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Integrity of the symmetric algebra of modules

of projective dimension two (**)

1 - Introduction

Let B denote a commutative Noetherian ring and £ denote a finitely genera-
ted module with a presentation

(1) R*" LR S E 0.

If R is an integral domain and E is a torsion free module of projective dimension
one, the integrity of the symmetric algebra S(E) of E over R is studied in [1].
Now, let

(2) 0>RLR" SR S E S0

be a projective resolution of .

If the second Betti number s is equal to 1, R is a Cohen-Macaulay domain, ¥
is a torsion-free R-module, E* = Homy (¥, R) is a 3-syzygy module, in [12] the
acyclicity of the Z(¥)-complex, the approximation complex of E, is proved by
using syzygetic properties of the ideal I; (y) generated by the entries of a ma-
trix representation of the inclusion 0>RLR™

When the second Betti number is two and the rank of the first syzygy modu-
le N of E is odd, sufficient conditions for £ to admit an acyclic Z(¥)-complex are
established in [9] in terms of theoretic properties of the ideal I, () generated by
the largest sized minors of a matrix representation of the inclusion
0—R°5R™ (ie. the ideal I, (). Moreover in that paper some relationships
between the ideal J(¢) of relations of S(E) and I,(y) are described.

(*) Dip. di Matem., Univ. Messina, Contrada Papardo, Salita Sperone 31, 98166
Sant’Agata, Messina, Italia. ,
(**) Riceived June 20 1995. AMS classification 13 D 25. Work supported by CNR.
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We study the case rank N even and s = 2. We intend in this case too, to con-
nect the syzygetic properties of S(&) with the syzygetic properties of I, (vy). If
R is a regular ring, a positive result was obtained in [11]. However, if we don’t
suppose that all modules have a finite projective resolution, we obtain a similar
result when R is only a CM-ring.

More precisely, in Section 2 we state sufficient conditions for the acyclicity
of Z(E)-complex and prove that J(¢) is a Cohen-Macaulay prime ideal of
S(R™), by using notions of duality and counting depths of the modules, which ap-
pear in the complex Z(E).

In Section 3 at last we study some modules £ of projective dimension two
for which Z(&) is acyclic, requiring higher depths of the modules Z; (). We
point out the connection among the syzygetic properties of Coker A° ¢, where s
is the second Betti number, and those of .

2 - The main theorem

Let R be a commutative Noetherian ring and let £ be a finitely generated
R-module with a presentation (1) where ¢ = (a;) is a matrix representation of a
map between R™ and R", a;€R.

Let S(E) be the symmetric algebra of E, with the ideal-theoretic presenta-
tion S(E) = R[T,, ..., T,1/J where R[Ty, ..., T,] = Sp(R™) and J is the ideal of
relations of S(&) generated by the 1-forms

7

We assume that £ has rank e, ie. £ @ K = K* where K is the total quotient
ring of R.

We consider some conditions on the sizes of Fitting ideals of Z.

For any integer ¢ = 1 we denote I;(¢) the ideal generated by the ¢ X { mi-
nors of ¢, ie. I,(¢) is the (n — {)-th Fifting ideal of E and we consider the
condition

Fo:ht(,(¢p)=rank ¢ —t+1+k  1<t<rankg k=0

where rank ¢ = sup {t|l;(¢) = 0}.
Condition F}, can be given in terms of the local number of generators of ¥
Fy,: for each prime ideal g of R, if £, is not a free R,-module, then

v(E,) < depth ¢ +rank F — k

where v = v(E,) is the minimal number of generators of £, .
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Hence, if £ is F, and L, # 0 then rank L, < ht ¢ —k where L, is such that
the sequence 0 » L, — R, —E,— 0 is exact [12], [13].

We want to study when the symmetric algebra of a module of projective dimen-
sion two over a Cohen-Macaulay domain is a Cohen-Macaulay domain, too.

The approximation complex Z(E) of E gives useful information about the
theoretic properties of S(E) [3].

If £ has the presentation (1), then the Z(£)-complex is a complex of graded
S = S(R™)-modules

Z(E):O—>Zn®S[—n]—a-> .= 72 RQ8[-1]1 >8> SE)—0
where:

Z;=Z;(E) =ker(A'R*" S A"'R"QE)  S[-rl,=8,_,
A ... Nay) = }13(__1)1'(%/\ NG N a) ® p(a))

ey, A ... N, ®ple) = _21(~1)’"jeil A NEA N e, @ e ple)
=

where e = ey, ..., e, is a standard basis of R” and ~ means omission.

If E has rank e, Z; = 0 for ¢ > n — ¢ and the homology of Z(E) does not de-
pend on the chosen presentation of E.

Let us briefly remember that an ideal ¥ of a Cohen-Macaulay ring R is said
strongly Cohen-Macaulay, SCM for short, if

depth Z;(3) =2 min{d, d — g + 2}

where g = ht J and Z; is the module of cycles of the Koszul complex associated
to a system of generators of I [4].

Moreover we will use the acyclicity lemma of Peskine and Szpiro ([8]) and
the criterion of Buchsbaum-Eisenbud-Northeott, formulated again by Matsumu-
ra ([7], Th. 8.3.2). The following theorem is crucial to state the results of this
section.

Theorem 1. Let R be a Noetherian ring, I be an ideal of R and

0-F,—>..»>F,->M-—-0

be an exact complex of finitely generated R-modules (k = 1) such that there
exists n =k with depth;F;=zn for i=1, ...,k
Then depth,M zn+1—-Fk



196 R. UTANO and G. RESTUCCIA [4]

Proof. See [5], Lemma 3.3.

Now we consider a module E of projective dimension two, with the free reso-
lution (2).

In [9] e [10] basic result on the syzygies of £ and some consequences about
some modules were obtained. More explicitly, let us denote by N the first
syzygy module of E, by @ the Coker A°y, by Z,(S,) the first syzygy module of
S,, where 3, is the ideal generated by the s X s minors of a matrix presentation
of ¥, and by Z;(S,) the i-th module of cycles of the Koszul complex associated
with a system of generators of ;.

If E is a torsion-free R-module, the maps concerning these modules are:

a: (A'N)y** =7, l<rank N

b: (A'Q)** — Z4(E) t=1

e (AN = (A°IN)* o = rank N.

Moreover, if R is a Cohen-Macaulay domain containing a field k, then:

& Q=(Z(3)*
e (AQ™ = (AT LX) =Z,_,(3)  r=rankQ

f: (A'Q)** - (A""'Q)* and f is an isomorphism, if @ is a reflexive
module.

See [9] for a description of these maps.

The conditions under which the symmetric algebra S(E) is an integral do-
main have been a source of interest. We study now when a module £ of projec-
tive dimension two and s = 2 has acyclic Z(¥)-complex and for which the sym-
metric algebra S(F) is an integral domain. If rank N =m — 2 is odd we have
the results of [9].

Thanks to b, it exists a map (A'Q)** — Z,,(E), t = 1, hence the even terms
of the Z(E)-complex can be connected with the exterior power (A°Q)** and con-
sequently with the homology modules of ;.

Moreover, for the odd terms Z,(&), since we have

(3) Zl(E)=(AlN)**=(ArankN—lN)*

and rank N — [ is still even, it is possible to connect such powers with the exte-
rank N — 1 rank N — |

rior powers (4 2 Q)% by the dual map (A™ Y IN¥* -4 %2 Q)%
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The case m — 2 even is more complicated. In faet it is not possible to connect
the odd terms of the complex with the homology modules of 5. In fact, for [ odd
we have again (3) but rank N — [ is still odd. Consequently the use of the dual

module is ineffectual, in general. However it is possible to connect the module
1-1

(A'N)Y** with (A e @)* @ N, and of this latter module it is possible to evalua-
te the depth. Such reasonings are contained in

Theorem 2. Let R be a Cohen-Macaulay integral domain containing a
field and let E be a torsion-free module of projective dimension two with the free
resolution (2), with s = 2. Let N = Z, (&) be the first syzygy module of E and Q
be Coker (A%y).

Suppose that:

i. E satisfies F,
ii. rank N =m — 2 is even
ill. (A'Q)** @ N 1is reflexive for any t such that 2t + 1 <rank N
iv. depth(A**eN)i*= depth (A'Q)** ® A°N)E* 0=0,1
for any t such that 2t + ¢ <rank N, and for any @ SpecR, p >3,

v. S is a strongly Cohen-Macaulay ideal of height 3.

Then Z(E) is acyclic and J = J(¢) is a Cohen-Macaulay prime ideal of
S(R™) = R[Ty, ..., T,], therefore S(E) is an integral domain.

Proof. Let  be a maximal ideal of R containing J,. We may assume that
(R,p) is a local ring and dimR = d.
Thanks to a if rank N =m — 2 =2v, Z(E) is the complex
0>RQOS[~2v]— (AP INY** @ S[—2v + 1] — (A2 "2 N)** Q S[ —~2v + 2]
— ... > (AN)**QS[-8] = (A2N)*QS[-2] - N®S[-1] > S > S(E)—0

From hypothesis iv and from e it follows

depth (A% N)** = depth (A°Q)** = depth (A"~ tQ*) = depth Z, _;(S)
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with » = rank Q. Moreover (A!Q)**=(A'Z; (J))**=2Z,(J;). From v we derive
depth Z;(J33)=d—1. Moreover, from i we get rank N<d—1, with d —1=2m—2.

For even terms in the Z(E)-complex we have depth (A% N)* = m — 2. For
odd terms we consider the following steps:

Step 1. Consider the epimorphisms:
4) AXNQN 5 ARTIN 50 A'Q—A%EN -0

and the sequences obtained by double dualization of (4); and tensorizing (4),
by N:

(A®N Q@ N)** — (A% IN)** 0 A'QAON—->AXNQ@N —0.
Moreover we have
(A'QRN)* > (AXNQ@N)** -0 hence (A4'Q® N)** — (AX*TIN)** 0.
Then we can consider the homomorphism
(A'QAN)** — (A*'Q)* @ N) — 0
which is an isomorphism for all prime ideals @ of R such that ht(p) <1, then it
is an isomorphism for all prime ideals of R.

Then, we obtain the following exact sequence

(ALQ)*™ ® NY™ — (AZ+1INY** 0.

Step 2. We have the exact sequences (2) where s =2 and

(5) 0>R2LR™" S N—0.

Since E is torsion free, by Buchsbaum-Eisenbud criterion of exactness, if follows
depth S, () = 8. By tensoring (5) with (A°Q)**, we obtain

(6) RZQ(UN'Q)** > R" Q@ (A'Q)*™* > N® (A'Q)** — 0.

The sufficient conditions in order that (6) is exact are verified.
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In fact depth (S (), (A1Q)**)=2 (since (A'@Q)** is a reflexive module).
Then from Theorem 1 we can conclude that depth((A'Q)** QN)=d — 2.
Since £ is Fy, then d — 2 = m — 8. From iv we have

depth (A% I N)** = depth (A*'Q)** @ N)** 2d —2=2m — 3.

So the Z(E)-complex is ewact and depth S(&) > 0.

The acyclicity of the Z(¥)-complex implies that each symmetric power S; (&)
is a torsion-free module, then S(&) is an integral domain and J is a prime
ideal.

Moreover F is F, but in this situation dim S(E) =dim B +rank E=d + ¢,
the acyclicity of Z(E) implies depth S(Z) = d + ¢, hence S(&) is Cohen-Macau-
lay.

Example 1. Let R be a Cohen-Macaulay integral domain containing a
field and let E be a finitely generated R-module, of projective dimension two,
the second Betti number s = 2, rank N = 4. In this case since (A3N)** = N*
thanks to e, the Z(F)-complex is

0->R®S[-4] >N*Q®S[-8] > (A2N)* Q@ S[-2] > N -S> S(E)—0.
If we define the morphism (A2N)**—Q—0, if depth (A2N)** =depth @ =d —1,
d = dim R, then the acyclicity of Z(E) comes from depth N*. But if N is self-
dual, then N = N* and depth N = d — 1; hence Z(F) is exact.

Moreover, in the general case N is not necessarily self-dual, we have

(APN)** = (AP N)* = (A2 N)**)*

and the reflexive power (A2N)** is self-dual.
If A%N is reflexive, then it is self-dual, too.

Example 2. Let £ be a finitely generated R-module of projective dimen-
sion two, s =2, rank N = 6. In this case the Z(&)-complex is

0>R®S[-6]>N*®S[—5]— (A*N)** Q@ S[—4]— (A3N)** @ S[ - 8]

—(A2NY*®8S[-2]—->N®S[-1] -S> S(E)—0.
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Consider now the morphism (AZN)** —(A'Q)** —0, 2t <rank N. If
depth (A1%) = depth (A Q)**, we have to evaluate depth N* and depth (A®N)**.

We have (A3N)** = (A3 N)* and the third reflexive power (A3 N)** is self-
dual. If N=N* we have to evaluate only depth(A®N)** or alternatively
depth (A3 N)*.

Example 3. Let E be a finitely generated E-module of projective dimen-
sion two, s =2, rank N = 8. The Z(£)-complex is

0—>R®S[-8] > N*®S[—T]— (A°N)** @ S[—6]— (A°N)** @ S[-5]
— (A*N)Y** ® S[ —4] — (A3 N)** ® S[ 8] — (A2N)** ® S[ —2]
—->NQ®S[-1]-8S—S(E)—0.

It results that (A3N)* and (A3N)** are not isomorphic and if we suppose

that depth (AZN)** = depth (A'Q)**, then we have to evaluate depth N*,
depth (A3 N)** and depth (A3N)*.

3 - Further results

Let E be a R-module, having projective dimension two and the free resolu-
tion (2) with s = 1.

In the following we need some conditions, whose the first one was introdu-
ced in [3].

More explicitly, let R be a Cohen-Macaulay ring and £ be a torsion-free mo-
dule. The first condition is

F:v(E,) < —zl—(ht 9 —1) + rank E Vg e SpecR.

Note that, if E satisfies F}, then E. satisfies also F;.

Now, let R be a local Cohen-Macaulay ring and let £ be rank e, finitely gene-
rated R-module with the presentation

) 0->N—-o>R">E-0.



(91 INTEGRITY OF THE SYMMETRIC ALGEBRA OF MODULES... 201

The second condition (sliding depth condition) is
SD,:depth Z;(E)=d—-n+1+k  Vi<sn—e

where d = dim K and k is a fixed integer.

Theorem 8. Let R be a Cohen-Macaulay ring, let E be a R-module of
rank e having the free resolution (2) with s = 1. Let I = 3 = (a4, ..., a,,) be the
ideal defined by the entries of a matriz presentation of . Then we have:

1. If E satisfies F#, te {0, 1}, then 3, satisfies F}.

2. IfS, satisfies F'i t e {0, 1}, E is torsion-free and E* = Homg (B, R) is a
3-syzygy module, then E satisfies F}.

Proof. Let g e Spec B. We may assume that (B, @) is a local ring and the
resolution above is minimal.

Since £ satisfies F'f, te {0, 1}, from the exact sequences (7) and
0->R—-R"™->N-—-0

we have rank N < -;-(ht $ —t), te{0,1}. Then m —1<L(ht p —1). Since
v(3y) < m, we get »(J;) < -;—(ht » —1t) + 1. Therefore J; satisfies F}

Since E is torsion-free, N is a reflexive module. We shall prove that E sati-
sfies F§, te {0,1}, then m — 1 < -;—(ht o —1b).

We consider the exact sequence (7) and its dual sequence. Then ¢: R™ — R"
is the composite of the maps:

R"—>N  N-N**  N¥SRe

If () = r < m, N has a free summand of rank m — r and ¢ = (1 0 ) where

0 ¢'
1 is the identity matrix of size m —r and ¢' has all of its entries in @.
This contradicts the minimality hypothesis, thus we have v(3;) = m,

m—1< £t p —1), and E satisfies Ff, te {0, 1).
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Corollary 1. Let R be an integral Cohen-Macaulay domain and let E be
a torsion-free module with the free resolution (2) with s = 1. If 3, satisfies F¥
and E* is a 8-syzygy module, then Z(E) is acyclic and S(E) is a do-
MAIN.

Proof. By Theorem 3, E satisfies F'§ and we can conclude as in Example
4.6 of [3].

Theorem 4. Let R be an integral Cohen-Macaulay ring of dimension d
and E be o torsion-free R-module with a resolution (2), s =1. Then:

1. If 3, satisfies SD,,, then E satisfies SD, and Z(E) is acyclic.

2. If E satisfies SD, ¢ opm -1y, then Sy satisfies SD,,.

Proof. The assumption about J; implies depth Z;(3;) =d +14. It fol-
lows

depth(A"L)** =depth Z,, ., - (3))=2d+m—-1—-r=d—-n+r+e.

But (ATL)Y** = Z,.(E) and we can conclude that £ has SD,.
Put k=e +2(m —1). If E satisfies SD,, we have:

depth(Z,( EN)=zd—-n+r+k.
But depth Z,(E) = depth (A" L)** = depth Z,, _1._,(3})

and depth Z,(3))=2zd-n+m—-1+k=d+t.

Theorem 5. Let B be a Cohen-Macaulay ring, E a module having projec-
tive dimension two with the free resolution (2), P = Coker A°¢. Let I be the
ideal defined by the entries of a matrix representation of . Then:

1. If P satisfies F}, t =rank(L), with L such that
Afp
0>L-—-A'R™ s> A*R" > P—0

is an exact sequence, them 3, satisfies F§_,, te {0, 1,2}.



[11] INTEGRITY OF THE SYMMETRIC ALGEBRA OF MODULES... 203

2. If P is a torsion-free module, Y@ eSpecR, o 23, for which the

presentation
Ap
ARy — ARy — P, -0

is minimal, if P* is a 3-syzygy module, then if I, satisfies F'§_,, P satisfies F',
te{0,1,2}

Proof. If p is a prime ideal, > S,, we may assume that (R, @) is a local
ring and that the resolution

0—>L—>A*R™" > A*R*—>P—0

is minimal.

Since P satisfies the condition F#, it follows rank A°¢ < —21— (bt p —t), that is
(”87’) <1ty +0).

Therefore we have v(3;) < %(ht o +t—2)+1 and 1 is proved.

Let us consider the exact sequence

0—-M—->AR*—>P—0

with M = Im A°¢. By dualizing and remembering that M is a reflexive module
and P* is a 3-syzygy module, we have the exact sequence

0—»P* > (AR —>M*—>0.
A*¢ is the composite of the folloving maps:
AR™ M M—M*  M* (A R"**.
We want to prove that »(S,) = (7;@)
IFv(S)=r< (7:), M would have a free summand of rank (Z@) —rand A°¢

could be written as (é (/?,) where 1 is an identity matrix of size (Z?') —rand ¢’

has all of its entries in @, contradicting the minimality hypothesis of the

resolution.
Therefore it is v(SJ,) = (7?) =rank(A°¢) + ¢ and since I, has the property
F¥_,, we have

rank (A°¢) + ¢ < -é—(ht ® —t) thatis rank(A%¢)< %(ht o 1),

and 2 is proved.
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Sommario

Si stabiliscono risultati sullaciclicita del complesso di approssimazione di un E-
modulo E di dimensione proiettiva 2. Se R é un dominio Cohen-Macaulay, il secondo
numero di Betti ¢ 2 ed il primo modulo di sizigie di E ha rango pari, si prova l'integrita
dell’algebra simmetrica di E, modulo proprietd sizigetiche del modulo E.
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