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Asymptotic properties of solutions
to semilinear damped equations for elastic beams (**)

1 - Introduction

In this work we want to study some questions related to the asymptotic
behaviour of nonlinear equations arising in the theory of elastic rods. In a pre-
vious paper, Taboada and You [2] proved the existence of an inertial manifold
(that is, a smooth invariant finite-dimensional manifold for the flow generated
by the problem, which attracts exponentially the orbits) for a model problem
proposed in the 50s by Woinowsky-Krieger [5] in order to describe the transver-
sal vibrations of an extensible beam subject to an axial internal force.

The concept of inertial manifold is very important for two main reasons: one
is that its existence gives a theoretical foundation to the series expansions of the
solution in terms of eigenfunctions that is customarily performed by many
physicians, and the other is that the so-called inertial system, that is, the equa-
tions set in the manifold, is a finite-dimensional system of ODEs which approxi-
mates the given system with an exponentially decreasing error.

Our study generalizes the results of Taboada and You in two different direc-
tions; in one direction we consider a more general nonlinear term which can be
used in connection with the problem of finite deformations, and in the other we

(*) Dip. di Matem., Univ. Cattolica Sacro Cuore, Via Trieste 17, 25121 Brescia,
Italia.

(**) Received September 15, 1995. AMS classification 73 K 05. This work has been
partially supported by MURST 40% project Metodi matematici nella meccanica dei siste-
mi continut of italian GNFM.



242 G. BIANCHI and A. MARZOCCHI 2]

investigate the nonhomogeneous problem, i.e. the case when an external driving
term is present, which was not studied by Taboada and You.

Our main results are the following: in the homogeneous generally nonlinear
case (Sec. 2) we obtain a result of existence of a flat inertial manifold which in-
cludes the result of [2]; in the nonhomogeneous case we prove the existence
(Sec. 3) of an approximate inertial manifold (see for instance [4]), that is, a fini-
te-dimensional invariant manifold which has a neighbourhood attraecting expo-
nentially the orbits. The advantages for numerical analysis are in this way not
lost, since an inertial manifold must be approximated when the inertial system
is coded into a ecomputer. In that Section we also prove the existence of a global
attractor for the flow, and the exponential attractivity of the origin in the spe-
cial case of a force vanishing as t — + .

More precisely, we consider the nonlinear hyperbolic equation

3y 3ty 3y
1.1 — 4+ q -——+6— (lui(& t)dE) —= =h(x
(1.1) it g[(&)é)axz (@)
in the Hilbert space H = (L2(0, 1), (-, -)) with norm denoted by |-|, where
a, d>0, h(z)e L?*(0,1) and g: R — R is a C? function whose primitive vani-
shing in 0 is denoted by G. The case g(s) = 8 + s is studied in [2]. The following
hypotheses on g will be made:

1.2) 13im31;f(289(8) -GN =0

(1.3) VE>0,30>0:820=G(s)=ks— 9

Eqguation (1.1) becomes an initial-boundary value problem when endowed
with the following conditions for x [0, 1], £ = 0:

u(w, 0) = uy(x) uy (2, 0) = %, (x)

(14) (0, 8) = 1, (0, £) = %y, (1, £) = Uy (1, £) = 0

this means that the left endpoint x = 0 is fixed at rest and that the right en-
dpoint # =1 is not subject to any transversal force and any bending tor-
que.

The system (1.1)-(1.4) can be put in a different form as shown below [2].
4

We define a linear operator A: D(A)— H as Agp = %——gg- and set
x

D(A)=H*(0,1) = {p e H*(0, D] p(0) = ¢’ (0) = ¢"(1) = ¢"(1) = 0}.

A is self-adjoint, positive definite, with dense domain in H, a compact resolvent
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A7, and its spectrum is 0(A) = {A;};cn, A; = u}, wheve {u; };. y are the increa-
sing ordered positive roots of the equation

(1.5) cos u + sechu =0 uw>0.

Every 4; has multiplicity one; u; are distributed pair by pair in the intervals

@i+ Hymei+ 2w ieN.
2 2
As a consequence
1 2 1
A2 (p—-%ﬁ‘i DA?)=D@ in H*(0, 1)
X

1

I | D(A*)=D(A) in H'(0,1).

In this way equation (1.1) becomes

du du T2y Ay = >
(1.6) e +a Au+6dt +g(JA* ul?)A2u=nh t=0.
1 1
We set w(t) =u(-, t), V= D(A2 ) and E =V X H; the norm |jv|| = |42 »| is
equivalent to the norm of H2(0, 1).
We underline that equation (1.1) does not satisfy the spectral gap condition,
that is

1 1
Ayer—An> K@%, +15%)

by which the existence of an inertial manifold cannot be obtained by the standard
theory (see [3], p. 423).

2 - Inertial manifolds in the homogeneous case

2.1 - Existence and uniqueness

In order to prove existence and uniqueness for the problem, we use the proce-
dure illustrated in [2]; that is, we set .£:D(.£) =D(A) X V— E the linear
operator
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and f: D(£) > D(.£) the nonlinear mapping

0

1 1
-g(]A* @|*)A% ¢

0
5 W = ==
7o, %) (g(lcm?)som)

In this way we obtain the following system for the unknown w = (Z)

f(li_@t” = £ w(t) + fw @) t=0

@.1) Uy
‘ w(0)=w0=(Ml)eE.

Theorem 1. For every initial condition wye K, there is an instant
T =1(wy) > 0 such that the regular solution of (2.1)

t
wE) =W w, + [W(Et—s)flw(s)ds 0<t<rz
0

exists and is unique on the interval [0, ). Moreover, if wy e D(.£), then the sol-
ution in C([0, 1); E) is a strong solution for (2.1).

The assertion follows from the following facts: fis a locally Lipschitz mapping
and £ generates a Cy-semigroup of contractions denoted by {W(£)};5,. The
method of proof is described in [1], p. 185-189.

We'll show later that problem (2.1) has a unique global solution for every
initial condition.

2.2 - Uniform estimates
We suppose that for every initial condition in ¥ the mild solution of (2.1) exists

and is unique in C([0, + »); E).
We set

(o) [u(E5 ug, )
S@): (ul)»(v(t; uo’ul))eE Vi=0

the nonlinear mapping that originates from the semigroup {S(¢)};= ¢, solution
of (2.1).

Theorem 2. For every initial condition in E, there exists an unique global
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solution in C([0, + «); E) for the problem (2.1). Moreover the solution semi-
group {S()};so has an absorbing set &, in E.

Proof. Letw,e D(.£). We suppose that the mild solution of (2.1) is a strong
solution on (0, {,..). Let & be a positive constant.

If we take the inner product of the homogeneous (1.6) with 2u, + eu in H, for
t e (0, tya), Wwe get

1 1
gt_ {lu|? + a|A% u]® + G(|A* u|?) + e(u,, u)}
2.2) 1 1 1
+{(20 — &) |uy|? + ea |A% w|® + ed{uy, u) + e |[At u|?-g(JA* u|®)} =0

1 1 1 1 1
where % G(|AT u|?) = g(|A% u|?)- a@t— |A% u|? = g(|AT u|?)- (A% u, 2u,).
Consider now the expression

1 1 1
@3)  N()=(28 — &) |uy|? + ea |AZ | + €6 (uy, u) + eg(|A* u|?)- [A% u?.

It is easy to show that, if we choose

2
@.4) n=oulé ! 0<e<min(l, auf, 46(3 + )7
Qg

where u is the least positive root of equation (1.5), then the following inequalities
hold in (0, . ):

_ £
62

2n

1
N = e[(2O € - ) ? + L 4T u]?)
1 1 L

B0 (L AT upr - Lo - Lyl + £ Gy, ) + eg (|A% ) | A% 2]

1 1 1

= %(|utlz+ alAZ ul?® + e{uy, u) + 29(JA u|?)- A% ul?).
By (1.2), there exists D > 0 such that
1 1 1
2g(|A4u]2)'IA4u|2>G(|A4u|2)-D

and then, if we put

1 1
2.6) F(t) = |ug|?+ o |AZ u|? + e(uy, u) + G(|A% u|?)



246 G. BIANCHI and A. MARZOCCHI [6]
from (2.2)-(2.6) we have

d € _E£p_ d _
G PO+ ZF®) - 2D eD < < F(H) + N(t) — eD < 0

; 4 £ < 3
that is i F@t) + 5 F() < ) eD t e (0, ).
By the Gronwall lemma, in t e (0, ¢,.), we obtain

Ft)<e 2 F(0)+3D(1—e2)<e 2 F(0)+3D

where ¢ > 0 satisfies (2.4).

This inequality holds for every initial condition in £, because of the denseness
of D(_£) in E and of the continuous dependence of the mild solution on the initial
data.

L 1
Moreover  F(t) = =[|w|?+ a|A2 u|? + 2G(]A* u|?)] and for (1.3)

DO =

1 1
[ |2 + o | AT w|? + 2G(|A* u|?)

1 1 _ L —~
= w2+ alAtu|?+k|A w2 -8 2 |u P+ alAtul?P -6

- 1 1 _
then ﬂl—;{;—’—@; (g |? + A% w|?) < % | )* + —21—a|A2u|2$F(t) +0
that is
min {1, a} o . —Tt -
@7 ML Y s wli<e 2F0)+3D+3  VEel0, b

2

Inequality (2.7) implies that there exists an unique global solution for (2.1) on
[0, + ») (see [1], p. 185), and also that

. 6D + 25
PR AL
28) lim sup IS @yawollf < — ]
If we put
5 _ _6D+26
@9) eo min{1, a}

then the ball@, = {¢  E: |le]| < V20, } is an absorbing set for the solution semi-
group {S(®)}¢>0-
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2.3 - Global attractor and inertial manifold

First we recall some important results stated in [2]. We consider a decomposi-
tion of the semigroup {S(t)};», as follows:

SE =T+ U®) t=z0

where {T'(t)};>, is the semigroup of linear operators generated by A.

Lemma 1. The operator T(t) is continuous, and for any bounded set
BcFKE

lim {sup [|[T@®)wolz}=0.

t—+o wyelB

Lemma 2. Let BCE be a bounded set. Then for any wye D(.£) N B the
mild solution of (2.1) satisfies

3
sup |A*u(@®)| S K(B)< +
t20

where the constant K(B) depends only on B.
The proof of these results is essentially the same as in [2].

Lemma 3. The operators of the family {U(t)};s o are uniformly compact
operators for t large; this amounts to say that for every bounded set & there exists
to > 0, which may depend on &8, such that tLBJtOS (t) B is relatively compact in H
(see [3], p. 23).

Proof. Let

be the mild solution of the problem

% = LTE) +fw®) 20  @0)=0.

Then

1 1
Ty + QAT+ 00, + g(|AYwu|?)-A2w=0 t=0, %(0)=u(0)=0.
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1 i
Taking the inner product with 242 #; + eA% % we have

1

L 3 1
L (A T+ a4t @? + e(a¥ 7, AY D))

1 3 1 1
+{(20 — &) |A* ;|2 + ea |A* TP + e6(A* W, At W)}

1 1

1 3 L
+g(JA* u|®)-(2(A%* u, At ) + (A% u, A2 U) = 0.

From Lemma 2 and from the fact that ¢ is a C' function and that

1 1 1

|A*ul|? < —% |A2 u|?, where |A? u|? is uniformly bounded for (2.8), arises that
H1

for every bounded set B ¢ E and for every initial condition in B N D(.£), there

exist K, (B), K;(B) = 0 such that

1 3 1 1
9| A% u|?)- A% || <K (B) and |g(|A%u|?) |42 u|| < Ky(B).

Then
1 3 1 1 1
g(lA* u|2)(2(A4 u, A* U, } + (A% @, A% u))

__IE®E L KB

1 1
= 7 7~ AT | - en AT al®

and for £t =0; ¢, 6, 7, y >0
d 1 3 1 1
-&Z{lA4 |2+ a|At %)%+ e (At Uy, At U)}

£

P Ial SUF SUNE S S
te{l[—— — % ]|A4ut|2+5|A4u|2+—2—(A4ut,A4u)}
3 1 1 3 1
Fel LAY [P~ L6 D)ATERT+ (6 - mIAT [P+ el AT T2~y |47 )T

<7 YK (B)|2+ &% | K (B)|?).

If we choose

2
0<n<min{s, & u} y=—1—5_1a/4‘{ O<£$min{1,ay‘{,6[§+—é——;]'l}
4 2 2 oui
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then, for ¢ = 0, we have

d 1 3 1 i

o VARG + o |AT T + o(A% @, AT W)}

1

1 3 1
+ ; {JA* %% + o |A* @|2 + (A% &, A* B)} < UK (B)|? + €2 | Ky (B)|2]
and by the Gronwall lemma

L 3
% AT T2+ & At @R < 20y K B + | Ko (B[],

1

3
By denseness of D(.£) in D(A*) X D(A*) we have
» 1 <Ki(B) v(

i
Wy IlDaty x D4t

3 1
For the Rellich theorem D(A*) X D(A*) is compactly imbedded in E, and

tUO U()B is relatively compact in E.

2 Uy

)EB.
Uy

Finally we can state that the attractor is the w-limit set of &;.

Theorem 3. The w-limit set w(9B,) = ﬂo tU S(t) B, is a compact and ma-
sz EX]

wimal global attractor in E for the semigroup {S(t)}, o associated with the in-
itial value problem (2.1).

Proof. See [3], Theorem I1.1.1.

We now show the existence of an inertial manifold for the problem (2.1).
We denote by {w; };.» the eigenfunctions of A, which constitute an orthonor-
1

mal basis for H and for V= D(A?). Let
H,, =span{w;, ..., w,}
P, :H— H,, an orthogonal projector, Q,, = Iy — P,, so that
H=P,H®Q,H=H,®Q,H.

In £ =V x H consider
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In this way we have E = (H,, X H,,) + ¥, &

1
Let g ) =, (lwl)  g(JA* u]?)

where g, s given by (2.9), and 9, : [0, + ©[— [0, 1]isa C *-mollifier, which vani-
shes outside some colmpact set in R and is equal to unity in the interval [0, 1]. As

said before for g( |Az u|?), g, is uniformly bounded for any orbit of (2.1) and in%
there exists a positive constant d = d(g, B) such that |g, (t)] < d for any ¢ = 0.
This procedure leads to the prepared equation ([3], p. 416)

2 1 1
2.10) %fzi +aAu+(5%Mt— + 9, (lwlE) g(A2ul®)-A2u=0  t=0.
If we decompose u in H=H, + @Q,H as

equation (2.10) becomes

& d 1

d—’;-+aAp+ad—’Z+gu(t)A2p=o in H,,
@.11) dﬁ ; .

—ét—z+aAq+5—d%+gu(t)A2q=0 in @, H .

Theorem 4. If m is a suitably large positive integer such that the
(m + 1)-th root of equation (1.5) satisfies

4d 8Cy0% 2(d+e)
ﬂ%l+1?maX{7, SZaO’ a }

where Cs is a specific positive constant and

2
e=min{1,2008+ 20171}
2 a1

then the flat manifold M,, = H,, X H,, is an inertial manifold in E for the semi-
group {St)}ys o related to (2.1).

Proof.

i. It is obvious that M,, is a finite-dimensional subspace of K

ii. M,, is positively invariant [2]
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iii. We now prove the exponential attraction of M,, showing that all the ele-
ments of ¥, E tend to zero with an exponential rate.

From now on we refer only to the absorbing set 6§, because Theorem 2 sho-
ws that all the orbits eventually enter in 4.

Let wye D(.£). Taking the inner product of (2.11) with 2q, + 2eq, we
have

1 1
% [1g]? + alA? q|® + 2e(q;, q) + g (8) |A* q|2] + (28 — 2¢) |, |?

+28a1AZQI2+285<qt,q)+2sgu(t) IAquz—( 7 u () lA4fI|2

Moreover, in @, g, (t) = g € C'; therefore there exists a positive constant C,
1

such that |g’(]4*%|%)| < C,, and

1
?id_tgu(t)l = lg'(JA* u|®)]|- l IA“uI | <20§C;.
d 1 1 1
Then 5 el +alA® q|* +26(q, g) + g(JA* u]?)- [A* ¢]?]
3 1 1 1
+{(26 — 20) [q,|* + 5 ea |A® q|* + 2e6(q;, @) + eg(|A* u|?)- |A* ¢|*}

1
ga _ _&d —2029%]1Azu]2S0.

+[ 5

7 B 1
Following the procedure of Theorem 2, if

8¢,
=== = min{, 26(3 + 20011y 2, e max(dd, 8608,
20 aul £a

1 1 1
L) =|q|*+ a|A? q|* + 2¢(q;, g} + g(JA* u|?)- |A% q|?
then % L) +eL(®) <0, t=0 and for the Gronwall lemma

L)< L(0)e %, t=0. .
2(d + =
But now if u%, ;= L__f_), then L(t) = lqtl2+ % |A2 q|% and so

q(0) \lf2
q:(0) Jlig

~&t

1
%[lm2 +a|AZ g|21 < L(0)e~ < [2(1 + &) + d]
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This inequality holds for every initial condition in £ because D(.£) is dense
in E. Then, if we put

v—mm{—z— %ay1,25[3+ o ] 1159

we find distz (S (&) (ZO), M,,) < o(ug, u)e™ £20
1

that is, a uniform exponential decay with constant v.

3 - Approximate inertial manifold in the nonhomogeneous case

It is evident that the same results of existence and uniqueness hold also in
this case.

1 - Uniform estimates
The hypotheses are the same of Section 2.2.

Theorem 5. For every initial condition in E, there exists an unique glo-
bal mild solution in C([0, + »); E) for the problem (2.1). Moreover the solution
semigroup {S()};s ¢ has an absorbing set B, in E. Obviously 9, depends on h.

Proof. Let again wye D(.£) and get ¢, y,, y. positive constants as before.
Taking the inner product of (1.6) with 2w, + eu and considering that we
have

(h, 2u;) + (b, eu) < 2 |h| |us| +e|h| |ul

1 2 £ E 270,12 2 2

< = |RE(E 4+ =)+ Svs|ul®+ vT|u
2 viovE 2

for £ e (0, ty.), then

|h| (-- + *—')+ 5 V2 3 lu)®+ y%|u?

q 1 1

E{[utlz+a|A2u|2+G({A4u12)+8(ut,u)}

1 1 1
+{(20 — &) |uy|® + ea |A% u|?® + e6(u;, u) + e|A* u|®-g(]A* w]®)}.
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Adding and subtracting 2y5(u;, u) = — % (—y%&|u]?), we have

s 1
%(ﬁz- + 2 [n2z 3@5 {2 = 73 w2+ a |AZ w|?+ G(|A* u|?) + e, u)}
Ve 1

~

L
+{(26 — & — y%) |u;|® + ea |AZ u|? + (6 + 2y %) (uy, u)

1 1
- —g v5 |ul®+e|A* ul? g(|A* u|®)}.

Let
L
N@) = (20 —e—y}) |u |2+ ea |A2 u|® + (e6 + 2p% Nuy, u)
1 1
= vElul® + eg(|At ul®)- A% u)?.
aui
If we choose 1= 375" ys = Ve, y1 (0, \V26)
6 + 2)°
8.1) 0 <e<min(l, l(z‘u‘f,2(26—y§)(3+ ( ) 7 h
2 aud
1 1
and put F@) = |u|®— y5|u|®+ a|A2 u]® + G(|A* u|?) + euy, u)

we have, similarly to Theorem 2, that in (0, t,.),

d £ _&p_ 4a _ 1, e
G TO+ S Ft - 2D eD < — F(t) + N(t) eD< o (5 +

: d £ <3 1
that is p” F@) + 2F(t)\ 5 eD + 2(

By the Gronwall lemma, for te (0, )

3
32) Fty<e FO)+3D+ 1 (£ + 2|32
Ve Y1

where £ > 0 satisfies (3.1). Here also inequality (3.2) holds for every initial condi-
tion in .
Proceeding again as in Theorem 2 we conclude, saying that there exists an
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unique global solution of (2.1) in [0, + ) and that

(33) lim sup [S(Hwp} < in{21 Ly en+ %(% %)Ih|2)+5].
t— + o 3 2 1

Then the ball in £ of radius \/§ Qo, Where

2 2

0f= 16D+ 1 (& + 2y (2 +3]

mm{l, (1} 'y% Y1

is an absorbing set for {S(t)};i=o-

3.2. - Global attractor and approximate inertial manifold

Theorem 6. The w-limit set w(%B,) is a compact and maximal global at-
tractor in E for the semigroup {S(f)}; s associated with the initial value pro-
blem (2.1).

The proof is very similar to the proof of Section 2.3.
Now we consider the solution v of the stationary problem

L 1
(8.5) adv +g(|A*u|2)A2u="h t=0.

Be w = u — v, so that w, = u, and wy = uy. Taking the difference between (1.6)
and (3.5) we have te homogeneous equation

4z g 1 1 1 1
d@;’ + adw + 6 d@t" —g(|At u|®)A%Zu + g(|A* v]|2)A2v =0

that is

1 1 1 L 1
‘(iit’“’ + Aw+a%1”— — FOAZ w+ g(|AT u|?) A2 v — g(|AT 0| A2 u=0.

1 1
where §(t) = g(JA* |?) + g(|A* v|?).
We proceed with an orthogonal decomposition of the space H and F as in
Section 2.3. Now g, (t) = ¥,,0 and in 9, we have d =C + C. In fact, since

|A4 u|?is unlformly bounded by g, then there exists C such for g € C* in &, it
holds lg( [A4 u|%)| < C. Moreover v is contlnuous on the bounded sets of

D(A2 ), and so there exist ;, C such that |A2 v|?2 < 0% and |g(|A4 v|®)| <C.
If we put g = Q,w(t), r = @, u(t), s = Q,v, the projection of the prepared
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equation on Q,,H becomes

dzq dg 1
+adq+6— +g,(t)A%q
(3.6) d 2 (f a "7

+g(|A4 uw|?)A?s —g(]A4 v|? )A2 r=0

Theorem 7. If m is a suitably large positive integer such that the
(m + 1)-th root of equation (1.5) satisfies

8Cy05yF 2(2d +¢)
a

T +1/max{ =2
" ¢ eay§~4C

where C, C, Cy are switable positive constant, yjze (0, 1/@) and
C
e =min{,(26 - Cy}I3 + &] ' %y‘éw}

then the manifold M,, = H,, X H,, + £ is an approximate inertial manifold in E
for (2.1), where &£ tends to zero as m — «.

Proof. i and ii are the same of Theorem 4.

iii. Exponential attraction of M,,. We refer to the absorbing set &;.

U,
Let (uo) e D(.£) and let ¢ a positive constant. Taking the inner product of
1
(3.6) with 2q; + 2eq, we get

1 1
L lal? + 4% g|* + 26(q,, @) + 0u®) |47 ]

1
+(26 - 28)Iqt‘2+28a|A2q!2+285<qt, q)+2¢g, () |A2q|2 4 ) |Aq|?

5 %
1 1 1 1 1 1
+29(JA* u|*){q, A% s) + (g, A% 5)] — 29(|A* v|*)[(g;, A2 v} + (g, A2 )] =0

1 1 1 1 1
Moreover % (g, A% s) = (gq;, A% 5), % (9, A% ry={gq;, A%’ r) + (A% q, ¢;)

3 73 1 .3
where (A% q, q1) = — 5 |gl® - P |42 g|?
2 2y3
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and, similarly to Theorem 4, in 9§, there exists a positive constant C, such
that

1 1
d T (1AL 12y - 1D 44,02 2
0.1 = 19" (1A% uD)] | £ 14T ul?| < 208C,
d kS 1 1
then S (]q >+ alA® g+ 2e(g g + (140 u[®)- 4% gI*)
d L 1 1 1
+£ 120147 ul?) (g, 47 5) - 2(|4% v[*)(g, 4% 1)
1
+{(20 — 26 = CyD) lqu[*+ 3 ea |42 gI* + 200(q:, )}

1 1 1 1 1 1
+{eg(JA* u|?)- |A* q|* + 2e9(|A* u|*) (g, A® 5) — 29(|A* v]*){q, A® 7)}

2 ~ 1
bpie - g 2Ge Chiypg,

2 /"gn+l /'t%n-f—l 73

If we choose ¢, y; as before and

8Cs0575
eay3 — 4C

o= maX{%l-,
then, following the same procedure of Theorem 2 and putting

1 1 i

L) = |q|*+ a|A? ¢|* + 2¢(g;, q) + g(|A* u[?)-|A* ¢|?
1 1 1 1
+2g(|A% u|?) (g, AZ7) — 29(|A% v|*)(g, A% 5)

we have %L(t) +el(t)<0, t=0 and by the Gronwall lemma
L) <L(0)e ™ ®, t=0.

2(2d +
But if Pos1 = %
1 1 1 1
then L)z 5 |al*+ -g— |AZ q|2 - C|A%s|2—ClAtr|?
1 1 1 ~
where ClA*s|2+ClAYr|® < (Co% + €pd).

2
m+1
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If we put E= 21 (Cot + Cof)
Hm+1

1
then L)z 5 lal*+ 5 |22~ ¢

and so, for every { =0 and for every initial condition in £, we have
q(0)
q:(0)

1 1 1 1
+[2g(1A* uo[*){q(0), A* 5) = 29 (1A% v|*) (q(0), A® r(0))]e ™ + £.

2
~&t

1
%[IQtlZ+a|A2q12]$L(0)e_£t+§$[2(l+a)+d] 0
E

Remark. Inthe case h = h(z, t), it is not difficult to show in the usual way
that, using (3.2), if there exist four positive constants K,, K, ki, %k, such
that

lim sup e®t? |h|%:(2) < K, lim sup e*2! %f]%z(t) < K,

t— + o t— 4+

then the problem (2.1) has an inertial manifold.
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Sommario

Si considera una classe di equazioni semilineari nell’'ambito della teoria delle travi
elastiche. St prova, nel caso omogeneo, Uesistenza di umo spazio vettoriale di dimensione
finita, esponenzialmente attrattivo nello spazio di Hilbert delle soluzioni (una cosiddetta
«varietd inerziale»). Una forma pin debole di questo risultato viene ottenuta mel caso
NON OMOYENeo.

% %k



