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ELENA VUK (¥)

A dynamic problem in linear thermoviscoelasticity (**)

1 - Introduction

A new model for a linearized theory of thermoviscoelasticity, compatible
with the theory of fading memory has been exhibited in [13]. In that paper the
necessary approximations in order to obtain a completely linear theory are in-
troduced and necessary and sufficient conditions on the costitutive equations for
the validity of thermodynamic principles are derived.

A first model of linear thermoviscoelastic material has been established by
Gurtin in [10]. This author extends the results (obtained by Day in [5]) on the li-
nearized isothermal theory of viscoelasticity as a consequence of the compatibili-
ty with thermodynamic principles and of the hypothesis of invariance under
time-reversal.

Subsequently, various authors [14], [1], [2], [11], [12] studied the evolutive
problem for Gurtin’s model and deduced very interesting theorems of existence,
uniqueness, asymptotic stability and continuous dependence. They follow
methods, based on the works of Dafermos in [4], which require hypotheses on
the constitutive equations, that appear reasonable and fully compatible with the
experimental results, but are partially different from the Second Law of
Thermodynamics.

The main purpose of this paper is to obtain some results on the existence and
uniqueness of the solutions for the dynamic problem under more general hypo-
theses, which are consequence of the Second Law of Thermodynamics for cyclic
processes.

(*) Dip. di Elettronica per I’Automazione, Univ. Brescia, Via Branze 38, 25123 Bre-
scia, Italia.
(**) Received September 7, 1995. AMS classification 75 U 05. This work has been per-
fomed under the auspices of GNFM and partially supported by MURST 40%: Metodi ma-
tematici nella mececaniea dei continui.
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Sections 2, 3, are devoted, respectively, to the description of the constitutive
equations and to the analysis of a linearized statement of the Second Law in the
form of the Clausius property, following a technique proposed in [7], [9].

In Section 4, the thermodynamic requirements are shown to be sufficient to
prove an existence and uniqueness theorem for a boundary-initial value problem
of a linear anisotropic inhomegeneous thermoviscolastic material.

2 - Preliminaries

We consider an inhomogeneous, anisotropic thermoviscoelastic material oc-
cupying a bounded domain Q c R?, with smooth boundary 9%, in a reference
configuration, with zero stress and constant and uniform absolute base tempera-
ture @, and we denote by x the position vector of any point of the body.

Let te R be the time. We indicate by u(x, t) the displacement vector,
O(x, t) the absolute temperature and ¥z, t) = O(x, t) — @, the temperature
variation field. The mass density ¢ is taken to constant and particularly ¢ = 1.
The quantities T(z, t), g(z, t), q(z, t) and h(x, t) represent the Cauchy stress
tensor, the temperature gradient at x, the heat flux vector and the rate at which
heat is absorbed for unit of volume, respectively. Whenever no ambiguity arises,
the dependence on @ is omitted.

As usual, given a function f on R, the past history f* of fup to time ¢ is defi-
ned as fi(s) =f(t—s), seR™.

We consider materials for which the physical state at a time ¢ is given by the
history of the displacement gradient and by the history of the temperature dif-
ference up to time t, ie., by the set (Vu(t), Vu!, %(t), 9*), while the thermo-
dynamic process is defined by the triplet (Vi, 3, g), where the superposed dot
represents the derivative with respecto to &.

Under hypotheses of small deformations and small variations of the tempera-
ture with respect to the given reference configuration, the constitutive relations
for T, h and q are described by the following linearized equations[13]:

21y T =G Vul) + wa' (s) Vul(s)ds + My9(t) + me' (s) 9t (s)ds
0 0

) = O4[B.. - Vi) + d. ) + Dy Vu(t)]

2.2) ® ®
+0,[f D'(s)-Vul(s)ds + ayd(t) + [a'(s) 9 (s)ds]
0 [

2.3) q(t) = —Kg(1)
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where G, and G' (s), s = 0 are fourth order tensors; M,, Dy, B.., K and M'(s),
D'(s), s = 0 are second order tensors; d., ay and a’'(s), s = 0 are scalar fields.
The constitutive equation (2.3) represents the usual Fourier’s law.

As usual for material with memory, a fading memory principle for the
Boltzmann functions G', M', D', a' is required. We assume that G, M', D', o’
belong to L1(R*)N L2(R*). This implies that, if we denote with f; and
f'(s) a general pair of constitutive functions, then the relaxation function
f)=f+ ftf’(s) ds is well defined, for every t =0 and f, = tlgr;f(t) exists.

In the ‘izontext of a linearized thory, we assume that the reference configu-
ration is a natural undeformed state, which implies M, = 0. Moreover, requiring
that in the reference configuration the rate at which heat is absorbed by the uni-
ty of volume % is equal to zero, we derive a, = 0.

In[13] it is shown that the constitutive equations (2.1)-(2.3) describe a model
of linear thermoviscoelasticity more general than the one produced by Navarro
in[14].

3 — Thermodynamic restrictions

In this section we recall the restrictions on the constitutive equations (2.1)-
(2.2), due to the two laws of thermodynamies[3]:

3.1) $LA(t) + T(t)-Va(t)]dt = 0 First Law

h(t) q(®)-g(t)
. = L
3.2) $f [0+ 0] + [0, 1 50T 1dt =0 Second Law

for any cyeclic process. The complete statement of the Second Law, however,
specifies that the inequality refers to an irreversible process, whereas the equa-
lity occurs in irreversible processes only (see for instance[6]).

Under linear approximation (i.e. small variations of the temperature with re-
spect to a given reference temperature @, and small g), (@, + ¥)~! may be sub-

stituted by its Taylor linear polinomial (1 — -2-). Thus (3.2), after a com-
. . Oy Oy
parison with (3.1), becomes

8.3) —@1—2 $LR(E) O() + O, T(@)-Vi(t) — q(t)-g()]dt = 0.
0

Substituting the constitutive equations (2.1)-(2.3) into (8.8), we obtain the
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dissipation inequality

2616, vuw) + [ G (s)Vut (s) ds + (M, + B ) 8(8) + [ M (s)9*(s) ds]- Viu(t)}
0 0 0
B4) 2 $lde BO) + Dy Vult) + [D'(): Vut (s)ds + ag 9B 9() b

0 0

+ L g0 (5)94(s)ds () + - Kg(t) g} dt > 0.
Oy % N

In order to deduce thermodynamic restrictions for the constitutive functio-
nals, we consider histories of the strain tensor and of the temperature variation
field oscillating in the time with the law:

Vut(s) = Vu,cos o(t — s) — Vuysin w(t — s) = Re[Vu e~ 9]

3.5) )
() = F;cos w(t — s) — Fysin w(t — 8) = Re[Fe@t 9]

where u = u, + iu,, % = %, + i, with uy, u,, ¥, ¥, constant values in the ti-
me, w a positive constant frequency, and we choose a cyclic irreversible process

(Vit, 9, g) of duration 7= %—E, w > 0, defined by:

Vi(t) = —w[Vu,sin ot + Vu,cos wt]

3.6)
Ht) = —w[Psin wt + ¥, cos wt] g(t) = g,sin wit + gocos wt.

Moreover, we denote with 7,(w) = [ f(s) cos wsds, f,(w) = [f(s) sin wsds

the half-range Fourier cosine and sine (l)ﬁmnsforms of the functioon f, so that we
have flo) = f,(w) — i, (w).

Substituting (3.5)-(3.6) into (3.4), after the integration over the period of
oscillation, we obtain

@lg{wz- [(Go+ G} ()T — (Go+ G ()] Vi, — Vauy - G (0) Yy — Vaty Gy (w) Vay
+[My + B + M (0) — =D} ()] (9 Vu, — 8, Vatp)
0 F[= (@) + £ (Dy + Dy (0))]+ (3, Vuy + 35 Vay)
+ a0 + 8¢ @O+ 99) + - (Kg191 + Koo g2)} > 0

where GT denotes the transposed of G.
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After straightforward calculations (3.7) may be written

Im {(Gy + G'(0)) Vi - Vu* + (My + B, + M'(0))- Vu* &}

@8 LRe{Dy+D'(w) Vud* + (g + @' (0)) 99 + @LKg-g*} >0
0

where the symbol * denotes the complex conjugate.
As a consequence of (8.7), in isothermal conditions (with ¢ =0, g = 0) the
classical conditions on the stress-strain relaxation tensor G hold:

3.9) G=6G] G.=GL Im{(Gy+@G (w)Vu-Vu*}>0

obtained in [8] for linear viscoelastic materials; while, for thermal processes
(with Vu =0, g = 0) it holds condition

(8.10) Re{ay+a'(w)} >0

obtained in [9] for the rigid conductors.
Finally, if ¢ =0, but g, = g, = g, it follows the positive definiteness of the
thermal conductivity

3.11) K>0.
Letting w — o in (8.8), by virtue of (3.9), it follows
3.12) My=-B, .

This condition is equivalent to require that the instantaneous derivative of the
free energy with respect to the strain is the stress and the instantaneous deri-
vative of the free energy with respect to the temperature is the negative of the
entropy.

Letting w — 0%in (8.8), with g =0, it follows

8.13) D,=0 G =0.
Because of (3.12) the inequality (3.8) becomes

(8.14) Im {(G, + G’ (@) Vu- Vu* }

1

aE
@ng g*¥}>0.

+ —i)—Re {(GoM'* (@) + Do+ D' (0)) - Vi 9% + (ag + ' (w)) 9% +

We can summarize our results in the following
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Theorem 1. For a linear thermoviscoelastic material, satisfying (2.1)-
(2.3), the Second Law of Thermodynamics holds, if and only if the relaxation
functions satisfy (3.9)-(3.14).

Paralleling the argument explained in [9], it is easily shown that (3.9)-(3.14)
are also sufficient conditions for the validity of the Second Law for thermovi-
scoelastic materials in the form (2.1)-(2.3).

4 — Existence and uniqueness results

The ensuing evolution problem in the space-temporal domain Q X R* is
given by:

iz, t) =V -T(x, ) + bz, t) Az, )= -V qlx, t) + 7z, 1)
4.1) ule,t) =0, HNx,t)=0 on 9Q

u(z,s)=u’(x,s—t), o(x,8)=0%%,s~t), s=t.

The first equation represents the local form of balance of linear momentum,
where b is the specific body force, while the second is the balance of the energy,
where r is the specific heat supply field.

Substituting the constitutive equations (2.1)-(2.3) into problem (4.1) and se-
parating initial past histories from the solution, one obtains the initial-bounda-
ry value problem:

ii(x, t) = V-[Gy(x) Vu(x, t) + ftG’(m, s) Vu! (z, s)ds + My (x) Mz, t)]
0

“4.2)
+V-[ftM’(m, 8) ¥ (x, s)ds] + V- -Ty(x, t) + bz, t)
i}

Ool —M,(x)-Vir(x, t) + d., (x) Iz, t) + Dy (x) - Vulx, t)]
(4.3) +@0[ftD'(9c, $)-Vu'(z, s)ds + ay(x) N, t) + fta’(oc, 8) 9 (z, s) ds]

0 0

= V- [K(x) Vi(x, £)] + ¢ (x, ) + vz, t)

“4.4) u(x,t)=0, Ne,t) =0 on 082

(4.5) u@, 0) =u(®), Ha,0)=70(x), ualw,0)=1i,(x)
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where 1y(@)=1u(z, 0), $o(@)=0"(, 0), io(x)=— lim -ggug(:c, $) = v (@)
507

To(z, t) = [ G (x, s)Vul(z, s — t)ds + [ M’ (x, s)9%(x, s — t)ds
t t

oz, t) = — [D'(x,5) Vul(z, s —t)ds — [a'(®, s)¥°(x, s — ¢)ds.
i t

The boundary homogeneous Dirichlet conditions (4.4) state that the boundary is
fixed and it is maintained at constant reference temperature &,.

In order to achieve an existence and uniqueness result relative to problem
(4.2)-(4.5), we impose the assumptions:

H,. The relaxation functions G(x,s), M(x,s) are continuous in
Q x [0, «) and differentiable on Q X (0, «), D(x, s), a(x, s) are continuous in
0O x [0, »), the tensor K(x) is continuous in Q and differentiable on 2 and
de (z) is a continuous function in Q.

H,. The tensor G, (x) is a positive definite tensor in 2, ie. a positive con-
stant g, exists such that, for every v e Cy (2)

[ G (x)Vo(x) - Vo(x)dx = g., [ Vo(z) - Vo(x)de .
Q Q

H;. As a consequence to (3.14) it is possible to prove that there exists al-
ways a positive constant u(w) such that, for every w >0

[Im[(Gy () + G'(z, ) Vu(x) Vu* (z)] dv
0

gl

+ = [Re[GiwM'* (x, w) + Dy(x) + D' (2, 0))- Vu(z) ** (x)] de
Q

(4.6) 1 ~
+ ange [(ag(x) + @' (x, w)) Hw)P* (x)] dx

+ @LOJK(Q;) V) - Vo () de = u(w){]|u@)|f + | 9@)|E}

where |- [, denotes the norm in the space Hj ().

In the sequence a function will be called causal, if it equals 0 for negative ¢.
A function defined on R* can be identified with a function on R, which vanishes
identically on (— o, 0).

First we consider the Fourier transformed problem of (4.2)-(4.5) for causal
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functions, which is defined for each w e R:

~olu(x, w) =V [(Gy(x) + G' (x, w)) Vii(z, »)]

“n +V - [(My () + M (2, ) ¥, 0)] + F(z, o)

“s) 0o [(—iw My(x) + Do(oi) + D' (z, w))-Vﬁ(m,Aw)] )
+0[(iw Ao () + ag () + &' (x, ) ¥z, )] = V- [Kx) V(x, 0)] + iz, »)

4.9 iz, 0)=0, Nz, 0)=0 on AR

where f(x, ) = bz, ©) + V-Ty (2, ) + iwus(2) + vo(x)

Uz, 0) = /x, 0) + 8 (%, ) + Og[de (@) T (&) — My () - Vatg (2)].

Definition. A pair (&, #) e H} () x H}(R) is called a weak solution of
4.7)-(4.9) if
J{-w?a-w* + [(Gy + G')Vii + (My + M')H]-Vio* } du
02

(4.10) +Qf{@o[(—ia)Mo+DO+D')-Vﬁ]}dw
+ [{[God, +a, +@')D]a* + KVS-Va* b de = [{F-@* + la* ) do
Q 2
holds for every (w*, a*)e H{(R2) x HE ().

Lemma 1. Under the hypotheses H,-Hs problem (4.7)-(4.9) has one and
only ome weak solution (#(-, w), 9, ®)) e H(Q) x H}(RQ), for every
(F¢, ®), -, 0)) e L2(2) x L*(2) and o <R.

Proof. (Existence) By virtue of well-know theorems on elliptic problems
[8], (4.7)-(4.9) has one and only one solution, if and only if the associated operator
is coercive for every w e R.

If w =0, we consider the quadratic form related to the system (4.7)-(4.9)

(4.11) Fu, ¢, w) = iwAlu, 4, o) + Blu, 9, o)
where
Ay, ¥, o) = - [{o?u(x) u*(x)} do
Q

= [{[Go(®) + &' (2, w)] Vu(z)- Vue* () + [My () + M (x, »)] Hx) Vu* (x)} dz
Lo}

B(u, 9, w) = [{[ —ioM,(x) + Dy (x) + D' (x, )] Vu(z)9* (x)} dx
2

+ [{liwd. (®) + ap(x) + @' (%, 0)] HNz) d* (x) + @LK(w) V() Vo* ()} de .
Q 0
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Therefore
|F(u, 9, w)| =2 Re {F(u, ¢, )}
= Re {iwA(u, 9, o) + B, %, 0)} = u(o){|u@)|? + |8@)|E}

by virtue of (4.6).
If w =0, the transformed problem becomes

4.12) V-[G. (x) Vii(z, 0)] + f(z, 0) = 0 V- [K(x) Vi, 0)] + Uz, 0) =0
(4.13) uz,0)=0, Jx,0=0 on 99
and the positive definiteness of G., () and K(x) imply that the associated opera-

tor is coercive.

(Uniqueness) Since the quadratic form F turns out to be coercive, the asso-
ciated homogeneous problem admits unique solution equal to zero, for every w € R.
We can represent the solution of (4.7)-(4.9) as follows

@14) i, w) = [{J@, 2'; 0)F@’, o) + ~@1—j(x, o' ) e, )} de’
0 0

where the Green functions J, j (second and first order tensors, respectively), for
almost all x € 2 and w e R, solve the problem

~0?J(@, ¢’ 0) =V [(Gy(z") + &' (', w)TV' Iz, z'; )]

(4.15)
_V/.[(—'L'a)Mo(:v')-f-Do(.')c')-i-D'(x:, a)))j(.'l/', xl; w)]=5(w——x’)[
(4-16) [MO(x’) +M'(w', a))]'V’J(w, {L"; a)) — é_;_VI[K(wI)VIj(x, xl; C())]
+[’L'(l)doo ({L") + (lo(x’) + a'(x/’ C())]j(x, x/; (1)) =0
@1 J@, o' 0)=0  j@e';50)=0 on 0Q

where ¢ is the Dirac’s delta and I the identity tensor.

Lemma 2. Under the hypotheses of Lemma 1, for almost all x € Q and
weR, problem (4.15)-(4.17) has one and only ome solution J(zx, z'; ),
J(x, ' ; w), with the properties:

L J@@,z'; ), j(x, ;) are continuous on R

i J(x, 2" 0) =0(w™2%%), jx,2';0)=0w 1) as w — .

Proof. The continuity of J, j on w follows by the continuous dependence of
F(u, ¢, o) with respect to w (see[15]). Now, multiplying (4.15)-(4.17) by the real
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functions v, @ e Cy° (2) respectively, and integrating over 2, we have:
Qf.](x, ' o)l—-v(') — éV"[(GO(m’) + G (', 0)V vz )]dz'
= igng(x, o', )V (M (') + M (&', @) (e )dz’
+ Z)l—géfj(x, 2 o(—ioMy(x') + Do(x') + D' (', ®))- V' v(zx' )] de’
+ égfj(x, a'; o)l(iwds (@) +ap(a’) +a' (¢, w) p(x’)]dz’

——-—fJ(w x' w)[—V’ (K(z")V' oz’ )]de" = w~v(w)
a)
By virtue of Lebesgue theorem G',M',D',a' vanish when w — «, hence

wliinmgf«f(w, x'; o) -v(') - ﬁV“[Go(x')V’v(x') + My (z") oz )]l dz’

@—> %

+ lim ngf ji(, 2" ; w)[Dy(x')- Vo) + agle)plx') - '@LV"(K(w’)V’qv(W’))]dx'
0

+ lim Lgf](m,w’;w)(—Mo(x')'V'U(w')+dm($')¢(90'))dx'= o).
Q w

For the choice of v, @ (4.15) yields
(4.18) lim w®[ij(x, ' ; @) —My(x')-V'o(z') + de (x') @z’ ))dx’ =0
w— « Q

and finally
lim w 2% —J(x, ' ; w)v(x')dx’
[ ] o
(4.19) =w8f{J(m,x’;a))V’-[Go(m’)V’v(x’)+M0(x’)qo(x')]}dm’
o

~w59f{j(x, x'; )[Do(x')-V'o(e') +ap(x)e(') - @LOV'-(K(w’)V%p(w’))]}dx’ .
The observation that the test functions are arbitrary completes the proof.

Since 7 and I belong to L?(R; L?(2)), by properties of Green’s functions J, j
showed in Lemma 2, we conclude that # defined through (4.14) belongs to
L2(R; H{ (), and the inverse Fourier transform of the function & exists:

(4.20) w(z, t) = - [z, 0)e™do
27 0
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Similary we can represent the solution ¥ as follows

@2 B, ) = [el, 2'; 0)-Fa', o) + @ic(x, o' ) @', o)} de’
Q 0

where the vector and the scalar fields ¢, ¢ are the solutions to the problem

—ofel@, vy 0) — V' [G(x') + Gi(x', o)) Ve(x, x'; )]

(4.22) . -
~V(—toMy(x') + Dy(x') + D' (z', w))e(x, x'; w)] =0
[My(x') + M'(z', 0)]-V'e(z, ' ; )
(4.23) +[iwdw(9«”')+ao(90')+(i’(x',w)]c(x,m’;w)
L VK@)V e, ' 0] = 8 — ')
O,
(4.24) clx,z'; w)=0, (e, 2’3 0)=0 on ofR2.

As a consequence of Lemmas 1, 2, we have:

Theorem 2. Under the hypotheses of Lemma 1, problem (4.2)-(4.5) has one
and only one solution

(w, M e[L*(R*; Hf (2) NHY(R*; L3(2))] X LA(R*; H} (2))
with data
(V-To+b,co+7r)e LERY; L*(2)) x LA(R*; L2(2)), (g, %9) € HE (Q) X H} (Q)
and vy e L2(Q).
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Sommario

Nell’ambito della teoria linearizzata della termoviscoelasticita si determinano alcune
restrizioni sulle equazioni costitutive che risultano essere conseguenza diretta dei principi
della termodinamica.

Tali restrizioni ci permettono di dimostrare un teorema di esistenza e unicita per la

soluzione debole delle equazioni evolutive di un solido termoviscoelastico lineare.
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