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JURGEN GILLARD (¥)

Quaternionic space forms and geodesic spheres and tubes (**)

1 - Introduction

In a previous article [1] we started with the study of the Ricci-semi-symme-
try condition Ryy-@ = 0 for geodesic spheres and tubes in a Riemannian mani-
fold. In view of the strong similarities between the intrinsie and extrinsic geo-
metrical properties of geodesic spheres and tubes, determined respectively by
the Ricci tensor g and the seeond fundamental form o (see [2], [4], [13]), also the
semi-parallelism condition Ryy o =0 was investigated.

We proved that in a real space form the small geodesic spheres and tubes sa-
tisfy these two properties and that each one of them is sufficient for a connected
Riemannian manifold to be of constant sectional curvature.

Next it was shown in [5] that these conditions can be used to characterize
complex space forms in the sense that for a connected Kihler manifold of dimen-
sion # = 4 a necessary and sufficient condition to be of constant holomorphic
sectional curvature is that all its small geodesic spheres satisfy Ryxy @ =0 or
Ryy+0 =0 for the so-called horizontal tangent vectors X, Y to the spheres. An
analogous theorem is established for geodesic tubes by taking horizontal vectors
only at special points.

In this paper quaternionic space forms are considered. First of all we sort
out which class of tangent vectors X, Y, Z, W to the geodesic sphere or tube
makes (Ryy0)zw and (Ryy- 0)zw vanish. This leads to an adapted notion of hori-
zontal tangent vectors and special points. It turns out that in the case of geode-
sic spheres the tangent vectors X, Y need to be horizontal, whereas for geodesic
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tubes one has to restriet to horizontal vectors X, Y, Z in special points. Subse-
quently it is proved that the conditions obtained are sufficient for a quaternionic
Kéhler manifold of dimension # = 8 to be of constant @-sectional curvature.

2 - Preliminaries

Let (M, g) be an n-dimensional, connected, smooth Riemannian manifold. De-
note by V the Levi Civita connection and by R and g the corresponding Riemann
curvature tensor and Ricci tensor, respectively. We use the sign convention

Ryy = V[X, Y] — [Vx, Vyl

for tangent vector fields X, Y on M.

Now, suppose that (M, g) is a quaternionic Kdhler manifold [9], that is,
there exists a three-dimensional bundle V of tensors of type (1, 1) over M
such that locally the bundle V has a basis of almost Hermitian structures
{Jo, J1, J2} satisfying

1) JiJj==JjJi=Jdy

Vydo =1r(X)J; — q(X)J;
(2) VydJi = —r(X)Jy + p(X)Je
Vxdo =q(X)Jy — p(X)J;

where (4, 7, k) is a cyclic permutation of (1, 2, 8) and p, ¢, r are local one-forms.
Such a basis is called adapted. It follows that dim M = n = 4m. As is well-known,
for » = 8, M is an Einstein manifold [9]. Let X € T), M and denote by Q (X) the four-
dimensional subspace spanned by X, Jy X, J, X, J, X, called the @-section determi-
ned by X. If for any Y, Z € @(X) the sectional curvature K(Y, Z) is a constant
c(X, p), then it is called the Q-sectional curvature with respect to X at p. If this is
also independent of X, then it is a global constant and in this case (M, g) is called a
space of constant Q-sectional curvature or a quaternionic space form. Further, a
quaternionic Kéhler manifold of dimension » = 8 is of constant @-sectional curva-
ture ¢ if and only if the curvature tensor has the form

RyyZ = 2 {9(X,2)Y - g(¥, Z)X}

(3)
%{E 9 X, D)1, Y — g(J,Y, Z)J; X + 2¢(J.X, ) J; 2)}
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for any adapted basis {Jy, J;, Jo} of the tensor bundle V. For a proof, see [9],
[14]. In the sequel we will need another characterization.

Proposition 1 [10]. A quaternionic Kihler manifold of dimension n = 8 is
a quaternionic space form if and only if g(RxyX,Z)=0 for all X, all
YeQX) and Z € Q(X)*, or equivalently, Ry;xxz=0(1=0, 1, 2) for all X and
Z as above.

Now, let m be a point in an arbitrary Riemannian manifold M and y a geode-
sic parametrized by arc length » such that y(0) = m. Put u = y'(0). Next, let
{E1, ...,, E,} be a parallel orthonormal frame field along ¥ with E, (0) = %. Let
G, (r) denote the geodesic sphere centered at m and with radius » < i(m), the
injectivity radius at m. For a point p = y(r) = exp,, (*u) € G,, () we have the
following expansions for the curvature tensor 2, the Ricci-tensor g ¢ and the se-
cond fundamental form o of G, (r) with respect to {E, B b

Eabcd(p) = # (00c0pq — 0 44 O pe)

4
v +{Rapes— ‘:)1; (Rubud 6 ac + Bugue 6 50~ Rubc O ad = Bugua 040} (m) + 0 (1),
0w (p) = (S Ry L 0= 3 Roaup) (m)
(V0w = 4 Vu@umbas = LV, Ris) (m)
* +7‘2(%V124u9ab 110 VeuQuubas ~ n;:)z Ve Rugus
+ %Rmmb Quu™ 45 ; Ry Oan— n4—;2 ;Z:ZRuaquum)(m)-l-O(’rs),
(6) Ow(p) = —5ab 3 Rypus (m) + 0(r?)

for a,b,¢c,d=2,...,n, where Ry, = 9(Rg g, E., E;) and similarly for the
other tensors. We refer to [2], [6], [7], [12] for more details.

It is easy to see that along a geodesic y one can choose an adapted basis
{o, J1, Jo} of parallel tensor fields along y, that is, V,  J;=0. So, in a quater-
nionic K#hler manifold we make a more specific choice for the frame field
{E;;1=1,...,n}, taking as initial conditions E;,,(0)=J;% (i=0,1,2).
Hence, by virtue of the parallelism, E; ., = J; y’ = J;E,. Then the technique of
Jacobi vector fields makes possible to write down complete formulas for the se-
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cond fundamental form of a geodesic sphere [11], [12]

2
(7 o=Ag+p 2 ni®n.

This together with (8) and the Gauss equation yields an expression for the cur-
vature tensor, which by contraction results in

(8) 0=2g+u 2 1;®;

where g denotes the induced metric,

l=—\/—Ecotﬁ"r y+/1=\/5cot\/5'r

2 2

T=m+D S+ (-2 +3ud  E= —E”f T (n — 8) ph + 22

for ¢ > 0 and ;(X) = g(X, J;7") = g(X, E; 1 2). When ¢ <0 one has to replace
the trigonometric functions by their corresponding hyperbolic functions and the
formulas for ¢ =0 are obtained by taking the limit as ¢ — 0.

Now, we wil consider geodesic tubes, that is, tubes about a geodesic curve.
We refer to [4], [6], [8], [12], [13] for more details.

Let o:[a, b] > M be a smooth embedded geodesic curve and let P, denote
the tube of radius r about ¢, where 7 is supposed to be smaller than the distance
from o to its nearest focal point. In that case, P, is a hypersurface of M.

Let o be parametrized by the arc length and denote by {e;, e, ..., e,} an or-
thonormal basis of Ty, M such that e; = 6(a). Further, let £y, ..., K, be the
vector fields alongs o obtained by parallel translation of ey, ..., e,. Then E; =&
and {E,, ..., E,} is a parallel orthonormal frame field along the geodesic o.

Next, let p € P, and denote by y the geodesic through p which cuts o ortho-
gonally at m = o(t). We parametrize y by arc length r such that y(0) = m and
take (Es, ..., E,) such that E,(t) = y'(0) = u. Finally, let {Fy, ..., F,} be the
orthonormal frame field along y obtained by parallel translation of
{E\@#), ..., E,(t)} along y.

For the hypersurface P, one has the following expansions with respect to
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this parallel frame field [4], [13):

(9)

(10)

(11)

(12)

(13)

(14)
(15)

(16)

= 1 1
Rlabc(p) = (Rlabc - 5 Rlubuéac + E Rlucuéab)(m)

+Ir(vuR1abc - % VuRlubuaac + é‘ VuRlucuaab)(m)

+7‘2(% V?m}?'labc + %RlubuRaucu - é—RlumRaubu)(m)

2
- %’ (V2 Rlubu 0 ac” szcu Rlucu 0 ab + Rlulu Rlulm 0 ac” Rlulu Rlucu o ab) (m)

2472

2 7
- ’;‘Z (123 BBy O ac — };::3 Ry Reyan, 0 a)m) + 0 ("'3)

Rusea(p) = ;1; (Bae B0 = O aaOs) + Rupea (1)

~ 2 RouinSoc = BououOa + Ruoncu 11 = B 010 + 0(r)

21 (p) =on(m) — (n—1)Ry,(m) + O(r)

010(P) = 01a(m) = 5 Riya () + 7(Vo010 = % V, Ryy )

n+1 o
8 Vuu

2 n
= 57 (3% = 5) Buusy R+ (0 + 1) 3 Ruy Ransa)(m) + (%)

+7‘2(% Vﬁu@la - Riyen + % QuuPiyau (M)

Eab(p) = ’i’l,,;;?) 5ab + (Qab - ﬂ"gtiRaubu)(m)

- % (Quuaub + 2R1ulu6ab)(m) + O(’V‘)

ou(p) = 0(7)
012(0) = = 5 Ruyau(m) + 0(r?)

ow(p) = ',%T 6ab + 0(7)

for a, b,c,de {3,4,...,n}.

Next, suppose that (M, g, V) is a quaternionic Kihler manifold. Then a point
P = expy,, (ru) on the geodesic tube will be called a special point when u = Jo(¢),
where J is a tensor of the three-dimensional tensor bundle V in the point m. So,
u = (aJy + bJy + cJo)(m)(5(¢)) for some adapted basis {Jy, J;, Jz} anda, b, ce R
such that a?+ b2+ c2=1.
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As it is easy to see we can choose an adapted basis {Jy, J1, Jo} of parallel
tensor fields along the geodesic y such that Jy(m) = (ady + bJy + cJo)(m).
Therefore, without loss of generality, a special point p can be obtained by taking
u = Jyo(t) for {Jy, J1, Jo} as above and it suffices to determine the second fun-
damental form with these assumptions.

Straightforward computations using the technique of Jacobi vector fields
(see [3], [12]) give then an explicit expression for the second fundamental form
at these special points

2
(17) G=Ag+.201/mi®m.
1=
Together with (3) and the Gauss equation we obtain
_ 2
(18) o=2g+ 2 v:in:®m
where ¢ denotes the induced metrie,
vo+ A= —VectanVer vi+A=vy+A=Vceot\Ver
Ve ., Ve

— 2
A= eot~r A=m+DE+m-2)A2+1 3 v,
2 2 4 i=0

2

7= =2t - vid - v — B )

for ¢ > 0 and #,;(X) = g(X, J;¥"). When ¢ < 0 one has to replace the trigonome-
tric functions by their corresponding hyperbolic functions and the case ¢ = 0 can
be obtained by taking the limit as ¢ — 0. ’

Finally, a tangent vector X at a point p of a geodesic sphere G,,(7) or a geo-
desic tube P, is called horizontal (with respect to this sphere or tube) if X is or-
thogonal to Q(y' (7)) or equivalently if #;(X) =0 for i=0, 1, 2.

3 - Geodesic spheres

First, we prove

Theorem 1. Let (M™, g, V), n = 8, be a quaternionic space form. Then for
all small geodesic spheres in M it holds that

EH'G= 0 =Exyé

for all horizontal tangent vectors X, Y to these spheres.
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Proof. From (7) it is easy to see that
_— 2 —
~ By o)W, W) =2u 2 1 (Bay W) (W).

- - 2
But, #n;(RxyW)= —Rxyj,w= —% kgﬂg(JkX; Vg (J.J;y', W), where we

used the Gauss equation together with (3) and the horizontality of X, Y. Swit-
ching the summation indices yields

~ 2 2
By )W, W) = pe 2 g(JX, V{2 n:(Wg (T Jiy’, W)}

in which the term between brackets vanishes. This proves the first result since
ﬁn-a is symmetric.
In the same way from (8) it follows that Ryy g = 0.

Next, we prove the converse.

Theorem 2. Let (M",g,V), n =8, be a quaternionic Kihler manifold
such that all its small geodesic spheres satisfy ome of the conditions

Ryyro0=0 or Ryo=0

Jor all horizontal tangent vectors X, Y to these spheres. Then, (M, g,V) is a
quaternionic space form.

Proof. For a point p = exp,, (r4) on a small geodesic sphere G,, (1) we use
the notations introduced in Section 2. In terms of the frame field
{E;;i=1,...,n} along the geodesic ray y between m and p, the space of hori-
zontal tangent vectors to G, (r) at p is spanned by {E5(7), ..., E,(n}.

By means of (4) and (6) we can compute the power series expansion of
(Eab-a)cd =0fora,b=5,...,m and ¢, d =2, ..., n. Considering the coefficient
of r ! we are led to

faacRdubu + 0 po Riuan — 0 ad Roypu + 0piRouan = 0.

Takinga=d=bandc=1+2fori=0, 1, 2 (that is, ¢ represents J;«) yields
Ry yuu = 0. Since b stands for an arbitrary tangent vector at m, orthogonal to
U, Jou, J1u, Jou, the result follows from Proposition 1.
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For the second case, we use (4), (5) and consider the coefficient of 2 in the
expansion of (Rg;-0) = 0. This leads to a condition in which we take b=d = a

and ¢ =i+ 2 for i =0, 1, 2. This yields 04y,, = Zg-RauJiitzt. Sinee M is an Ein-

stein space, it follows that R, 4. = 0 for i =0, 1, 2, where @ represents a vec-
tor of @(u)*. Again, Proposition 1 finishes the proof.

Note that the conditions in Theorem 2 may be replaced by the weaker condi-
tions (Ryy*0)zw = 0 and (Rxy* 0)zw = 0, where X, Y and Z are horizontal and W
arbitrary.

4 - Geodesic tubes
We have

Theorem 3. Let (M™, g, V), n =8 be a quaternionic space form. Then
for all small geodesic tubes in M it holds that

(Rxy 0)zw =0 = (Bxy 0)zw

for all horizontal tangent vectors X, Y, Z and every tangent vector W to these
tubes at the special points.

Proof. From (17) it follows that at the special points we have

— 2 — —
~(Rxy-oXZ, W) = igovi{”?i(RXYZ)ﬂi(W) + 7 (Rxy W) n:(2)}.

As in the proof of Theorem 1, using the formula for 7:(Rxy W) we obtain for
horizontal vectors X, Y
2

_ 2
(Rxy oXZ, W) = Vini(W)kgog(Jan VNg(Jpdiv', Z)

c
2 i=e

2 2
t5 2 Vi@ 2 gUX, NgJudiy's W}

Taking Z horizontal obviously yields (Ryy 0)gw = 0.
In the same way from (18) it follows that (Ryy 0)aw = 0.

Finally, we consider the converse.
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Theorem 4. Let (M",g,V), n=8, be a quaternionic Kdihler manifold
such that all its small geodesic tubes satisfy one of the conditions

By ®gw=0  or (Bxy'0)gw=0

Jor all horizontal tangent vectors X, Y, Z and every tangent vector W to these
tubes at arbitrary special points. Then, (M, g, V) is a quaternionic space
form.

Proof. For an arbitrary point m on M and an arbitrary unit tangent vector
% to M in m we choose a geodesic o through m = o(t) such that u = J,&(t). This
vector # determines a special point p = exp,, (%) on the geodesic tube P, about
the axial curve o. In terms of the notation introduced in Section 2, this means
that Fo =JoF,. Additionally we can choose Fy, Fy such that Fy=J;F; and
Fy=J,F;. Then the space of horizontal tangent vectors to P, at p is spanned by
{Fs,..., F,}.

So, the first condition gives (B 0)y = 0 with a, b, ¢ =5, ..., n. Calculating
the power series expansion of this expression and considering the coefficient of
71 yields Ry = 0. Next, we take b = ¢ = 2 and a = Jy2. Since F,(0) = —Jyu,
this yields R, uzs,: = 0, where x represents a tangent vector at m, orthogonal
to w and J;u(i=0,1,2). We may replace 4 by Jyu. Then it follows
Ryvjee =0 for all x and all we Q(x)*, which is what we need in view of
Proposition 1.

For the Ricci-condition we can calculate the power series expansion of
(B 0)a =0 for a,b=5,...,n. Considering the coefficient of » % we get
016 = Riypy + (n — 8) Rygy,. Since M is an Einstein manifold and through the
special choice of the point p, it follows that Ry, s 4y + (% — 3) Ry yas, = 0. Taking
b=Jya gives

RJoauJouu +(n— S)RJouanaa =0

for a orthogonal to % and J;u (¢ = 0, 1, 2). Switching o and % and subtracting the
equations obtained, we have Rj 47,0 = 0. Again we may replace u by Jyu,
which results in R, ., =0 for all ¢ and all ue Q(a)*.

Finally, applying the same procedure for the special points p determined by
u =J10(a) and u = Jp6(a), we get respectively Ryuj 0 = 0 and Ryqj,q, = 0 for
the same choice of @ and u. Then Proposition 1 finishes the proof.
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Sommario

Si dimostra che una varieta M a curvatura sezionale quaternionale costante (quater-
nionic space form), connessa e di dimensione almeno 8, puo essere caratterizzato da
una condizione di semisimmetria della forma (Ryy 8)zw =0 o da una condizione di
semiparallelismo della forma (Ryy 0)gw =0, con W arbitrario ed X, Y, Z speciali.

B, 0, 0 indicano rispettivamente il tensore di curvartura di Riemann, il tensore di
Ricci e la seconda forma fondamentale di piccole sfere geodetiche o di tubi geodetici ed
Ryy opera come derivazione.
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