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Oscillation and asymptotic behaviour
of certain nonlinear difference equations (**)

1 - Introduction

In this paper we are concerned with a class of nonlinear difference equations
of the form

ey Az(un+pnun—k)+an(un—l)=0: n=0,1,2, ..

where A is the forward difference operator, ie. 4dv,=4v,,;— v, and
A%, = A(4v,), (p,) and (g,) are sequences of real numbers with ¢, = 0 even-
tually, k£ and [ are nonnegative integers. The function fis a real valued function
satisfying #f(u) > 0 for » = 0.

By a solution of (1) we mean a sequence (u,) defined for » = —max {k, [},
which satisfies (1) for » =0, 1, 2, 3... . A nontrivial solution (u,,) of (1) is said to
be oscillatory if for every positive integer N there exists # = N such that
Uy Uy, + 1 < 0. Otherwise it is called nonoscillatory.

In recent years there has been considerable interest in the study of oscilla-
tion and asymptotic behaviour of solutions of difference equations; see for
example [2], [5], [7], [9]-[19] and the references cited therein. For the general
theory of difference equations one can refer to [1] and [8].

Our purpose in this paper is to study the asymptotic and oscillatory beha-
viour of solutions of equation (1) in the case g, = 0. The obtained results supple-
ment those contained in [18]. For related results for differential equations we
refer the reader to [3], [4], [6].

(*) Inst. of Math., Poznai Univ. of Technology, 60965 Poznafi, Poland.
(**) Received September 11, 1995. AMS classification 39 A 12.
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2 - Main results
Here we will establish some oscillatory and asymptotic properties of the so-
lution of (1). In doing so, we will ask:
i.  f(u) is bounded away from zero, if % is bounded away from zero
ii. 2q,=®.
0

Let (u,) be a solution of (1). Set z, = u, + p,u, . The following lemma de-
scribes some asymptotic properties of the sequence (z,) when (%, ) is a nonoscil-
latory solution of (1).

Lemma. Assume that i and ii hold and that there exists a constant P, <0
such that Py <p, < 0. Then:

a. If (u,) is an eventually positive solution of (1), then the sequences (z,)
and (d4z,) are monotonic and either

@) nli_r)nw 2y = nli_;t’nw Az, = —
or
3) nli_r)noo 2y = nl:l})nw Az, =0 Az, >0 and z,<0.

In addition, if P, = —1, then (3) holds.

b. If (u,) is an eventually negative solution of (1), then the sequences (z,)
ond (4z,) are monotonic and either

“) nli_l)nm 2y = nl_iinm Az, = ®
or
5) nh_:gr%u 2y = nlilinw Az, =0 Az, <0 and z,>0.

In addition, if Py = —1, then (6) holds.

Proof. Let (u,) be an eventually positive solution of (1). From (1) we have
that there exists a positive integer n; such that

(6) A%z, = = f(U,_;) <0  for n=mn

so (4z,) is nonincreasing, which implies that (z,) is monotonic.
Now suppose that there exists n, = n; such that 4z,, < 0, then, since ¢, 0
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eventually, there exists 7z > ny such that 4z, < 4z,, <0 for » = ng and a sum-
mation shows that z,— — o as n— . Since (42,) is nonincreasing, so
Az, —>Lz —ow, If L = —o clearly (2) holds. If L > — o, summing (6) we
have

i q; flu;— )

Azn+ 1= Az-ns -
1= N3

and then let n— © to obtain

2 Gifluin) =Az,,—L < .

i=mng

The last inequality, together with i and ii implies nli_r)nw infu, = 0. Since L, < 0, a
summation shows that (z,) is eventually negative. Therefore we can choose

ny4 > ng such that Az, < —Ié’— for n = ny and z,, < 0. Summing the above inequali-
ty we have

By = 2y, < %(n—m) "> Ny

thus 2y < —é’—(n-—n,;) < i’—n for n > 2n, .

By the assumptions, we obtain

Plyn_kspnun_k<zn<L—n and yn_k>—L~n——>oo as n— «
4 4P
which contradicts nlgnm inf %, = 0. Hence nli_l}'lw Az, = —x ., Now, if 4z, > 0 for

7 = 1y, then 4z, — L; = 0 as n— . As before, summing (6) from » = n,; to m
and then letting m — », we get

Az, =L + Z q; f(u; _ i)
which again implies that nlgnw inf u,, = 0.

Suppose that L; > 0. Then we have 4z, = L, > 0, and so0 z,~—> ®© as n—> ®
and since %, = 2, hence u,, —> ®© as n—> ©, a contradiction. Therefore L; = 0.
Furthermore, if there exists n, = n, such that z,, = 0, then 4z, > 0 implies that
Zy 2 2y, > 0 for n = ng > ny, which again contradicts nli_{nw infu,, = 0. Therefore,
we have z, <0 for n = n,.
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Thus z,— Ly < 0. If L, <0, then

Pithy 1 Sty +Prthy S Uy +Pply_ =2, <Ly <0 for n=n; and

(M un_k2%>0 nZn.
But nlgnm inf u,, = 0 implies there exists and increasing sequence of natural num-
bers (n;) such that «,,_,— 0 as ¢— o, contraditeting (7). Thus, we conclude
that lim z,=0.

In addition, we assume that P; = —1. Suppose that (3) does not hold. Then
(2) holds, so z, <0 for all large n. We have

Uy < — Py —k S _Plun—k S Up —k

for all large n. But the last inequality implies that (u,) is bounded, which con-
tradicts (2). Therefore (3) holds.

The proof of b is similar to that of a and hence will be omitted.

Using the asymptotic properties of the sequence (z,), we now prove the
following result about the asymptotic behaviour of the nonoscillatory solutions
of (1).

Theorem 1. Let i and ii hold. If there exists a constant P, such that

then every monoscillatory solution (u,) of (1) tends to zero as n— ».

Proof. If (u,) is eventually positive, then by part a of Lemma we have
that (3) holds. Thus z, =%, + Py U, - <0 for all large n. Then (8) implies
Uy < —PpUy_p < U, _p and hence (u,) is bounded.

Now suppose that nlgnw sup %, = @ > 0. Then there exists a subsequence of

(u,), say (u,,), such that u, —>a as i— . Then for all large i we have

uni
0> 2, 2 Uy, + Pythy, ., SO um_,c>—-1—5—-.
1
But this implies that lim w,, ;= — 7;"— > @ contradicting the choice of a. Hen-

1
ce, we conclude that u, — 0 as n —> . The proof when (u,,) is eventually nega-
tive is similar.
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An example to which Theorem 1 applies is the equation
AZ (un - é‘un—Z) + 2271””5(%71—1)3 =0

which has the nonoscillatory selution u, = 27",
Now we obtain results regarding the oscillatory behaviour of solutions

of (1).

Theorem 2. Ifi, ii hold and —1 < p, < 0, then every unbounded solution
of (1) is oscillatory.

Proof. We need only to observe that under the present hypotheses Lem-
ma implies that all nonoscillatory solutions of (1) are bounded.

In the next theorem we obtain the conclusion of Theorem 2 without requi-
ring ii but with more restrictive conditions of f.

Theorem 3. Let —1<p, <0 and f be a nondecreasing continuous fun-
ction, such that

gff(s) < _fE 7s) < e>0.

If we have

© ]

9 Z Z g; = ®

n=ny i=n+l+1

then every unmbounded solution of (1) is oscillatory.

Proof. Assume that (1) has an unbounded nonoscillatory solution and let
this solution be eventually positive. Then from (1) we have 4%z, < 0, which im-
plies that (4z, ) is nonincreasing and (z,) is monotonic. Now if (z,,) is eventually
nonpositive, then by assumption %, € —p, %, < %, -, contradicting the as-
sumption that (%, ) is unbounded. Therefore z, > 0 eventually. Now, if (4z,,) is
eventually negative, then clearly z, is eventually negative which is a contradic-
tion. Thus we have z, > 0 and 4z, > 0 eventually, say for n = n;.

Since 0 < 2, < u, and f is nondecreasing, we have

Azzn—i—an(zn—l)sO n?n2=n1+l.



236 7. SZAFRANSKI and B. SZMANDA [6]

Summing the above inequality from n = n, to m =2 n we get

m

Azm+1 — Az, + 2 qif(zi-—l) 0.
i=n

Letting m— © we see that 2 q; f(z; ;) < 4z,,, so that we can write
-3 1=

> @ f(z;_) < 4z,, from which, by monotonicity of f, we obtain

i=n+l+1

[+

f(Zas1) 2 ¢S4z, for n = n, .
t=n+l+1
© A . Zn+1
Thus > g < Fr < ds

i=n+l+1 f(zy41) h 2y ?(;).

Summing the last inequality from 7, to n we have

i i=j+1+1 an f(s) zn2 f(s)

which contradicts (9). The proof is similar when (u,) is eventually nega-
tive.

Theorem 4. Assume 0 <p, < 1. If f is a nondecreasing function and

(10) Z qnf[(l—pn——l)c]= o
n=np
for every positive constant c, then all solutions of (1) are oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution (%, ), say u, -, >0
for n = n, = ny. Then 2, = U,, + PpU, - > 0 and A%z, < 0 for n = n,. It is easy
to see that 4z, > 0 for » = n,;. In fact there exists ny = %, such that 4z,, <0,
then there exists ng > ny such that 4z, < 4z, < 0 since (4z, ) is nonincreasing
and ¢, ¥ 0 eventually. The last inequality yields z, — — @ as n — o, which con-
tradicts that z, > 0.

Furthermore, since z, = u,,, hence z,_, <2, < U, +Pu2n-4, SO

(1]-) (lmpn)zn-ksun-
From (1), by monotonicity of f and (11), we obtain

A%2, 4 @ flL = Py %11 S O
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and we see that there exists a constant ¢ > 0 such that
12 A%z, + g, fll = p,_)el <0 nZn >N, .

Summing both sides of (12) from 7, to n we have

7
2 G fI(1=p;_)) el < dazy,
which contradicts (10). The proof for (u,) eventually negative is similar.
For the linear difference equation

(18) Az(u7z+p1zu7z—k) + @y ;=0

we obtain from Theorem 4 the following

Corollary. If0<p,<1, ¢, 20 and X ¢,(1-p,_;)= , then every
solution of (13) is oscillatory. roe

Theorem 5. Ifi and ii khold and (p,) is not eventually negative, then any
solution (u,) of (1) is either oscillatory or satisfies nlirg inf |u, | =0.

Proof. Let (u,) be a solution of (1). If (u,) is nonoscillatory, then |u, | > 0
eventually. Suppose that u, > 0. Then as before (6) implies that (dz,) is
nonincreasing and also we have z, > 0 eventually. We see as in the proof of
Theorem 4 that Az, > 0 eventually. Therefore 4z, —>L =0 as # — ». Sum-
ming (6) from % to m > n with = sufficiently large and then letting m — » we
get

(14) 2 @ f(ui)=dz,—L < o
which, by i and ii, implies that nl'_n}quo inf u,, = 0. The proof when u, <0 is
similar,

Theorem 6. If0<p,<p, q,=q>0 and there exists a constant A > 0
such that | flu)| = A|u| for all w, then all solutions of (1) are oscillatory.

Proof. We observe that the assumptions of Theorem 6 imply the assum-
ptions of Theorem 5. Therefore arguing as in the proof of Theorem 5 for an
eventually positive solution (u,) of (1) we obtain the equality (14).

Further, by assumptions, (14) gives Ag > u;_; < 42, — L < o, which im-
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plies that %, — 0 as n — ® and so 2, — 0 as # — . But this is impossible, since
z, > 0 and Az, > 0 eventually. This remark completes the proof.

Our final theorem shows that, if (p,,) is bounded with upper bound less than
—1, then i and ii are sufficient to ensure that bounded nonoscillatory solutions
of (1) tend to zero as »— .

Theorem 7. If in addition to i and ii, there exist constants P; and P,
such that

(15) P<p,<Py< -1

then every bounded solution (w,) of (1) is either oscillatory or satisfies u, — 0
as n—> o,

Proof. Suppose that (1) has a bounded nonoscillatory solution (u,) and let
(u,) be eventually positive. By part a of Lemma either (2) or (3) holds. Clearly
(2) cannot hold in view of (15) and the fact that (u,,) is bounded. From (3) we ha-
ve 2, < 0 and 2z, — 0 as n — . Therefore, for any number ¢ > 0 there exists %,

(u, + €)
so that for » = n; we have —& <2, S U, + Pothy_j OF Uy < — —p and
consequently 2
(16) Up < — —1“’7/(%+k -1 and hence
P, P,

(17) u7L+k> —Pgun“g.

From (16) U4k < — 'Lun+2k“ LE and) by (17)7 we get
Py Py

un<<—l,%)2un+2k+(—-1§—>ze+(~-]—i—)e.
2 2 2

After m iterations, we obtain

un<(—_I%_)mu7L+km+8‘El(—_I:_1’_)i.
2 = 2

Let A=1+ RIS 0 and w, <M. Now choose m large enough so that

Py
(— %)m < Thus for every ¢ >0 there exists ny =n; such that for
2

&
M
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7 = Ny wWe have

1
1— (=5 )"
£ 1 p, £
= - ) ——— < 2,
u"</’t+£( P2) - T 7
P,

That is %, — 0 as n — o, The proof for (u,) eventually negative is similar.
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Sommario

Viene studiato il comportamento asintotico e oscillatorio delle soluzioni di alcune
classt di equazioni non lineari alle differenze.
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