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A note on Grad’s 13 moment expansion
in extended kinetic theory (**)

1 - Introduction

The role played by the expansion of the unknown distribution function in
tensor Hermite polynomials, proposed by Grad [3] for the solution of the Bol-
tzmann equation, is well known in kinetic theory [4]. In particular, Grad’s 13 mo-
ment approximation has allowed a considerable improvement with respect to
classical thermodynamies and its traditional local Maxwellian approximation of
the distribution function, and has shed new light on the resolution of several hi-
storical paradoxes [1].

More precisely, the 13 moment method has constituted the basis for the in-
troduction of a new significant theory of Mathematical Physics in the scientific
literature, the so called Extended Thermodynamics, which is widely and succes-
sfully studied and applied nowadays [5]. In addition, in the hydrodynamic limit
of collisionally dominated fluid, when one is interested in bulk correction terms
up to the first order in the stiffness parameter, the 13 moment equations allow a
very easy asymptotic analysis versus such a small parameter (the Knudsen
number). The analysis yields straightforwardly [4], to first order, Newton’s law
for the deviatoric stress tensor and Fourier’s law for the heat flux, as constituti-
ve equations; the Navier-Stokes equations of fluid dynamies follow then imme-
diately, without going through the Chapmann-Enskog procedure [2].

In the spirit of the last remark above, the present note is a first step towar-
ds a possible employment of the 13 moment approach in the frame of Extended
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Kinetic Theory. In such a theory, recently introduced in the literature, interac-
tion phenomena different from elastic scattering, like chemical reactions, absor-
ptions, and generating processes, are taken into account and the combined effec-
ts of nonlinearity and nonconservativity are studied [6].

The first generalization needed is considering a mixture of several participa-
ting gases in the presence of one or more background species. Confining oursel-
ves here to elastic scattering only, the relevant 13 moment equations are deri-
ved in Sec. 2. The important particular case of a one species gas of test particles
(t.p.), interacting between themselves and with a fixed background of field parti-
cles (fp.), in which they are embedded, is analyzed in Sec. 8. Linear collision ter-
ms appear thus together with the usual nonlinear ones, and t.p. momentum and
kinetic energy are not conserved any longer.

Particular emphasis is given to the small mean free path asymptoties, accor-
ding to the presence of two different mean free paths, and then of the different
possible values of their ratio. It is shown that quite different asymptotie scena-
rios arise, depending on the relative importance, in the phase space balance, of
t.p.-t.p. collisions on one side, and t.p-f.p. collisions on the other. Possible outputs
include diffusion approximation and generalized Navier-Stokes equations.

2 - Moment equations

The starting point is the set of N Boltzmann equations for the distribution
funetions f*(x, v, t) of a rarefied gas mixture, which, in standard notation,
reads as

afa afa_ & af a B _
i pr +v; o —[211 [fe, f#1 a=1,2,...,N

I0f, fP1= 190 (g, DIf @) fPw") — f*@®) f#(w)]dwdn’
where summation over repeated arabic indices is implicitly understood and g
stands for |v —w|.

Postceollisional velocities are given by

V' =0 + 1 (W + gn') W =17, —gn')+ 15w

with 7,5 = m®(m®* + m#)~L.
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The main macroscopic fields of practical interest are number and mass den-
sity, drift velocity, and temperature

a _ a a — (1 N3 a=L a [ L ay2
(8) n%=[f%dv, o*=m*n*, u nafvfdv,T nagKf(c)fdv

where ¢* =v — u®
It is well known that the conservation equations are not selfconsistent in the
above moments, since they involve also pressure tensor and heat flux

(4) Pg=mc[cfcf fedv qg:%mafcia(ca)zfadv-

It is worth introducing the auxiliary quantities

3KT“ Pg—pesy

« 1 a a a a _
(5)  p*= 5 trPf=n"KT V'=gme  Pi=Fi-p

where K denotes Boltzmann’s constant and 6; Kronecker’s symbol. In particu-
lar, p§ represents the (traceless) deviatoric stress temsor for species a.
Later on, use will be made of the symbol

(6) (T5) = Tz] Tji - %Tkkéij

for a general tensor .
Grad’s procedure consists now in representing each distribution function as

e 3 " (o2

a = po(T 3 %k
- e, v, 1) =n%( ZnKT“ )z e
1 m® a.a 1 c? ay2
{1+ e Pl gpe 66" G gpa O of g F =51}

namely as a truncated Hermite polynomials expansion in which only the momen-
ts of interest are retained. In this approximation, a closed set of moment equa-
tions results from equations (1) by integration with respect to the velocity varia-
ble, after multiplication by m®, m®v;, 1 m®(c®)? m*cfcf, +mcf (e, re-
spectively.

As well known from the classical theory, the derivation requires quite detai-
led and cumbersome manipulations, with some additional care for cross interac-
tions of different species. It will only be sketched below, under the simplifying
assumption of Maxwell molecule cross sections, ie.

(8) o (g, x) = —;—B“ﬁ(x)
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where cos y =n'-n, with n = :‘17“ (v — w). Integrals of collision terms can be cast
as

(9 So@)I®fe, ffldv = [[ f*@)f*w)dvdw [B¥ (1) [pw") — @(®)]dn’
so that the angular integrations can be explicitly performed in terms of

10 [B#(dn'=Bgf  [niB¥()dn’ = Bin;
[nin{ B (y)dn’ = L B§P 5+ (B — & B )mmy

where
(11) B =2xf(cos x)*B®(y) sen ydy k=01 B¢ =2x[B%(y)sen’ydy.
0 0

Now, omitting all details, the sought macroscopic set of PDE turns out to be
given, after some algebra, as follows. Mass conservation takes the standard
form

do* 3/ a,ay
o T o @) =0

(12),

Momentum conservation is of course valid only for the mixture as a whole,
but for each species we get (i=1,2, 3)

u ou Op*© apil; X B¢ pap 8
a 2 a = —p% @ — B& a_ub
12), (- +u 2, )+ oo * %, 0 ﬂglrﬂan (B&P — B u — ub).

The same occurs to energy conservation, for which one ends up with

QOug oW dgf
awk +pl] axi + axk

oo(BU" 4 e B0,
(12), y

= —naﬁglnﬂ(Bgﬁ — BEP) 814575, K(T® — TF) — 752 m®(u® — ub)?].
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The equations for the deviatoric stress (i, =1, 2, 3) read as

OPF . 8 o aa . oa W, Ouf
Eralay £ (ug p§) + Pi E, + Dk 3%,
2 au’l a a%

61] pkl a + 2 < a > < axj >

(12)4

=~2 Z (B"ﬁ = BF)rap7pa (n” p§—n® pb) — rptnnf m((uf —uf)(u’—uf))]

N
2;_: B35 (rs2nP pg+1ys75,m° pb +7~ﬂa nenPm* ((ui —uf)us ~uf))).

m}oo

Only five of them, out of six, are independent, for each a, since the sum of the
diagonal ones (i =j) yields the identity 0 = 0.
Finally, the equations for heat flux may be written as (i =1, 2, 3)

8t+8 (“"q’)+5f?oc“+5q' 3 5% B,
5 o 8 ,KT° 1 o 0 (KI*) KT op§
TP 8901( )+ ”8 ( )t m*  Ou;

1 % 1 ., 9k

Qa pij 8:17] Qa pl] amk

2

- % (Bél - Blaﬂ)[(?”raﬁzyﬂa + ’rﬁa3)nﬂ qia - 4Taﬂrﬂa2naqz‘ﬂ

(12),
~10757p,> (0 P& =1 pPY(uf —uf) — dr 1,2 (0P pg—n® pH i —uf)

+2rg°nnfm® (uf — uf)u® — ufy]
N

-ﬁz B§P [ 275752 (0P qf 4+ qf) + 57,575,200 P K(T*— TP)(uf —uf)
=1

3 1
—27ap g M pf (uf — uf) — (E o T 5 TopTsa )P DE(uf — uf)

~ 15 nnfm® (uf — uf Yu® — uf)?.
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In the case N = 1, the right hand sides vanish in (12),, (12),, (12), and collap-
se to the known expressions — %‘Bg npy; in (12); and — -;—anqi in (12),. Collision
contributions all vanish, as physically clear, in the limiting case 7,3—1 (e
75, — 0). In the opposite limiting case, 7,5 — 0, one can notice the disappearance
of the damping term proportional to T — T# in (12),: energy conservation ap-
plies in fact to each species in all af collisions. It is also worth remarking that
the microscopic details of each collision are represented solely by the integrated
microscopic collision frequencies [4]

(13) C# =27 f(1 — cos®y) B* (y) sen y dy k=1,2.
0

Finally, the presence of one or more background species can be accounted for by
imposing the relevant distribution function to be fixed independently from the
process going on, and by dropping the equations relevant to that species from
the set (12) [6].

3 - Single species in a background host medium

We shall consider here the physical problem sketched in the Introduction of
a single gas, whose molecules may interact between themselves, as well as with
the background particles.

The latter will be supposed to be in an equilibrium state, with constant num-
ber density # and temperature T. Drift velocity may always be assumed to be
zero, by a proper choice of the reference frame, and in addition deviatoric stress
and heat flux are bound to vanish. Unnecessary indices are dropped and a tilda
is used to label quantities relevant to the background.

We will resort to the dimensionless form of equations (1) or (12), which leads
to the apperance, in front of the collision terms, of inverse Knudsen numbers,
namely of the dimensionless mean free paths £ and g for t.p.-t.p. and for t.p.-f.p.
encounters, respectively. Attention will be focussed on a formal derivation of
the asymptotic limit when & and/or % tend to zero, along the same line which
leads to the hydrodynamic limit represented by the Navier-Stokes equations for
the classical Boltzmann equation, without background medium. It is clear that
such a limit will crucially depend on the ratio /¢, namely on the kind of collision
which essentially drives the process.
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The 13 moment equations read as

D,(e) =0 Dy(u) = —tlg‘ﬁClFQu
D,(U) = — L 7E nl3FK(T - T) - Pmu?]
€
Dd(pl]) %ﬁé (T?py - anm< >) nCZ ('r pZ] + 7 nm( Zuj>)
(14) . _
D, (g;) = —=7aC [+ 87%7) q; — 10r72nK(T — T)u;]
£
3nC’1[4mﬂ Dy Uy — 278 nMU; UL 2]
— L 58, 12072, + 50F2nK(T — TYu,]
g
=3 _ =2
+ %nC’z[u Dy ; + Fonmu,u®] — L Cynq;
£ 2 2¢

where D, stands for the left hand side of equation (12),, p=a,...,e.

Of course, (14) is a set of singularly perturbed PDE, but, if one is interested
only in the asymptotic limit for the bulk region and after the initial transient, ini-
tial and boundary layer effects can be neglected (and resumed later to set up ini-
tial and boundary conditions), and macroscopic fields may be expanded in non-
negative powers of the chosen small parameter ¢ (the scaling factor), e.g.

(15) w=ul + euP + ...

The asymptotic analysis consists then in comparing equal powers of e.
We examine below some meaningful particular cases for the ratio £/z.

Case A. When t.p.-t.p. and t.p.-f.p. collisions are equally important (i.e. the
two mean free paths are of the same order, both small on a macroscopic scale),
we may set E=¢ =¢.

Upon expanding u;, T, py, ¢; it is easily found that, to leading order, we
have

a Wm0 TO=T pP-0 =0,
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Going on to first order approximations, one gets

1 KT on

1) -
an T

T =9 pf]” =0 g =0.
frnC

Inserting this into the first of equations (14) yields for the density the diffu-
sion equation

an £ KT 2
(18) -V =—— > Vn

&t s, ™
with an O(e) diffusion coefficient, determined only by background proper-
ties.

Effects of t.p.-t.p. collisions arise only in the second order approxima-
tion

@ _ KT 3 .1 dn o
“ FRC,)? o @ O @?=0
KT® 1 9 (1 on m On On
T® = ———[= == (& =)+ — == ]
(19) 3rF(Cy)e T 0w @ dw”  o* dw Ow,
pz_(72) = (2r7nC; + %Wﬁ@-}— 2 Gyt
[ 2nK2T® _i 1 81@ 3 T2 1 ,9n on

If the first of (17) and (19) are used for u; in the first of (14), a second order
correction to (18) results, with third derivatives of #. In general, all fields except
density are determined algebraically at each step in terms of n and of the back-
ground and a single PDE for % follows. In particular, w; = O(e), T — T = 0(e?),

i = O(e?), and ¢; = O(£®).

The case in which instead the host medium has a local Maxwellian distribu-
tion could be treated in the same way with corresponding results. Gradients and
time derivatives of 7, %;, T would affect the expressions for u;, T, Pij» q; at each
step, and the quantities u; — %;, T — T, pij, q; would all be O(e). Details are
omitted for brevity.

Case B. When only t.p.-t.p. encounters are dominant, whereas the t.p.-f.p.
mean free path is of the same order of the macroscopic lengths, we may set
€ =¢ and € = 1, and proceed in the same way as before. Expanding p;;, g; one
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gets immediately, at the lowest order in ¢
(20) P =0 " =0.

Now p;;, g; are both O(e) and the first correction is easily obtained at the
next step

4C, —

o — _.§.ZQZ.<EEE
Cy

2
i T T30 o (i)

2 zep
Y+ g7
(21)

2 —
gV = -5 %5721 g—g; + 2?217—2—@16,2& (5rK(T — T) — #mu?) u; .

In the absence of background medium, only the first addend would be left in
each of the right hand sides and the well known Newton’s and Fourier’s laws
would be recovered. The additional terms are thus corrections to the deviatoric
stress and to the heat flux due to the presence of collisions with f.p.

If equations (21) are inserted into the first three equations in (14) (with
€=1), a set of generalized Navier-Stokes equations results, which again is not
written down here for brevity.

It is worth remarking that the effects of background are present as O(1) cor-
rections in the right hand sides, due to non-conservation of momentum and
energy for t.p., and as O(¢) corrections in the left hand sides, due to f.p. contri-
butions to stress tensor and heat flux.

Contrary to case A, the asymptotic limit yields now a generalized hydro-
dynamies. Burnett and higher order type of approximations would arise by pu-
shing further the expansion in e.

Case C. When t.p.-fp. collisions alone are dominant, whereas the t.p.-t.p.
mean free path is of the same order of the macroscopic lenghts, we may put
€=¢ and Z = 1. This case includes the purely linear problem in which t.p.-t.p.
encounters are negligible: it is sufficient to put formally C, = 0. The first two
steps are the same as for case A, and again the diffusion equation (18) arises for
the density. Differences appear only from the second order corrections on. For
instance, equation (19) is modified only in that the addend % Cyn should be drop-
ped (t.p.-t.p. collisions affect only the third order). The qualitative situation re-
mains the same.

Other cases could easily be devised and analyzed. For instance, the one in
which £ = &% and Z = ¢ (t.p.-t.p. mean free path small versus t.p.-f.p. mean free
path, in turn small on a macroscopic scale). By expanding u;, T, py, g;, (16), (17)
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and then (18) are still in order, but the further development shows that we have
T — T = 0(?), p; = 0(c®) and g; = O(e?).

A more detailed analysis of the several possible physical situations, conside-
ration of inelastic scattering and investigation of the Extended Thermodynamies
arising from Extended Kinetic Theory, will hopefully be matter of future
research.
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Sommario

Nell’'ambito della Teoria Cinetica Estesa vengono ricavate le equazioni dei 13 mo-
menti di Grad per una miscela di gas e vengono studiati i possibili limiti asintotici, al
tendere a zero det numeri di Knudsen, per un gas di particelle immerse in un mezzo di
supporto.

& % %



