2 }) e dlog |D]|.
From this, we get

Proposition 1. If D is pseudoconvex then it is log-convex.

Proof. Let D be pseudoconvex and let T, || be the tube over log |D], ie.
the set defined as follows

Togip) = {(21, 22) € C* |(Rez;, Rezp) elog |D|}

= {(log |&1] +ia;,log [Cz] + ias) Vo, aze R?,(§1, ) e D, {152 # 0}
By definitions, the exponential map
exp : C*— C? exp (2, 2) = (™, ™)
is such that exp (T p)) cD\{{1Z2=0}. As previously noted, we have also
exp (T (p)) C OD\{&1L2=0}.

Being D pseudoconvex, for any p e T, |p| there exists an open neighbourhood B
of exp p e dD such that BN D is pseudoconvex. Thus

exp™ (BN D) = exp™ (B) N Tiog |p|

is still pseudoconvex (since exp is a local biholomorphism). Henee Tz |p is pseu-
doconvex (see Prop. 8.3.10 in [2]): Theorem 8.5.1 in [2] implies that log |D| is
convex and that D is log-convex.

3 - Proof of the Main Theorem
The proof of the Main Theorem (Theorem 2) will be complete when part 2 of

the statement is proved. Let us assume again that D is a connected Reinhardt
domain (not necessarily log-convex) and let D as in Definition 1.
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Lemma 6. Suppose (a, 0) e D\D (resp. (0, b) e D\D). Then there exists
a'#0 (resp. b'#0) such that (a,a’)e D (resp. (b’, b) e D).

Proof. We may assume that ¢ is positive. If {#; = a} N 3D were empty,
and hence {|z;| =a} N 3D =@, we would have that either

{|#z1] <a}>D or {|z]|>a}>D

because of the connectness of D and the fact that {|z;| = a} disconnects CZ.
Assume, for instance, that the first case is true and consider the Reinhardt
domain A = D N {|z;| < a}2D. If A is proved to be weakly complete the follo-
wing contradiction appears: by definition of D, we should have D ¢ {|z;] < a},
while we know that (a, 0) e D.
As a,(A) = a,(D) and |p| <a, if (p, 0)e4, then

{21, 0): |21 ] € (@ (4), |PD} c{(21, 0): |21 € (a, (D), [p])} cA

that is A is weakly complete.
In the second case the proof is completely analogous.

We are now able to prove the Main Theorem. It remains to prove only part 2
(see the beginning of Sec. 2).

Proof of Main Theorem. First, we will prove that, if D is pseudoconvex,
then D is pseudoconvex and that either a, b, ¢ or d occurs: in this case D is ne-
cessarily log-convex (Proposition 1) and being log |D| = log | D], D is pseudo-
convex (Corollary 2).

Assume now that a, b, ¢ and d are false. Then (as D differs from D only on
the coordinate hyperplanes) it should exist at least one point on the coordi-
nate hyperplanes, say P = (a, 0), which would belong to D, and a point (a, 0),
which would belong to D\D. By Lemma 6 there should exist a' such that
Q = (a, a') e D. The simultaneous existence of P and @ in D implies that the
point (a, 0) is in 8D (see Lemma 1). To get a contradiction it is sufficient to show
that any f, holomorphic in D, has a holomorphic extension to a neighbour-
hood of (a, 0).

Let

f= 2 Zf;zlazzlalzZQZ

ay,0peZ

be the Laurent expansion of f (such expansion exists because fis defined over a
Reinhardt domain; see [3]). Now, observe that, since (a, 0) € D, we have that
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the Laurent expansion is of the form

f= 2 Z falazz]‘llz2a2 Z+ = {a2EZ’a2 2 0}

alEZ aZEZ+

with uniform convergence on compact sets. From (a, ¢’) e D, we also have that
the above series converges in a neighbourhood of (a, 0) (being all a, = 0).

To show the converse, observe that, if a holds, the pseudoconvexity of D is
obvious. Assume now that b is true: as D differs from D on the coordinate
hyperplane {2, = 0}, any boundary point of the form (a, b), with a # 0, is essen-
tial (by Lemmata 3 and 5); on the other hand, any other boundary point in
{2, = 0} is essential because the holomorphic function z;! does not extend the-
re. Analogous arguments prove the statement when ¢ or d are true.
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Sommario

Le proprietd geometriche degli insiemi convesst in R™ sono utilizzate per determinare
condizioni necessarie e sufficienti perché un dominio di Reinhardt limitato e convesso
(non mecessariamente contenente lorigine) risulti pseudoconvesso.

Viene ottenuto una nuova semplice dimostrazione di un classico risultato di ER.
Carmignani, che generalizza le condizioni di pseudoconvessita per i domini di Rein-
hardt contenenti lorigine.
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