R. UTANO and G. RESTUCCIA(*)

Integrity of the symmetric algebra of modules of projective dimension two (**)

1 - Introduction

Let R denote a commutative Noetherian ring and E denote a finitely generated module with a presentation

$$(1) R^m \xrightarrow{\phi} R^n \xrightarrow{\varphi} E \to 0.$$

If R is an integral domain and E is a torsion free module of projective dimension one, the integrity of the symmetric algebra S(E) of E over R is studied in [1]. Now, let

$$(2) 0 \to R^s \xrightarrow{\psi} R^m \xrightarrow{\phi} R^n \xrightarrow{\varphi} E \to 0$$

be a projective resolution of E.

If the second Betti number s is equal to 1, R is a Cohen-Macaulay domain, E is a torsion-free R-module, $E^* = \operatorname{Hom}_R(E,R)$ is a 3-syzygy module, in [12] the acyclicity of the Z(E)-complex, the approximation complex of E, is proved by using syzygetic properties of the ideal $I_1(\psi)$ generated by the entries of a matrix representation of the inclusion $0 \to R \xrightarrow{\psi} R^m$.

When the second Betti number is two and the rank of the first syzygy module N of E is odd, sufficient conditions for E to admit an acyclic Z(E)-complex are established in [9] in terms of theoretic properties of the ideal $I_s(\psi)$ generated by the largest sized minors of a matrix representation of the inclusion $0 \to R^s \xrightarrow{\psi} R^m$ (i.e. the ideal $I_2(\psi)$). Moreover in that paper some relationships between the ideal $J(\phi)$ of relations of S(E) and $I_2(\psi)$ are described.

^(*) Dip. di Matem., Univ. Messina, Contrada Papardo, Salita Sperone 31, 98166 Sant'Agata, Messina, Italia.

^(**) Riceived June 20 1995. AMS classification 13 D 25. Work supported by CNR.

We study the case rank N even and s=2. We intend in this case too, to connect the syzygetic properties of S(E) with the syzygetic properties of $I_2(\psi)$. If R is a regular ring, a positive result was obtained in [11]. However, if we don't suppose that all modules have a finite projective resolution, we obtain a similar result when R is only a CM-ring.

More precisely, in Section 2 we state sufficient conditions for the acyclicity of Z(E)-complex and prove that $J(\phi)$ is a Cohen-Macaulay prime ideal of $S(R^n)$, by using notions of duality and counting depths of the modules, which appear in the complex Z(E).

In Section 3 at last we study some modules E of projective dimension two for which Z(E) is acyclic, requiring higher depths of the modules $Z_i(E)$. We point out the connection among the syzygetic properties of Coker $\Lambda^s \varphi$, where s is the second Betti number, and those of \mathfrak{I}_s .

2 - The main theorem

Let R be a commutative Noetherian ring and let E be a finitely generated R-module with a presentation (1) where $\phi = (a_{ij})$ is a matrix representation of a map between R^m and R^n , $a_{ij} \in R$.

Let S(E) be the symmetric algebra of E, with the ideal-theoretic presentation $S(E) = R[T_1, \ldots, T_n]/J$ where $R[T_1, \ldots, T_n] = S_R(R^n)$ and J is the ideal of relations of S(E) generated by the 1-forms

$$f_j = \sum_{i=1}^{n} a_{ij} T_i \in S(R_n) \qquad 1 \le j \le m.$$

We assume that E has rank e, i.e. $E \otimes K = K^e$, where K is the total quotient ring of R.

We consider some conditions on the sizes of Fitting ideals of E.

For any integer $t \ge 1$ we denote $I_t(\phi)$ the ideal generated by the $t \times t$ minors of ϕ , i.e. $I_t(\phi)$ is the (n-t)-th *Fitting ideal* of E and we consider the condition

$$F_k : \operatorname{ht}(I_t(\phi)) \geqslant \operatorname{rank} \phi - t + 1 + k \qquad 1 \leqslant t \leqslant \operatorname{rank} \phi \qquad k \geqslant 0$$

where rank $\phi = \sup\{t | I_t(\phi) \neq 0\}$.

Condition F_k can be given in terms of the local number of generators of E F_k : for each prime ideal $\mathscr O$ of R, if $E_{\mathscr O}$ is not a free $R_{\mathscr O}$ -module, then

$$\nu(E_{\wp}) \leq \operatorname{depth} \wp + \operatorname{rank} E - k$$

where $\nu = \nu(E_{\wp})$ is the minimal number of generators of E_{\wp} .

Hence, if E is F_k and $L_{\wp} \neq 0$ then rank $L_{\wp} \leq$ ht $\wp - k$ where L_{\wp} is such that the sequence $0 \to L_{\wp} \to R_{\wp}^{\nu} \to E_{\wp} \to 0$ is exact [12], [13].

We want to study when the symmetric algebra of a module of projective dimension two over a Cohen-Macaulay domain is a Cohen-Macaulay domain, too.

The approximation complex Z(E) of E gives useful information about the theoretic properties of S(E) [3].

If E has the presentation (1), then the Z(E)-complex is a complex of graded $S = S(\mathbb{R}^n)$ -modules

$$Z(E): 0 \to Z_n \otimes S[-n] \xrightarrow{\partial} \dots \to Z_1 \otimes S[-1] \to S \to S(E) \to 0$$

where:

$$Z_{i} = Z_{i}(E) = \ker \left(A^{i} R^{n} \xrightarrow{\partial'} A^{i-1} R^{n} \otimes E \right) \qquad S[-r]_{t} = S_{t-r}$$

$$\partial' (a_{1} \wedge \ldots \wedge a_{i}) = \sum_{1}^{i} (-1)^{j} (a_{1} \wedge \ldots \wedge \widehat{a}_{j} \wedge \ldots \wedge a_{i}) \otimes \varphi(a_{j})$$

$$\partial(e_{i_{1}} \wedge \ldots \wedge e_{i_{r}} \otimes p(e)) = \sum_{i=1}^{r} (-1)^{r-j} e_{i_{1}} \wedge \ldots \wedge \widehat{e}_{i_{j}} \wedge \ldots \wedge e_{i_{r}} \otimes e_{i_{j}} p(e)$$

where $e = e_1, \ldots, e_n$ is a standard basis of R^n and $\hat{}$ means omission.

If E has rank e, $Z_i = 0$ for i > n - e and the homology of Z(E) does not depend on the chosen presentation of E.

Let us briefly remember that an ideal \Im of a Cohen-Macaulay ring R is said strongly Cohen-Macaulay, SCM for short, if

depth
$$Z_i(\mathfrak{I}) \ge \min\{d, d-g+2\}$$

where $g = \text{ht } \Im$ and Z_i is the module of cycles of the Koszul complex associated to a system of generators of \Im [4].

Moreover we will use the acyclicity lemma of Peskine and Szpiro ([8]) and the criterion of Buchsbaum-Eisenbud-Northcott, formulated again by Matsumura ([7], Th. 3.3.2). The following theorem is crucial to state the results of this section.

Theorem 1. Let R be a Noetherian ring, I be an ideal of R and

$$0 \rightarrow F_k \rightarrow \ldots \rightarrow F_1 \rightarrow M \rightarrow 0$$

be an exact complex of finitely generated R-modules $(k \ge 1)$ such that there exists $n \ge k$ with depth $_IF_i \ge n$ for i = 1, ..., k.

Then depth $_{I}M \ge n + 1 - k$.

Proof. See [5], Lemma 3.3.

Now we consider a module E of projective dimension two, with the free resolution (2).

In [9] e [10] basic result on the syzygies of E and some consequences about some modules were obtained. More explicitly, let us denote by N the first syzygy module of E, by Q the Coker $\Lambda^s \psi$, by $Z_1(\mathfrak{I}_s)$ the first syzygy module of \mathfrak{I}_s , where \mathfrak{I}_s is the ideal generated by the $s \times s$ minors of a matrix presentation of ψ , and by $Z_i(\mathfrak{I}_s)$ the i-th module of cycles of the Koszul complex associated with a system of generators of \mathfrak{I}_s .

If E is a torsion-free R-module, the maps concerning these modules are:

a:
$$(\Lambda^l N)^{**} \simeq Z_l$$
 $l \leq \operatorname{rank} N$

b:
$$(\Lambda^t Q)^{**} \to Z_{st}(E)$$
 $t \ge 1$

c:
$$(\Lambda^l N)^{**} \simeq (\Lambda^{\sigma-l} N)^*$$
 $\sigma = \operatorname{rank} N$.

Moreover, if R is a Cohen-Macaulay domain containing a field k, then:

d:
$$Q \simeq (Z_1(\mathfrak{I}_s))^*$$

e:
$$(\Lambda^t Q)^{**} \simeq (\Lambda^{r-t} Z_1(\mathfrak{I}_s))^{**} \simeq Z_{r-t}(\mathfrak{I}_s)$$
 $r = \operatorname{rank} Q$

f: $(\Lambda^t Q)^{**} \to (\Lambda^{r-t} Q)^*$ and f is an isomorphism, if Q is a reflexive module.

See [9] for a description of these maps.

The conditions under which the symmetric algebra S(E) is an *integral domain* have been a source of interest. We study now when a module E of projective dimension two and s=2 has acyclic Z(E)-complex and for which the symmetric algebra S(E) is an integral domain. If rank N=m-2 is odd we have the results of [9].

Thanks to **b**, it exists a map $(\Lambda^t Q)^{**} \to Z_{2t}(E)$, $t \ge 1$, hence the even terms of the Z(E)-complex can be connected with the exterior power $(\Lambda^t Q)^{**}$ and consequently with the homology modules of \mathfrak{F}_2 .

Moreover, for the odd terms $Z_l(E)$, since we have

(3)
$$Z_l(E) \simeq (\Lambda^l N)^{**} \simeq (\Lambda^{\operatorname{rank} N - l} N)^*$$

and rank N-l is still even, it is possible to connect such powers with the exterior powers $(A^{\frac{\operatorname{rank} N-l}{2}}Q)^*$, by the dual map $(A^{\operatorname{rank} N-l}N)^* \to (A^{\frac{\operatorname{rank} N-l}{2}}Q)^*$.

The case m-2 even is more complicated. In fact it is not possible to connect the odd terms of the complex with the homology modules of \Im_2 . In fact, for l odd we have again (3) but rank N-l is still odd. Consequently the use of the dual module is ineffectual, in general. However it is possible to connect the module $(\Lambda^l N)^{**}$ with $(\Lambda^{l-1} Q)^* \otimes N$, and of this latter module it is possible to evaluate the depth. Such reasonings are contained in

Theorem 2. Let R be a Cohen-Macaulay integral domain containing a field and let E be a torsion-free module of projective dimension two with the free resolution (2), with s = 2. Let $N = Z_1(E)$ be the first syzygy module of E and Q be $\operatorname{Coker}(\Lambda^2 \psi)$.

Suppose that:

- i. E satisfies F_1
- ii. rank N = m 2 is even
- iii. $(\Lambda^t Q)^{**} \otimes N$ is reflexive for any t such that $2t + 1 < \operatorname{rank} N$
- iv. depth $(\Lambda^{2t+\varrho}N)^{**}_{\varrho} \ge \operatorname{depth}((\Lambda^tQ)^{**} \otimes \Lambda^{\varrho}N)^{**}_{\varrho} \quad \varrho = 0, 1$

for any t such that $2t + \rho < \text{rank } N$, and for any $\rho \in \text{Spec } R$, $\rho \supset \Im_{\rho}$

v. \mathfrak{I}_2 is a strongly Cohen-Macaulay ideal of height 3.

Then Z(E) is acyclic and $J = J(\phi)$ is a Cohen-Macaulay prime ideal of $S(\mathbb{R}^n) = \mathbb{R}[T_1, \dots, T_n]$, therefore S(E) is an integral domain.

Proof. Let \wp be a maximal ideal of R containing \mathfrak{I}_2 . We may assume that (R,\wp) is a local ring and $\dim R = d$.

Thanks to a if rank $N = m - 2 = 2\nu$, Z(E) is the complex

$$0 \to R \otimes S[-2\nu] \to (\varLambda^{2\nu-1}N)^{**} \otimes S[-2\nu+1] \to (\varLambda^{2\nu-2}N)^{**} \otimes S[-2\nu+2]$$

$$\rightarrow \dots \rightarrow (\varLambda^3 N)^{**} \otimes S[-3] \rightarrow (\varLambda^2 N)^{**} \otimes S[-2] \rightarrow N \otimes S[-1] \rightarrow S \rightarrow S(E) \rightarrow 0$$

From hypothesis iv and from e it follows

$$\operatorname{depth}(A^{2t}N)^{**} \ge \operatorname{depth}(A^tQ)^{**} = \operatorname{depth}(A^{r-t}Q^*) = \operatorname{depth}Z_{r-t}(\mathfrak{I}_2)$$

with $r = \operatorname{rank} Q$. Moreover $(\Lambda^t Q)^{**} = (\Lambda^t Z_1(\mathbb{S}_2))^{**} = Z_t(\mathbb{S}_2)$. From \mathbf{v} we derive depth $Z_i(\mathbb{S}_2) \ge d-1$. Moreover, from \mathbf{i} we get rank $N \le d-1$, with $d-1 \ge m-2$.

For even terms in the Z(E)-complex we have depth $(A^{2t}N)^* \ge m-2$. For odd terms we consider the following steps:

Step 1. Consider the epimorphisms:

(4)
$$\Lambda^{2t} N \otimes N \to \Lambda^{2t+1} N \to 0 \qquad \Lambda^t Q \to \Lambda^{2t} N \to 0$$

and the sequences obtained by double dualization of $(4)_1$ and tensorizing $(4)_2$ by N:

$$(\Lambda^{2t}N\otimes N)^{**} \to (\Lambda^{2t+1}N)^{**} \to 0$$
 $\Lambda^tQ\otimes N \to \Lambda^{2t}N\otimes N \to 0$.

Moreover we have

$$(\Lambda^t Q \otimes N)^{**} \to (\Lambda^{2t} N \otimes N)^{**} \to 0$$
 hence $(\Lambda^t Q \otimes N)^{**} \to (\Lambda^{2t+1} N)^{**} \to 0$.

Then we can consider the homomorphism

$$(\varLambda^tQ\otimes N)^{**}\to ((\varLambda^tQ)^{**}\otimes N)\to 0$$

which is an isomorphism for all prime ideals \emptyset of R such that $\operatorname{ht}(\emptyset) \leq 1$, then it is an isomorphism for all prime ideals of R.

Then, we obtain the following exact sequence

$$((\varLambda^tQ)^{**}\otimes N)^{**}\to (\varLambda^{2t+1}N)^{**}\to 0\;.$$

Step 2. We have the exact sequences (2) where s = 2 and

$$(5) 0 \to R^2 \xrightarrow{\psi} R^m \to N \to 0.$$

Since E is torsion free, by Buchsbaum-Eisenbud criterion of exactness, if follows depth $\Im_2(\psi) \geq 3$. By tensoring (5) with $(\Lambda^t Q)^{**}$, we obtain

(6)
$$R^2 \otimes (\Lambda^t Q)^{**} \to R^m \otimes (\Lambda^t Q)^{**} \to N \otimes (\Lambda^t Q)^{**} \to 0.$$

The sufficient conditions in order that (6) is exact are verified.

In fact depth $(\mathfrak{I}_2(\psi), (\Lambda^t Q)^{**}) \ge 2$ (since $(\Lambda^t Q)^{**}$ is a reflexive module). Then from Theorem 1 we can conclude that depth $((\Lambda^t Q)^{**} \otimes N) \ge d-2$. Since E is F_1 , then $d-2 \ge m-3$. From iv we have

$$\operatorname{depth} (A^{2t+1}N)^{**} \ge \operatorname{depth} ((A^tQ)^{**} \otimes N)^{**} \ge d-2 \ge m-3.$$

So the Z(E)-complex is exact and depth S(E) > 0.

The acyclicity of the Z(E)-complex implies that each symmetric power $S_t(E)$ is a torsion-free module, then S(E) is an integral domain and J is a prime ideal.

Moreover E is F_0 , but in this situation dim $S(E) = \dim R + \operatorname{rank} E = d + e$, the acyclicity of Z(E) implies depth $S(E) \ge d + e$, hence S(E) is Cohen-Macaulay.

Example 1. Let R be a Cohen-Macaulay integral domain containing a field and let E be a finitely generated R-module, of projective dimension two, the second Betti number s=2, rank N=4. In this case since $(A^3N)^{**} \simeq N^*$ thanks to c, the Z(E)-complex is

$$0 \to R \otimes S[-4] \to N^* \otimes S[-3] \to (\Lambda^2 N)^{**} \otimes S[-2] \to N \to S \to S(E) \to 0 \; .$$

If we define the morphism $(\Lambda^2 N)^{**} \to Q \to 0$, if depth $(\Lambda^2 N)^{**} \ge$ depth $Q \ge d-1$, $d = \dim R$, then the acyclicity of Z(E) comes from depth N^* . But if N is selfdual, then $N = N^*$ and depth N = d-1; hence Z(E) is exact.

Moreover, in the general case N is not necessarily self-dual, we have

$$(\Lambda^2 N)^{**} = (\Lambda^2 N)^* = ((\Lambda^2 N)^{**})^*$$

and the reflexive power $(\Lambda^2 N)^{**}$ is self-dual.

If $\Lambda^2 N$ is reflexive, then it is self-dual, too.

Example 2. Let E be a finitely generated R-module of projective dimension two, s=2, rank N=6. In this case the Z(E)-complex is

$$0 \to R \otimes S[-6] \to N^* \otimes S[-5] \to (\Lambda^4 N)^{**} \otimes S[-4] \to (\Lambda^3 N)^{**} \otimes S[-3]$$
$$\to (\Lambda^2 N)^{**} \otimes S[-2] \to N \otimes S[-1] \to S \to S(E) \to 0.$$

Consider now the morphism $(\Lambda^{2t}N)^{**} \to (\Lambda^tQ)^{**} \to 0$, 2t < rank N. If depth $(\Lambda^{2t}) \ge \text{depth } (\Lambda^tQ)^{**}$, we have to evaluate depth N^* and depth $(\Lambda^3N)^{**}$.

We have $(\Lambda^3 N)^{**} = (\Lambda^3 N)^*$ and the third reflexive power $(\Lambda^3 N)^{**}$ is self-dual. If $N = N^*$, we have to evaluate only depth $(\Lambda^3 N)^{**}$ or alternatively depth $(\Lambda^3 N)^*$.

Example 3. Let E be a finitely generated R-module of projective dimension two, s=2, rank N=8. The Z(E)-complex is

$$0 \to R \otimes S[-8] \to N^* \otimes S[-7] \to (\Lambda^6 N)^{**} \otimes S[-6] \to (\Lambda^5 N)^{**} \otimes S[-5]$$
$$\to (\Lambda^4 N)^{**} \otimes S[-4] \to (\Lambda^3 N)^{**} \otimes S[-3] \to (\Lambda^2 N)^{**} \otimes S[-2]$$
$$\to N \otimes S[-1] \to S \to S(E) \to 0.$$

It results that $(\Lambda^3 N)^*$ and $(\Lambda^3 N)^{**}$ are not isomorphic and if we suppose that depth $(\Lambda^{2t} N)^{**} \ge \operatorname{depth}(\Lambda^t Q)^{**}$, then we have to evaluate depth N^* , depth $(\Lambda^3 N)^{**}$ and depth $(\Lambda^3 N)^*$.

3 - Further results

Let E be a R-module, having projective dimension two and the free resolution (2) with s = 1.

In the following we need some conditions, whose the first one was introduced in [3].

More explicitly, let R be a Cohen-Macaulay ring and E be a torsion-free module. The *first condition* is

$$F_t^*: \nu(E_{\wp}) \leq \frac{1}{2} (\text{ht } \wp - t) + \text{rank } E \qquad \forall \wp \in \text{Spec } R.$$

Note that, if E satisfies F_t^* , then E satisfies also F_t .

Now, let R be a local Cohen-Macaulay ring and let E be rank e, finitely generated R-module with the presentation

$$(7) 0 \to N \to R^n \to E \to 0.$$

The second condition (sliding depth condition) is

$$SD_k$$
: depth $Z_i(E) \ge d - n + 1 + k$ $\forall i \le n - e$

where $d = \dim R$ and k is a fixed integer.

Theorem 3. Let R be a Cohen-Macaulay ring, let E be a R-module of rank e having the free resolution (2) with s = 1. Let $\Im_1 = \Im = (a_1, \ldots, a_m)$ be the ideal defined by the entries of a matrix presentation of ψ . Then we have:

- 1. If E satisfies F_t^* , $t \in \{0, 1\}$, then \Im_1 satisfies F_t^* .
- 2. If \mathfrak{I}_1 satisfies F_t^* , $t \in \{0, 1\}$, E is torsion-free and $E^* = \operatorname{Hom}_R(E, R)$ is a 3-syzygy module, then E satisfies F_t^* .

Proof. Let $\wp \in \operatorname{Spec} R$. We may assume that (R, \wp) is a local ring and the resolution above is minimal.

Since E satisfies F_t^* , $t \in \{0, 1\}$, from the exact sequences (7) and

$$0 \to R \to R^m \to N \to 0$$

we have rank $N \leq \frac{1}{2}$ (ht $\wp - t$), $t \in \{0, 1\}$. Then $m - 1 \leq \frac{1}{2}$ (ht $\wp - t$). Since $\nu(\mathfrak{I}_1) \leq m$, we get $\nu(\mathfrak{I}_1) \leq \frac{1}{2}$ (ht $\wp - t$) + 1. Therefore \mathfrak{I}_1 satisfies F_t^* .

Since E is torsion-free, N is a reflexive module. We shall prove that E satisfies F_t^* , $t \in \{0, 1\}$, then $m-1 \leq \frac{1}{2}$ (ht $\wp -t$).

We consider the exact sequence (7) and its dual sequence. Then $\phi: \mathbb{R}^m \to \mathbb{R}^n$ is the composite of the maps:

$$R^m \to N$$
 $N \to N^{**}$ $N^{**} \xrightarrow{\alpha^*} R^n$.

If $\nu(\mathfrak{I}_1) = r \leq m$, N has a free summand of rank m - r and $\phi = \begin{pmatrix} 1 & 0 \\ 0 & \phi' \end{pmatrix}$ where 1 is the identity matrix of size m - r and ϕ' has all of its entries in \mathscr{D} . This contradicts the minimality hypothesis, thus we have $\nu(\mathfrak{I}_1) = m$, $m - 1 \leq \frac{1}{2}$ (ht $\mathscr{D} - t$), and E satisfies F_t^* , $t \in \{0, 1\}$.

Corollary 1. Let R be an integral Cohen-Macaulay domain and let E be a torsion-free module with the free resolution (2) with s=1. If \mathfrak{I}_1 satisfies F_1^* and E^* is a 3-syzygy module, then Z(E) is acyclic and S(E) is a domain.

Proof. By Theorem 3, E satisfies F_1^* and we can conclude as in Example 4.6 of [3].

Theorem 4. Let R be an integral Cohen-Macaulay ring of dimension d and E be a torsion-free R-module with a resolution (2), s = 1. Then:

- 1. If \mathfrak{I}_1 satisfies SD_m , then E satisfies SD_e and Z(E) is acyclic.
- 2. If E satisfies $SD_{e+2(m-1)}$, then \Im_1 satisfies SD_m .

Proof. The assumption about \mathfrak{I}_1 implies depth $Z_i(\mathfrak{I}_1) \geq d+i$. It follows

$$\operatorname{depth}(A^rL)^{**} = \operatorname{depth} Z_{m-1-r}(\mathfrak{I}_1) \ge d+m-1-r \ge d-n+r+e.$$

But $(\Lambda^r L)^{**} \simeq Z_r(E)$ and we can conclude that E has SD_e . Put k = e + 2(m-1). If E satisfies SD_k , we have:

$$\operatorname{depth}(Z_r(E)) \ge d - n + r + k$$
.

But depth $Z_r(E) = \operatorname{depth} (\Lambda^r L)^{**} = \operatorname{depth} Z_{m-1-r}(\mathfrak{I}_1)$

and depth $Z_t(\mathfrak{I}_1) \ge d - n + m - 1 + k \ge d + t$.

Theorem 5. Let R be a Cohen-Macaulay ring, E a module having projective dimension two with the free resolution (2), $P = \operatorname{Coker} A^s \phi$. Let \mathfrak{I}_s be the ideal defined by the entries of a matrix representation of ψ . Then:

1. If P satisfies F_t^* , t = rank(L), with L such that

$$0 \to L \to \Lambda^s R^m \xrightarrow{\Lambda^s \phi} \Lambda^s R^n \to P \to 0$$

is an exact sequence, then \Im_s satisfies F_{2-t}^* , $t \in \{0, 1, 2\}$.

2. If P is a torsion-free module, $\forall \wp \in \operatorname{Spec} R$, $\wp \supset \Im_s$ for which the presentation

$$\Lambda^s R_{\wp}^m \xrightarrow{\Lambda^s \phi} \Lambda^s R_{\wp}^n \to P_{\wp} \to 0$$

is minimal, if P^* is a 3-syzygy module, then if \Im_s satisfies F_{2-t}^* , P satisfies F_t^* , $t \in \{0, 1, 2\}$.

Proof. If \wp is a prime ideal, $\wp \supset \Im_s$, we may assume that (R, \wp) is a local ring and that the resolution

$$0 \to L \to A^s R^m \to A^s R^n \to P \to 0$$

is minimal.

Since P satisfies the condition F_t^* , it follows rank $\Lambda^s \phi \leq \frac{1}{2}$ (ht $\wp - t$), that is $\binom{m}{s} \leq \frac{1}{2}$ (ht $\wp + t$).

Therefore we have $\nu(\Im_s) \leq \frac{1}{2}$ (ht $\wp + t - 2$) + 1 and 1 is proved.

Let us consider the exact sequence

$$0 \to M \to A^s R^n \to P \to 0$$

with $M = \operatorname{Im} \Lambda^s \phi$. By dualizing and remembering that M is a reflexive module and P^* is a 3-syzygy module, we have the exact sequence

$$0 \to P^* \to (\Lambda^s R^n)^* \to M^* \to 0$$
.

 $\Lambda^s \phi$ is the composite of the following maps:

$$\Lambda^s R^m \to M$$
 $M \to M^{**}$ $M^{**} \to (\Lambda^s R^n)^{**}$.

We want to prove that $\nu(\mathfrak{I}_s) = \binom{m}{s}$.

If $\nu(\mathfrak{I}_s) = r < {m \choose s}$, M would have a free summand of $\operatorname{rank} {m \choose s} - r$ and $A^s \phi$ could be written as $\begin{pmatrix} 1 & 0 \\ 0 & \phi' \end{pmatrix}$ where 1 is an identity matrix of size ${m \choose s} - r$ and ϕ' has all of its entries in \wp , contradicting the minimality hypothesis of the resolution.

Therefore it is $\nu(\mathfrak{I}_s) = \binom{m}{s} = \operatorname{rank}(\Lambda^s \phi) + t$ and since \mathfrak{I}_s has the property F_{2-t}^* , we have

$$\operatorname{rank}(A^s\phi) + t \leq \frac{1}{2}(\operatorname{ht} \wp - t)$$
 that is $\operatorname{rank}(A^s\phi) \leq \frac{1}{2}(\operatorname{ht} \wp - t)$,

and 2 is proved.

References

- [1] L. L. Avramov, Complete intersections and symmetric algebras, J. Algebra 73 (1981), 248-263.
- [2] D. Buchsbaum e D. Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259-268.
- [3] J. HERZOG, A. SIMIS and W. V. VASCONCELOS, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc. 283 (1984), 661-684.
- [4] J. HERZOG, W. V. VASCONCELOS and R. VILLAREAL, Ideals with sliding depth, Nagoya Math. J. 99 (1985), 159-172.
- [5] M. Kuhl, On the symmetric algebra of an ideal, Manuscripta Math. 37 (1982), 49-60.
- [6] H. MATSUMURA, Commutative algebra, Benjamin-Cummings Publ., New York 1980.
- [7] H. Matsumura, Homological methods in commutative algebra, Internat. Math. Conference, North-Holland, Amsterdam 1992.
- [8] C. Peskine et L. Szpiro, Dimension projective finie et cohomologie locale, Publ. IHES 42 (1973), 47-119.
- [9] G. RESTUCCIA, On the ideal of relations of a symmetric algebra, Rend. Sem, Mat. Univ. Politec. Torino 49 (1991), 281-298.
- [10] G. Restuccia, On the symmetric algebra for a module of projective dimension two, An. Univ. Bucuresti Mat. 40 (1991), 83-91.
- [11] G. Restuccia, Approximation complexes of integral symmetric algebras, Rend. Circ. Mat. Palermo 44 (1995), to appear.
- [12] A. Simis and W. V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z. 177 (1981), 341-358.
- [13] W. V. VASCONCELOS, On linear complete intersections, J. Algebra 111 (1987), 306-315.

Sommario

Si stabiliscono risultati sull'aciclicità del complesso di approssimazione di un R-modulo E di dimensione proiettiva 2. Se R è un dominio Cohen-Macaulay, il secondo numero di Betti è 2 ed il primo modulo di sizigie di E ha rango pari, si prova l'integrità dell'algebra simmetrica di E, modulo proprietà sizigetiche del modulo E.

* * *