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ALESSANDRA CoOSCIA (%)

Relaxation results and minimum problems in BV and SBV (*%)

1 - Introduction

The variational formulation of many problems in mathematical physics, com-
puter vision, and mechanical engineering takes into account an energy functio-
nal depending on a function and a hypersurface, both a priori unknown (see
[10]). Typically these functionals consist of two parts: the first one represents
the bulk energy and is the integral of a potential, depending on the gradient of
an unknown function u; the second represents the surface energy and is the in-
tegral of some function computed on a hypersurface, a priori unknown, where
the function % is discontinuous.

These energies account for several phenomena such as crack growth and
crack initiation in the theory of brittle fracture, interface formation between dif-
ferent phases of Cahn-Hilliard fluids, surface tension between small drops of
liquid cristal, and are utilized for pattern recognition in computer vision. In par-
ticular in the one dimensional case energies of this form arise in the perception
of speech, which requires segmenting time (the domain of the speech signal) into
intervals during which a single phoneme is being pronounced.

This paper presents some one-dimensional results related to the variational
formulation of static phenomena, which can be described by introducing an inte-
gral functional of the form

(1.1 Fu, S) = [ W'Ydt + [OE, u(t +), wt =) d# ().
s
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Here # denotes the counting measure on R, the bounded open interval 7 c R is
the reference configuration, the function « represents the displacement, which is
differentiable outside the discontinuity set S, and u(t +), u(f —) are the right
and left limits of « at the point {. The functions W and @ represent the bulk and
surface energy densities respectively.

We discuss the problem from the viewpoint of the so-called direct method of
the Calculus of Variations. In order to give the problem a sufficiently weak for-
mulation we make use of the theory of functions of bounded variation
(v € BV(I)) and in particular of the space SBV(I) of special functions of boun-
ded variation. For every u € BV(I) we denote by S, the jump set of u, i.e. the
set of points where % admits different right and left limits «(t +) # 2 (¢t —). It is
well known that S, is at most a countable set of points. Moreover, for a function
u € BV(I) we have the Lebesgue decomposition

w' =%dt +u =udt+ ’Zl(u(th +) —ult, =) 6, + Cu

where 4 is the density of the absolutely continuous part of ' and Cu is the Can-
tor part of «’, which vanishes on every finite subset of 7. We say that « is a spe-
cial function of bounded variation (u e SBV(I)), if we BV(I) and Cu = 0.

In this paper we deal with the case where the surface energy depends ac-
tually on the position of the jump points, considering functions @ of the
form

1+a@®|u@+)—u@-)| fult+)zult-)

1.2 O, u@t+), u(t—)) =
(1.2) (8wt +), u(t =) 0 otherwise

where a:1—10, + »[ is a continuous function. Then we are led to introducing
the following two functionals defined on BV(I):

(1.3) Flu) = [W(u)dt + #(S,) + [a(t) |u, |
I I
W@ dt+ #(S,)+ 2 at) |t +)—ut—)| if ueSBV()
(1_4) &:S‘(u) =1 teSy
+ o elsewhere on BV(I).

The main results of this paper are a relaxation and integral representation
theorem for the functional & on BV(I) (Sec. 3), and the lower semicontinuity of
the functional g5 on SBV(I) (Sec. 4). Let us remark that we prove the lower se-
micontinuity of Jg with the only assumptions that @:/ X R X R —» [0, + [ is
lower semicontinuous and subadditive with respect to the last two variables.
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In the literature the functionals & and Jg have been studied in [1] under the
assumption @(u(t +), u(t —)) = ¢(|u(t +) —u(t —)|) with ¢ concave, nonde-
creasing and superlinear at 0 (in particular we can take @ = ¢), while the linear
case O (u(t +), u(t —)) = |u(t +) — u(t —)| is considered in [6]. For related re-
sults see also [5].

Finally in Section 5 we consider some minimization problems on BV(I),
with =10, 1[, with generalized Dirichlet boundary data u(0 +)=0,
#(1 =) = a, a e R, associated to the functionals & and & in the cases a(¢) = 1
and a(f) = (t — %)2 + 1. We determine all the minimum values corresponding to
the different a and we deseribe all the minimum points.

In particular we point out that we obtain examples of minimization problems
where the minimum is achieved on SBV(I), but not on BV(J), or, both are achie-
ved, but the minimum values are different.

2 - Notation and preliminaries

2.1. Notations

Let I be a bounded open interval of R; we use the standard notation for the
Sobolev and Lebesgue spaces W*?(I) and L?(I). In particular we will denote
by [Jul, the LP-norm of a function « in L” (I). We use the notation d¢ for the Le-
besgue measure, and # for the counting measure; |J| indicates the Lebesgue
measure of a measurable set JcR.

If W:I xR —[0, «[ is a Borel function, we shall denote by W** (¢, x) the
greatest function less than or equal to W, which is convex with respect to the
variable . If W:I X R —[0, + [ is convex with respect to the second varia-
ble, we define the recession function W=:I x R—[0, +»] by

W(t, sx
W= (t, )= lim (——Z .
§— + S
We remark that W= is a Borel function, which is convex and positively homoge-
neous of degree one with respect to the variable x.
We say that a function W: R —[0, + ] is superlinear at + « (resp. — ) if

W) _ W(x)

2.1) lim + o (resp. lim —— = + ),
=% Tal

X~ oo T

Given a Radon measure u on I, we adopt the notation |x| for its total varia-
tion (see [13], 2.2.5). We denote by (1) the set of the scalar Radon measures on
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I with bounded total variation and by 91, (I) the space of the positive Radon
measures on I with bounded total variation. Let u e 3 (I); we denote by #, and
1, the absolutely continuous and the singular parts of x with respect to the Le-

besgue measure, and by Tz_l the Radon-Nikodym derivative of pu with respect

to its total variation. The integral on I of a function y with respect to the mea-
sure |u| will be denoted simply by f ¥ |i|. The usual weak* topology on (1) is

defined as the weakest topology on :)’IZ(I ) for Whlch the maps u f Y du are con-
tinuous for every vy e °(I) such that |5 =

2.2. Functions of Bounded Variation

Let I be a bounded open interval of R. We say that u e L' () is a function of
bounded variation (u e BV(I)) if its distributional derivative #' = Du is a Ra-
don measure with bounded total variation on I. We have that BV(J) is a Banach
space, if endowed with the norm |u|zy = ||ul|, + |Du|(I). We recall that for
every sequence {u,}, in BV(I) with ||lu,|zva) < ¢ there exist a subsequence
{uy, }, and a function u € BV(I) such that u,, —u in L' (I). For the general the-
ory of functions of bounded variation we refer to [13], [14], [16], [17].

Let u e BV(I); we denote by S, the complement of the Lebesgue set of %; ie.
te¢S, if and only if

1 t+o
lim — u(s) —z|ds=0
Q__)O"" 29 t_fg | I

for some z € R. If such a z exists it is unique, and we denote it by % (%), the ap-
proximate limit of u at t. It is well known that S, is at most a countable set of
points and #% coincides with % almost everywhere in I. Furthermore the function
u admits right-hand and left-hand limits u (¢ +) # u(f —) at every { € S,, in an ap-
proximate sense, which means that

t t+e
lim L f |u(s) —u(t—)|ds=0  lim L [ u@s)—u@+)|ds=0
g—»O"" Q Q—-)(]"' Q t

Therefore the set S, is also called the jump set of w.
In general, for a function % € BV(I), we have the Lebesgue decomposi-
tion

— ! T 1
u'=u, +u, =udt+ u,
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where we denote by % the density of the absolutely continuous part of u'. The
singular part of 4’ can be further decomposed into two mutually singular mea-
sures as

us =Ju+Cu= 2, (u(t+)—ult-)o,+Cu

teS,

where Ju = 2, (u(t +) — u(t —)) S, is the jump part (5, denotes the Dirac mea-

teS,

sure at t) and Cu is the Cantor part of 4’, which vanishes on every finite subset
of I:

2.2) Jcl, #(J)< +o0o=Cu(J)=0.

In this paper we will frequently use Cantor functions and we will describe any
one of them simply by saying that it increases (or decreases) by « on the inter-

val J.
Let us remark that, if 7 =]a, bl, tye[a, b[, and ae R are fixed, then
there is a 1 — 1 correspondence between J(I) and the subspace

{we BV(I):u(ty +) = a},
given by u+~>u,, where
w,(0) =a+pull, t) itz u,(t) =a — u(lt, t]) otherwise.

Therefore in the sequel we will sometimes define functions in BV(I) by
describing their measure derivative and the value w(fy +) at some point
trela, bl.

We say that a function w e BV(I) is a special function of bounded variation,
and we write u € SBV(I), if Cu = 0. For the properties of a function 4 e SBV(I)
we refer to [11], [1], [2], [3].

2.3. Relaxation

We recall the notion of relaxed functional. Let F: X — R U {+ « } be a fun-
ctional on a metric space (X, 7). The relaxed functional F of F, or relaxation of F
in the topology 7, is the greatest r-lower semicontinuous functional less than or
equal to F; ie. the greatest functional such that F < F and F(u) <lim inf, F (u;,)
for every sequence {u,}, converging to u in the topology t. Then

F(u) = inf{li’{n inf F(uy):u, —u, up e X}.
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For a general treatment of this subject we refer to the books by Buttazzo [7]
and by Dal Maso [9]. We point out here that the relaxed functional F allows to
describe the behaviour of minimizing sequences for F; indeed minimizing se-
quences for problems involving F' converge, up to a subsequence, to solutions for
the corresponding problems for F. Throughout the paper we shall consider rela-
xation in the L' topology.

3 - Lower semicontinuity and relaxation results in BV

In this section we shall state and prove some lower semicontinuity and rela-
xation theorems concerning the functionals (1.3) and (1.4).

In the sequel we shall deal with functionals defined on the space BV (),
where I is a bounded open interval of R, and we assume that W: R — [0, + o[
is a convex function such that W(0) = 0; we also define a convex function with
linear growth W:R — [0, + »[ associated to W by setting

Let us consider the functionals F, Fg:BV(I)—[0, + ] defined by

Fu)=[W@)dt + |ug | ()
I

JWEaydt+ 2 |ut+) —u@ —)|  ifueSBVU)
Fs(u) =17 teSu
+ elsewhere on BV ().

Note that F'(u) = Fy(u) for every u e SBV(I).

It is easy to see that Fg is not lower semicontinuous with respect to the topo-
logy of L*(I) for any choice of the function W, while in general the functional ¥
is not lower semicontinuous (take for instance W(x) = x2). The following theo-
rem concerns the relaxation of the functionals F and Fy.

Theorem 1. The relaxation of the functionals F and Fg with respect to the
L' convergence is given by the functional L defined on BV(I) by

Uy
s |

3.1) L(w) =IfW(u)dt +IJW°"( ) |ug | .

In order to prove Theorem 1 we shall need two results about relaxation in
BV and W', proved respectively in [8] and [15].
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Proposition 1. Let ViR—[0, +o[ be a Borel function such that
V(z) < c(1+ |2|); then the relaxation of the functional

[Vydt  ifuecT)yNWhi)
E) =1 ‘
+ elsewhere on Wb 1(I)

with respect to the L' topology is given by E(u)= [V**(u')dt for every
ue WH1(D). !

Proposition 2. Let ViR — [0, + o[ be a convex function; then the rela-
xation of the functional

V' ydt  ifueWhi()
E(u) =1

+ elsewhere on BV (I)
Uy
s |

with respect to the L' topology is given by E(u)= [V (u)dt + [V=( ) s |
I i

for every we BV(I).

Proof of Theorem 1. Since L < F < Fg, we have F = L, once we prove
FS = L

By Propositions 1 and 2 it is enough to prove that

_ [Wwydt ifuec)NWHID)
Fg(u) <1
+ o elsewhere on W 1(I)

where W(x) = W(x) A |z|.

fuec(DNWHI) weset I, = {te: W(u' (1) > |u'(t)|}. We approxi-
mate % on I, with piecewise constant functions, thus replacing the quick growth
of % by a sequence of jumps. The set 7, is open, hence, considering its connected
components, it can be split in an at most countable union of open intervals of

+
r:r,=Ur.
1=1
We construct a sequence {u,}, piecewise constant on I, as follows. For
every h e N, we subdivide every interval I} in a finite number of contiguous su-

bintervals of lenght less than %:

i, h
1

i_ i,k Lh| « L
L=\, gt <4
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Set ajf " =inf I}* for k<mn;,, and a}" ., =sup I}, so that we may defi-

ne
w, (8) = u(ap ™) if telph and uy, (8) = u(t) if tel\l,

(remark that w e AC(I), hence the values of u at a " make sense). It is obvious
that the sequence {u;}, converges to u in L!(I). Moreover, the absolute conti-

nuity of u on I gives

i h

4o T h . ) +w Mk Q1
i |(D=2 3 |u(efl)—u@t|< 3 3 [ |u'|dt=[]u']|dt< +o.
i=1 k=1 i=1 k=1 4in I,

k
Therefore u;, e SBV(I) for every h and

Fg(uw) = [ W' @) dt + |(uy)s | (D SIIW(u'(t)) dt
N,

which concludes the proof.
Example 1. For example if W(x) = 22, then

. 2 if o] < % .
(8.2) W) = 1 and W= (z) = |z|.
le| — 1 otherwise

Remark 1. In [6], Prop. 4.1, it is proved that if we define on BV(I) the
funetional Fy by setting

JWEYAt+ 3 |ut+) —u(t =)  ifweSBV{I) and #(S,) < +

FO (u) =7 teS,
+ o elsewhere on BV({])

we still have F, = L (see (3.1)).

Remark 2. With the same arguments of the proof of Theorem 1 we can
prove that if we substitute in the definition of the functional F' the term |u, |
with y |ug |, where y is a positive constant, then the relaxation of F' has the
same expression with W) = (W) A y|x])**. Obviously the same is true for
Fy.
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Let us consider now the functionals G, H: BV(I)— [0, + «] defined by
G(u) = [W@)dt + #(S,) + |us | ()
I

Hu) = [WE)dt + #(Sy) + fat) |u ]
I 1

where a:]— R is a strictly positive continuous function.

Theorem 2. The functional G is not lower semicontinuous with respect to
the L' convergence and its relaxation is given by the functional L defined in
3.1).

Proof. As G = F, by Theorem 1 and Remark 1 it is enough to prove that
G < F,. Let w e SBV(I) such that Fy(u) < + . Then #(S,)=m and

Sy={ti:i=1,...,m; 0<t;<..<t,<1}.

For & sufficiently large let us consider the sequence

_ m 1
) on\U -+, + L
uh(t)= i=1 h h/

fw  omMi— it Al i=1..,m

1
E,
where fi* is the Cantor function increasing (or decreasing) by
1
%y
Then u,—w in L'(I), #(S,,) =0 for every h, and

5 1y sz - L i o o1
u(t; + h) % (2, h) on the interval J¢, t; + h[.

G(u) < li’m inf G(uy)

= lim inf I W) dt + > |t + %)—Mtr %)I
) —> Ai@x]ti—%’ti+%[ i=1

® =

<IW@dt+ tm S ja+ Ly —ad - L)
I - + 1 h h
=IfW('Ll)dt + én:l |w(t; +) — w(t; =)| = Fo(u)

and the proof is complete.
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Let us define now the functions W:I x R— [0, + [ by setting
W(t, ) = (W) A a(t) |z])**

(recall that convexification only applies to the variable x).

Theorem 3. The functional H is not lower semicontinuous with respect to
the L' convergence and its relaxation is given by the functional

Hw) = [WE, a@)dt + [W=(t, —2) |u/].
I I lusl

Proof. First we claim that H = E, where E is the functional defined on
BV(I) by

E() = [W@)dt + fa(®) |u; | .
I I

To this purpose let us fix w e BV(I). If # (S,) < + =, the same arguments of the
proof of Theorem 2 show that H(u) < E(u). Therefore let us consider the case
where S, is a countable set: S, = {t;};cn ¢ €. We can construct a sequence
{urtnen, wne BVU), #(S,,) =h, by setting

k
w,(0+)=u(0+) and wy=adt+Cu+ 2 (Wt +) —ult;—)J,, .
=1

It is clear that w, —u in L(I). Moreover, using again the arguments of the
proof of Theorem 2, for every h there exists a sequence {uf},, ujf € BV(),
# (S,p) = 0 for every n, uj — u; in LY(I), and E(u) < E(u,) + n~ L. Then by a
diagonal argument we find a sequence {u* }, converging to % in L'(I) and such
that

Hw) < lilm inf H(up*) = ﬁ}zn inf E'(u;*) < h}{n inf (& (wy,) + nll) = K (u).
Hence H < E and the claim is proved. w!
8

We prove that E(w) = [W(t, (1) dt + [ W= (¢, m) lug | .
Set I I s

3.3) m=mlina M=m1axa.
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We localise the functional £ by defining for every open subset A4 of I and
% e BV(I)

E(u, A) = [W@)dt + [a@) |u, | .
A A

In the same way we define

E(u,A) = inf{li}m inf B (uy, A):u, —u in L'(A), w, e BV(I)}.
We need the following result.

Proposition 3. For every ue BV(I) the set function E(u, ) is (the ve-
striction to the family of the open subsets of I of) a finite Radon measure on I.

Proof. Step i: E(u, ) is inner regular, ie. for every open set A cl we
have

(34) E(u, A) =sup{E(u, A"): A' open, A'ccA}.

Remark that E(u, -) is an increasing set function, ie. E(u, A') < E(u, 4)
if A’ c A, hence the inequality = in (8.4) is trivial. Let us prove now the opposite
inequality.

Fix a compact subset K of A and define 6= 1 dist (34, K). Then
put dg () = dist (¢, K), B(o)={teA:dg(t) <o} if 0€l0,d[ and define
B =B(d) = {t e A: dg(t) < 6}. Choose any two sequences {u,}», {v;}), in BV(I)
such that w,—u in L(B), v,—u in L'(A\K), and

E(u,B) = im E(uy, B) E(u, A\K) = Jim E (v, A\K).

For every h, using the fact that %, = w,, 7, = v, almost everywhere in I, by the
mean value theorem we can choose g;,€]0, [ such that i, (t) = u, (%),
1), () = v, (t) for every te dB(py), and

(3.5) > )lﬁh(t)—-ih(t)[ < |uy, — vy, | dt.

t e 3B(o;,

Qo |t

J
B\K
Therefore we can define the sequence {wj}, in BV(I) by setting

2y, (t) if £e B(py)

W (®) = v,(t)  otherwise.
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Using (3.3) and (3.5), we have

E(w,, A) < E(uy, B) + E(w,, AK) + 2 a(®) |%&,@) ~ ,(t)]

te OB(op)
< E(u,, B) + E(v,, A\K) + M —51— B\fK [, = va| dt .

Since w,— % in L'(A) and (u; —v,)—0 in L'(B\K), taking the limit as
h—s 4+ we obtain E(u, A) < E(u, B) + E(u, A\K).

As BccA, in order to conclude the proof of Step i we have to show
that we can choose K in such a way that E(u, A\K) is arbitrarily small.
To this purpose let us remark that for every open subset A of I we have
E(u, A) <Af W(u)dt + M |ug | (A), hence by Remark 2

Uy
s |

with W(x) = (W(x) A M |z|)**. For every w e BV(I) the right-hand side in (3.6)
is a finite Radon measure on I (remark that W(x) < M |x|), hence

(3.6) Eu, A) < [W@)dt + [W=( ) |ug |
A A

Us

[ Wa)dt+ [ W (—

) |us
A\K AK |2s | :|

vanishes for K invading A and the proof is complete.
Step ii: E(u, <) is a subadditive set funmction, ie. we have

E(u, A, U Ap) < E(u, Ay) + E(u, Ay)

for every pair of open subsets A4;, 4p of I.
By the regularity of E(u, ) (Step i) it is enough to prove that

E(’U/, A) < E(u: Al) + E(’M,, AZ)

for every open set A cc A; U A,. This inequality can be proved by arguing as in
Step i, choosing K = A\A4, and

B={teA:dg(®) < % dist (K, A\A,)} .

Moreover it is clear that E(u, -) is additive on disjoint sets, i.e.
E(u, 4 UAy) = E(u, Ay) + E(u, Ay)
if A;NA =0
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Step iii: £ (u, -) is the restriction to the open subsets of I of a finite Radon
measure.
It suffices to remark that the set function E(u, -) verifies:

a. E(u,-) is a positive and increasing set function
b. E(u,-) is inner regular (Step i)
c¢. E(u,-) is subadditive and it is additive on disjoint sets (Step ii)

d E(u,)< +o (see (3.6)

and to apply [12], Theorem 5.6.

Proof of Theorem 3 (Continuation). The function @ is uniformly conti-

M-m
n

nuous on / and mlina > 0, hence for every n e N if we consider ¢, =

there exists 6, > 0 such that [t —s| <d,=|a() —a(s)| <e,.

Take u € BV(I); by Proposition 1 E(u, -) is the restriction to the open sub-
sets of I of a finite Radon measure. Then for every # e N we can find a finite
open cover with small overlap {I; ,};-1, . i, of I such that every interval sati-
sfies |1; | < 6,, I; ,cl, and by (3.6), E(u, I, ,NI; ,) is arbitrarily small if
1 #j (remark that the support of |u, | has zero measure). So we can assume

3=

kn
(3.7 ;E‘(u, L) —E(u,I) <

The same afgument allows us to suppose also that:

by — o~ !
S W, uydt+ W ) ||
=11, Iin |, |

(3.8)

= = Uy 1
< SW, a@)dt + [ W= (¢, —2 U+
JW @+ W T | + 5

kﬂ-
3.9) Slu'| ) <sclw' | ) e>1.
i=1
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Remark that, if m; , = infa and M; ,= supa, then we have M; , <m; , +&,
for every i=1,...,k,. Lin
We estimate E(u, I; ,):

f W('M') di+ (Mi,n - Sn) |7’(’s’ l (Ii,n) SE'('lfl'ali,n) s f W(’M,) di+ (mi,n + 871.) |us, | (]i,n) .

Ii, n i,n

Hence, taking the relaxations and using Remark 2, we obtain

B, 1,) > [ Wi @de+ J (W) (qer) lud |
(3.10) o us,
E(’L&, Ii, n) s f —W“i.,{hn (’M,) dt + f (_szﬂn)w ( |us; | ) Ius, |

where Wi, @)=(W@AM;,~e,) |2])** and Wik@)=W@Aln,+e,) |o])*
If we set:
Wi (@) = (W) Amgp o)) Wi (@) = (W) A My, |o])*
Lemma 1 below implies that
Wit (@) < Wi (@) +eq o] Win(@) 2 Wili@) — 4 ]2l .
These inequalities can be extented to the recession funetions:
W)™ (@) < (W)™ (@) +en 2]l (W)™ (2) 2 (W)™ (2) — e 2] .

Therefore, recalling that |#%|dé + |u, | = |»’|, the inequalities (3.10) beco-

me
E(’LL, Ii,n) = f sz‘n(u)dt +If (W:n)m( ‘,le/] ) |us,| — &y {’U,' | (Ii,n)
Ii,n in 8
Bu, i) < [ Wit + S OW00" (o0 [+ 0 0] i)

Finally, using (3.7), (3.8), the fact that Wi, ()< W(, )< Wi, @),
Vtel; ,, and summing on ¢, we obtain that for every n»

t
us
r

1
DI "D+ =
) 1w DI S enclu' (D + 5

|Eu, I) — (JW(t, @) dt + [W= (¢,
I I

Taking the limit as »— + «©, we conclude the proof.
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Example 2. For example if W(x) = 22, then

27 if |o| < %a(t)
2
(@® A a(t) |z])= = a(t)x — (ait)) if & > —21— a(t)
(a®)® 1
—a(t)x — 1 1f:o<—§a(t).

Lemma 1. Let W:R — [0, + [ be a convex function such that W(0) = (.
Then for every b >0, ¢ >0, we have

(W@)A b +e)|e])** < (W@)Ab|z|)** +e|x|.

Proof. Let us recall that for every convex function V:R — R such that
V(0) =0 we have

3.11) V) = [V'(®)dt = [D* V(t) dt
0 1}

where D*V denotes the right-hand derivative of V, which is defined every-
where in R by the convexity of V. Indeed V is absolutely continuous and V'
exists and coincides with D*V almost everywhere in R.

It is enough to prove the inequality for x = 0. Let us set

wy=inf{e=0:D* W(x) = b} Cpie=inf{x=20:D" W(x)=b+e}.

By the convexity of W the function D* W increases on R, hence z, < . ,.

The functions (W(x) A (b + &) |x|)** and (W(x) A b|z|)** + ¢|z| are con-
vex and take the value 0 at x = 0. Therefore, by (8.11) it is enough to show
that

812) DY (W) AD+e) |z)**) <D (W) Ab|z|)** +¢|z|).

D*W(x) ifx<uzy,,

. + L .
Sinee DT (W) A (b + ) |z]) *)_b+8 ifr=a,,

D*W)+e ifx<a,

d D* (W(@) A bla|)™* + =
o W@ nblaly +elal =, if o>,

the inequality (3.12) is proved.
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4 - Lower semicontinuity results in SBV

Let us consider the functionals Gy, Hg:BV(I)— [0, + =] defined by

W) dt + #(S,) + 2 |u@+) —u -] if w e SBV(I)

GS (u) =1 teS,
+ ® elsewhere on BV (1)

FW)dt + #(S,) + % a(t) |u(t +) —ut—)| ifueSBVU)
1 tesS,
H =
s () + elsewhere on BV ()
where the function a:I — R is continuous and strictly positive, as in Sec-
tion 3.

In order to study the lower semicontinuity of Gg and Hg with respect
to the topology of L!(I), we shall need the following result about lower semi-
continuity properties of functionals defined on SBV(I). We say that a function
@:R X R-—>R is subadditive if we have

oz, y) < (e, 2) + oz, ¥) forala,y,zeR.

Proposition 4. Let {u,}, be a sequence in SBV(I) such that w,—u in
LYW, wllavey < ¢ and [W () dt + #(S,,) < ¢, where W:R—[0, + ®[ is a
i

convex function superlinear at + w. Then u e SBV(I), 4,— v weakly in L' (I),
(up)h = Juy, — ug = Ju in the weak® topology of measures, and

[ W) dt < lim inf [ W) dt #(8,) < lim inf #(S,,).
I ] > O I L —>

Movreover, if ¢:I X R X R—[0, + o[ is lower semicontinuous on I XR X R
and subadditive in the last two variables, then

(4.1) > o, ut+), ult—) < li}{riinf > P, w4, u, (T ).

teSy ®  telSy,

Proof. For the first part of the proposition see [1], Proposition 4.2. Let us
prove (4.1). We can assume that the right-hand side is finite, otherwise the re-
sult is trivial. Let {u;}; be a subsequence of {w,}, such that

% @ (tupt+),u,E =)< + o .

Euh

(4.2) klirp > ¢(t,uk(t+),uk(t—))=li¥n inf
>t s

Suy

Moreover, since # (S,,) < ¢, we can assume # (S,,) = N e N (N independent
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of k), which means that S, = {tf:i=1,...,N} with 0<tf<..<tf<1.
Then

N
(ug)s = El(uk () = w (tF =) 6y .

7=

Without loss of generality, we can suppose that tf—t; [0, 1] for every
i=1,...,N. If for some ie{1,..., N} we have tf— 0, then the sequence
(uy, (BF +) = wy (¢ —)) 6 4+ does not give any contribution to the limit measure u'.
The same is true if tf — 1. If instead ¢ € S,, then there exist sequences {t/};,
{tF 1}y - {tE e, 1 < m, converging to ¢ and we have

wEH) ~w@ =)= lm 3+~ ).

We can also suppose that u; (tf +) — a;*, u, (¢f =) > a; for every i =1, ..., m.
Then a, =u(t+), a7 =u( ), and a;* = a5, for i=1,...,m — 1, so that

uw(t+) —u@-) = z_:l(af —ai).
By the subadditivity of ¢ in the last two variables, we have
¢(i’ u(i +)7 %(E _)) = Zl¢(z’ a/i+ ’ ai—) .

Moreover, by the lower semicontinuity of ¢, we obtain

o, a4, a7) < lim inf ¢ (8, wy (8 +), we(tF =) Vi=1,...,m
which implies that for every teS,
_ _ _ m
o, u(t+), u(t ~)) < lim inf Azlcp(t{“, wy, (EF +), u, (EF ).
-— 00 1=

Finally, summing on ¢ e S, and recalling (4.2), we conclude ’bhat

2 9 ulH), ult —) Slminf 3 ¢t w(t+), wi(t ).

Remark 8. If a:/—[0, + o[ is a lower semicontinuous function, then
every function ¢ of the form ¢ (¢, «, y) = a(t) |« — y| satisfies the hypotheses of
Proposition 4.
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Theorem 4. Let us assume that the volume energy density W is superli-
near af = ., Then the functionals Gg and Hg are lower semicontinuous with re-
spect to the L' convergence.

Proof. Let us prove that the functional Gg is lower semicontinuous (the
proof for Hy is exactly the same, recalling that mIina > 0). Let us consider a se-

quence {u;}, in BV(I) such that u, —wu in L*(J). We have to show that
Gs(w) < lim inf G ().

Let us assume that the right-hand side is finite, otherwise the result is tri-
vial. Then %, e SBV(I) and Gg(u;) < c¢. Using the superlinearity of W it is easy
to see that the sequence {uy,}, is bounded in BV(I), hence we can apply Proposi-
tion 4 to conclude the proof (see also Remark 3).

5 - Minimum problems

In this section we study some minimum problems corresponding to the fun-
ctionals G, Gg, H, and Hy introduced in Sections 3 and 4. Without loss of gene-
rality we will take I =10, 1[. As a model case we will consider W(x) = 22 and
a(t)=(t - -3—)2 + 1.

We can describe the behaviour of our functionals by examining some mini-
mum problems with generalized Dirichlet boundary data.

Let us fix aeR and consider the boundary conditions #(0) =0 and
%(1) = a. It is well known that these conditions are not well-posed for pro-
blems in BV(I) (see [4]). We have to relax these conditions by penalizing
jumps at ¢ =0, 1. Then we introduce the functionals

1
G2 (u) =Of |%|%dt + #(S,,) + | ()i ] ([0, 1])

1
Jla2dt+ #(S,)+ 2 |us(EPH—u,t-)| ifueSBV(O, 1)
G§(u) =" £ES,,

+ elsewhere on BV (0, 1))

where the function %, € BV},.(R) is obtained by extending % to 0 in ] — «, 0]
and to a in [1, + «[.
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In order to study the minimization problems associated to our functionals we
will need the following proposition, describing all the minimum points of the
functional

1_.__
(6.1) L% (u) ———OfW(zl) dt + [(u,);] ([0, 1D)

which corresponds to the functional L defined in (8.1) in the particular case
W(x) = 22 (the function W is given by (3.2)). All the minimum values and the
minimum points of the problem

min {L(w): % e BV(10, 1D}
are described in [6], Proposition 4.2.

Theorem 5. Let us consider the minimization problem
m& = inf {G*(u):u e BV(Q0, 1D}.
Then we have
i if |a] < 1, then m§=a® and the unique minimum point is u(t) = od

ii. ifa> %, then mé = o — % and the minimum, points are all w € BV (]0, 1[)
such that #(S,,) =0, v' e M, (10, 1D, % = % almost everywhere;

iii. if a< -1, then mé=|a — + and the minimum points are all
u e BV(10, 10) such that #(S,,) =0, —u'e M, (10, 1)), % = ——% almost every-
where.

Proof. If is easy to see that the relaxation of the functional G¢ is given by
L*. Therefore the minimum value of the functional L® coincides with the infi-
mum of G¢ and a function « is a minimum point of G¢ if and only if % is a mini-
mum point of L¢ such that G*(u) = L*(u). Using Proposition 4.2 of [6] and com-
puting G on the minimizers of L® we obtain the assertion of the theorem.

Let us consider the minimum problem

mé, = min {G§ (u):u e BV(0, 1D}

(6.2) 1
=min {f [d]%di + #(S,)+ 5 |us (¢4 —ult )] iw e SBVA0, 1D}
0 €0y,
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Using Theorem 4 it is easy to see that for every a such a minimum value
exists. Indeed let us consider the case a > 0 (the opposite case being analogous)
and let {u;};, be a minimizing sequence for G¢. We have just remarked in the
proof of Theorem 4 that {u,}, is bounded in BV(]0, 1[), hence, up to a subse-
quence, we can suppose that %, — « in L1(10, 1[). By the lower semicontinuity of
G we conclude that % is a minimum point.

Theorem 6. We have:
i if || <2, then m§; = o and the unique minimum point is u(t) = at

ii. ifa= %, then mg, = -g- and the minimum points are u(t) = %t and all
u e SBV(10, 1[) such that on [0, 11 we have (uy) = %dt + 84, for t, [0, 1]

iii. if a> %, then mg,=a + % and the minimum points are all
u e SBV(0, 1[) such that on [0,1] we have (u,) = % dt + (a — %)5&; for
thel0, 1]

iv. ifa= —%, then mg; =% and the minimum points are u(t) = —%t
and oll w e SBV(0, 1[) such that on [0, 1] we have (u,) = —-;:dt — 0y, for
to € [0, 1]

v. if a< —%, then mé, = |al +% and the minimum points are all
weSBV(0, 1D such that on [0, 1] we have (u,)' = —1dt+ (o + —;—)6% for
to & [O, 1]

Proof. It is not restrictive to suppose a > 0. Note also that the assertion of

the theorem is trivial if 0 < a < %, since G§ = G°
If % <a<1 then a minimum point w satisfies #(S,,) =0, hence

ue Wh2(0, 1D, #(0 +) = 0, #(1 —) = @, and it is well known that the minimum
1
of f|u']|%dt on WV 2(]0, 1[) with boundary conditions %#(0) =0, u(1) = a is
0

achieved on the affine function % (t) = at.
It remains to consider the case a > 1. First of all we can prove that, if % is a
minimum point and S,, # 6, then #(S, ) = 1. Indeed if #(S,,) =k >1 and

k
() =tadt + 2 [wg(t;+) —uy(t;-)0,, with te[0,1]
=1

then the function v e SBV (0, 1[) defined by the conditions (0 +) = % (0 +)
k
and (v,) =%, dt + (2 [ue G +) — u. @ =)D d,, is such that G§(v) < G§(u)
i=1

and this gives that u is not a minimizer.
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Let us fix a minimum point % such that #(S,,) = 1. We can prove that %
1

is constant. Indeed we have that (u,) =4, dt + (a — [4dt)d, for some
toe [0, 11. 0
If we consider the function v € SBV(]0, 1[) defined by »(0 +) = %(0 +) and

1 1
(vy)' = (Judt)dt + (a — [+ dt)d, on [0, 1], by Jensen’s inequality we obtain
0 0

that G§(v) < G§ () unless % is constant.

Therefore we have (u,) = cdt + (a —¢)J,, on [0, 1], for a constant c e R.
We claim that 0 < ¢ < a. If ¢ < 0 it suffices to consider v e SBV(J0, 1[) such that
v(0+) =u(0+) and (vy)' = |¢|dt + (a — |¢|)&,,, while if ¢> a we can take
v=u/Na.

On such a function % we can compute G¢(u) = ¢ — ¢ + a + 1 and the mini-
mum value on [0, af is achieved at ¢ = 5

To sum up, if for every #; € [0, 1] the function u,, is the function satisfying
(uy)' =1 dt+ (a~ 3)dy, on [0, 1], then G§(u,) =a + %, while G¢(at) = a?.
By comparing «o +% with a? we obtain the assertion of the theorem.

Let us introduce now the functionals

1 1
He(u) = [|4|?dt + #(8,,) + J(¢ = 2P+ 1) |u) | + (0 )] + |a—u(l-)|
0 0
1 ,
Hg (u) =0f [%]|2dt + #(S,,) +t§S‘, «(t - %)2 + 1) |us(E+) —use (@ o)
if weSBV(0,1[), while H*(u) and HZ&(u) are sets equal to + o if
u e BV (10, 1D\ SBV(0, 1D.
Theorem 7. Let us consider the minimization problem
mf = inf {H*(w):u e BV(10, 1D}.
We have:

i if |a] s %, then mf = a® and the unique minimum point is u(t) = at
ii. if |a] > %, then mf = |a| — %, but the infimum is not achieved.
Proof. As a(t) =1 on [0, 1], we have that H* = G, hence assertion i is

trivial,
Let us prove ii. As above, it is not restrictive to assume a > 0.
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It is clear that mf =z o — %. First let us construct a sequence {u, },, such that
H(uy) — (a — i). For every heN, h > 2, we set

1 . 1 1
= fost< = - =
2t 0=t 2 R

= 3 3 l_l< <l _:L
1 _1 el 1 o
2t+(a 2) 1f2+h<t\1,

where f% is the Cantor function increasing by a — % +117 on the interval
[% e +le]' Then

B’
1,1
ey Lol 1y Pt 1 )
He(w) = 5 (5 h)+1f1((t 2)+1)|ch|
P
1 1 1 1 1 1 1
< - =Na—-s+)=a— = =).
" 2h+(1+h2)(a 5+ 3y)=a- 1 +0(3)

This implies that H*(u,) —»>a — % for A — + o, hence mfi=a — i—.

In order to conclude the proof it is enough to show that H%(u) > a — % for
every u € BV(I). By contradiction, if H*(u) = a — %, then « is a minimizer of
G*. Using Theorem 5 and comparing G“(u) and H*(u), we obtain # (S,,) =0,
%= %, and

! 1
J@t— =2|Cu| =0.
F 2

By the properties of the Cantor part of the derivative of a BV funection (Sec. 2),
we conclude that Cu = 0. Hence u .. is continuous and ' = —;- on 10, 1[, which is
impossible since a > %

Let us consider the minimum problem

mf, = min {H§ (u):u € BV(10, 1D}

1
=min {f]ul’dt+# S+ 3 A+ —;—)2) o6+ —u4t—)| : weSBV(0, 1D} .
0 €0y,

As we have done for (5.2), using Theorem 4, we can prove that for every a such
a minimum value exists.
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Theorem 8 We have

i |a] < %, then mf,=a® and the unique minimum point is
u(t) = at

ii. ifa=3, then mf; = 2 and the minimum points are u(t) = 2t and the
Sfunction u e SBV(0, 1[) such that on [0, 1] we have (u.)' = %dt + 6,

iii. if a> —g—, then mf, = a —l—% and the minimum point is the function
u e SBV(0, 1]) such that on [0, 1] we have (u,) = %dt + (a0 — %)6,{,

v. if a= -2, then mf; = 2 and the minimum points are u(t) = -3
and the function e SBV(0, 1[) such that we have (u.)' = -%dt - 8; on
[0, 1]

v. ifa< —32, then mf; = |a| + 2 and the minimum point is the function
u e SBV(0, 1)) such that on [0, 11 we have (uy) = —%dt + (o + %)6%.

Proof. The theorem can be easily deduced from Theorem 6, comparing G§
and H¢, and remarking that a minimum point » of H§ cannot jump in %, if
tp = 1.

2

Remark 4. By considering the functional G* for |a| > % we obtain exam-
ples of minimization problems where the minimum values on BV (I) and SBV(I)
exist and are different. On the other hand, by considering the functional H¢ for
|a] > -;— we obtain examples of minimization problems which can be solved on
SBV(I) but not on BV(I).

References

[11- L. AmMBROSIO, A compaciness theorem for a special class of functions of bounded
variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881.

[2] L. AMBROsio, Variational problems in SBV, Acta Appl. Math. 17 (1989),
1-40. .

[3] L. AMBRoOsIO, Ewistence theory for a mew class of variational problem, Arch.
Rational Mech. Anal. 111 (1990), 291-322.

[4] G. ANZELLOTTI e M. GIAQUINTA, Funzioni BV e tracce, Rend. Sem. Mat. Univ.
Padova 60 (1978), 1-21.

[5] G. BoucHiTtE and G. BUTTazZO, Integral representation of nonconvex functio-
nals defined on measures, Ann. Inst. H. Poincaré Anal. Non Linéaire, to
appear.



306 A. COSCIA [24]

[6] A. Brampes and A. Coscia, A singular perturbation approach to variational
problems in fracture mechanics, Math. Mod. Meth. Appl. Sci. 3 (1993),
303-340.
7 G. BuTtazzo, Semicontinuity, relaxation and integral representation in the cal-
culus of variations, Pitman Res. Notes Math. Ser. 207, Longman, Harlow
1989.
(8] G. Burrazzo and G. DAL Maso, Integral representation and relaxzation of local
Jfunctionals, Nonlinear Anal. 9 (1985), 515-532.
[9] G. DaL Maso, An introduction to I'convergence, Birkhduser, Basel 1993.
[10] E. DE GIORGL, Free discontinuity problems in calculus of variations, Analyse
mathématique et applications, Gauthier-Villars, Paris 1988.
[11] E. DE Giorat e L. AMBROSIO, Un nuovo tipo di funzionale del calcolo delle va-
riazioni, Atti Accad. Naz. Lincei Rend. 82 (1988), 199-210.
[12] E. DE GIORGI et G. LETTA, Une notion générale de convergence faible pour des
Jonctions croissantes d’ensemble, Ann. Scuola Norm. Sup. Pisa 4 (1977),
61-69.
f13] H. FEDERER, Geometric measure theory, Springer, Berlin 1969.
[14] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhiuser,
Basel 1983.
[15] C. GorrMAN and J. SERRIN, Sublinear functions of measures and variational
integrals, Duke Math. J. 31 (1964), 159-178.
[16] A. 1. Vov’peRrT, The space BV and gquasilinear equations, Math. USSR Sb. 2
(1967), 225-2617.
[17] W. P. ZIEMER, Weakly differentiable functions, Springer, Berlin 1990.

Sommario

Su un intervallo aperto e limitato I c R si considerano funzionali della forma (1.1),
che sono legati alle formulazione variazionale di molti problemi in fisica matematica,
ricostruzione del linguaggio e ingegneria meccanica. Nell’espressione del fumzionale #
denota la misura che conta i punti su R, I & la configurazione di riferimento, la fun-
zione % rappresenta lo spostamento, che & differenziabile al di fuort dell’insieme di
«discontinuitd» S, e u(t +), u(t —) sono ¢ limiti destro e sinitro di w nel punto t. Le fun-
zioni W e © rappresentano le densita di energia rispettivamente di volume e di superfi-
cie. Si considerano energie di superficie @ della forma (1.2), dipendenti anche dalla po-
sizione dei punti di solto, per una generica funzione continua o:I —10, + o[.

Si studiano le proprietd di semicontinuitd inferiore dei funzionali corrispondenti e
alcunt problemi di minimo con condizioni ai limiti di tipo Dirichlet.
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