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G. BUSONTI and S. MATUCCI (*)

Comparison between two models
for multistage age dependent population dynamics (¥*)

1 - Introduction

Only in recent years the first models deseribing the time evolution of age de-
pendent populations structured in several stages appear in the literature [5]. In
this work we just consider the case in which only two stages are important; we
denote with the index a the adult stage, the reproducing one, with the index e
the egg stage, which may be thought to be constituted by embryos or eggs or
juveniles, in other words by individuals not able to reproduce. We do not consi-
der a possible bisexual distinetion.

The individual distribution depends on the own age z for the adults, on the
own age ¥ and, possibly, on y for the eggs, as well as on the time ¢. y is the real
age of the mother, or the age she would have if she would be still alive; so ¥ may
be greater than z,, the limit age for adults, and, obviously, if ¥ < 2z, then y = 2.
Age and time increase at the same rate, so that the evolution of the numerical
density of adults n,(z, t) obeys the relation

g, IMa
ot oz

76 (0, 1) = Iy (n,, 7 )(T)

= =~ ua ()N (2, 1) 0<2<2,,t>0

where [, (n,, n,) is a functional of the distributions »,, n,, while the evolution of
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the numerical density of embryos or eggs obeys

on, 4 on,
ot ox

N (0, 1) = I (g, 74 )(2)

= —u(x)n.(x, t) O<ax<u,t>0

where [, is a functional of the distributions n,, n,, and «, is the limit age for eg-
gs. So the numerical densities are coupled by the boundary conditions.

In the parameter x4 we can distinguish a term due to the natural mortality:
1, and a term due to the removal caused by the individual passing to the adult
stage: y, so u=pu, +vy.

When we want to distinguish the embryos on the basis of the parent age
(mother age for semplicity), the equation for the numerical density n, is

o, 4 on, + on,
ot ox Sy

= —pu(z, y)n.(x,y,t) O<x<zx,,x<y<z+z,t>0

1, (0, ¥, 1) = Lo (Mg, 1, )Y, t)

where L, is a function of the distributions »,, n,.

In this work we study existence, uniqueness, positivity of the solutions by
means of the theory of semigroups of linear operators in Banach spaces (here in Le-
besgue spaces as L;). The generators are given by unbounded perturbations (as
uel, if €,< o, 2,< o) of the streaming operators with respect to the age.

The boundary conditions themselves, linking a population of age zero to the en-
tire population in the other stage as in a cirele, cause troubles in the simple and di-
rect check of the density of the domain of the generators, this condition being
necessary to apply the Hille-Yosida theorem ([1] Th. 4.4, p. 154, [6] Th. 3.1, p. 8).

The study of the spectrum allows us to check the existence of persistent di-
stributions in both the models. If z, < ®, 2z, < %, the spectrum consists only of
point spectrum. We note that, assuming u,, 8, 4., and ¥ to be equal in the two
models, the maximum real eigenvalue 1, is greater in the first case than in the
second. In both cases the asymptotic behaviour of the solutions shows a conver-
gence to a suitable element of the eigenspace associated to 1,, that is to a multi-
ple of the eigenfunction of 4,.

2 - The models

Let us simultaneously consider two models of evolution for a population
structured in two stages of individuals, each stage being age dependent, and let
us carefully examine the spectrum of the linear, closed operators related to the
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evolution of each system. It is assumed a life-history consisting of two stages:
the individuals in the first stage are eggs (juveniles), not able to reproduce; ju-
veniles maturing become adults and can begin to produce eggs. The permanence
in each stage is variable and governed by a probability distribution; the matura-
tion rate of eggs is allowed to vary with age, as are the mortality rates of the
two stages; eggs production (or conception) is also dependent on mother’s
age.

The main difference between the two models is that in the second model we
allow the possibility that an egg dies as its mother does, and this possibility de-
pends on egg age.

Each model of the time evolution of the distributions of the individuals be-
longing to the two stages consists of two linear, first order, partial differential
equations and corresponding initial and boundary conditions. The independent
variables are: the time ¢ = 0, the egg age & = 0, the adult agez = 0 or ¥ > 0, ac-
cording to the two quoted meanings. The dependent variables, whose evolution
has to be determined, are the numerical densities of assigned age individuals at
a certain time: n,, n,. In the second model, as we consider the strict tie existing
between mother and offspring, the numerical density of eggs turns out to be
also function of mother’s age y, with 0 sz <y <z, +z.

The models lead to the following balance equations governing egg and adult
numerical distributions

on,(x, 1) O, (x, t
7, (2 )+ e (x, 1)

+ [p () + y(@)]n,(x, t) =0

ot Ox
O, (z, 1) On, (2, t) B
Ml at + az + /"a(z)na(z’ t) - 0
1,0, £) = [ B(2)my (2, £) dz 1g (0, 8) = [ y(2)m, (=, £) de
0 0

7, (%, 0) =P (@)  me(z, 0) =9, (2).

On,(x, ¥y, t) on,(x, ¥, t) on,(x, ¥, t)
& T am T ey
Ho@puly) +pu.(x) + y@)]n(x,y, 1) =0

By (2, 1) NEACE)
ot oz

+u,2)n,(2,t)=0
M,

Ly 2o+

7. (0, ¥, 1) = B(y)m,(y, 1) 7,0, 1) =0f Of y(@)n,(x, 2, t) dz do

n, (2, ¥, 0) = P (w, y) Na (2, 0) = P, (2).
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Having in minczi Ehat we wish compare the total number of individuals, we assu-

me pP @)= [ pP @,y dy.

The assigne?l parameters in the problems are the mortality rates of eggs and
adults at the specific age: u,(x), u,.(2); the maturation rate of eggs at age
x: y(x); the egg production rate §(z) at adult age z; the probability that an egg
of age x dies if its mother does: @ («). This funetions are non negative by biologi-
cal reasons.

We assume that in each stage there exists a limit age: x, for eggs, z, for adul-
ts. Over these ages no individual can be found. All the vital rates are indepen-
dent of density and time; they satisfy the following hypotheses:

a. ¢,yelL.(0,x,), feL,(0,z2,); they are nonnegative almost every-
where. @, 7, B are their essential suprema.

b. p,el (0,2) O0<uzx<c, U, =0 ae. in (0, z,)
/‘aELl(O;z) 0<z<za ﬂaELw(zayza+xe)

u=0 ae. in (0,2, +x,)

T z
Jim Tpu.(w)du =+0o x>0 lim fu,(w)du=+o 2>0,
——>eo z—»zao

The hypothesis b assures (see next section) that each solution of the pro-
blems M; and M,:n® = @xn?, ni?), i=1,2, has components with compact
support, with 0 <z <, 0sz<z, if i=1, O0sec<sy<z,+tz 0<x<z,
0<z<z, ifi=2.

Zgt+ X

Remark. In the second model, we consider N,(z,t) = [ n.(z,y, {)dy.

By formal integration of the first equation of M,, as ’

aN ,t z,,+xa (3 ’ ’t
ﬂ = f Mdz-{-ne({v’ Za+x, t)_ne(w) x, t)

a(L’ T ax
we obtain
N, (@)  ON,(,b) wta
5 + o + o) mf Lo (2) 1o (2,2,8) Az + [ () + y ()] N, (,8) =0

with boundary eondition N,(0, f) = fa,b’(z)na(z, t)ydz. If ¢ =0 a.e. the two mo-
dels coincide. 0
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3 - Existence and asymptotic behaviours

If we put 7= {(x, 9)|0 <x <y <z +2,, <}, the natural Banach spa-
ces in which to study the evolution problems M; and M,, respectively are

X=X, XX, =L (0, x,); dr) X L ((0, 2,); dz)

Y=Y, XYy, = L(T; dy dz) x L, (0, z,); dz)

with norm
F e = 1A I, + 177 N, fPex
IF @l = A2 Ny, + 152y, fPey
where |||z, | lly,, £ =1, 2, are the usual L;-norms in X, Y.

Let us transform M;, M, in abstract evolution problems.
We consider first M; and we introduce the following linear operators:

Al : U‘)(Al) cX— g{(Al) cX

@D(A;) = { fPex| £ £ absolutely continuous with derivative belonging to

Zq Te

X;, X, respectively, fi7(0) = [B)fs () dz, f5°(0) = [y@)fi (x)da}.
0 0
A, acts on fP e ®(4;) in the following way
df(l) df(l)
(1 _ _ 1 2
Af ( de ~ dz )-

BI:G)(Bl)CX—‘-)m(Bl)CX

@B = {fPeX|u "Xy, pafi’ e Xo}.
B, acts on f e 0(B;) in the following way

BifY = —(ue + 1", mafz7).
With regard to problem M, we introduce the following linear operators:
Ay DAY > R(A)CY

D(A) = {f® e Y| £{? absolutely continuous along the direction (1,1) for almost
every (x, y)e T with distributional derivative along the vector (1,1) belonging
to Yy; f3? absolutely continuous with derivative belonging to Yj;

Lo 2t

10,9 =@, £PO=] [ y@fi" @ y)dyda}.

0
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A, acts on f® e M(4,) in the following way

o’ " af”
Ox 3y’ dz

42f% = ~( ).

By: ®(By)cY— R(By)cY

@B) = {fP e Y|lpuo+ 1" e Vi, nofi” e Ya}.
B, acts on f(Z) € M(By) in the following way

By f® = ~(gpta + o + 1117, 0 f27).
So we obtain the following abstract problems for i =1, 2

dn @ (t)

e =(4;+B)nP@) t>0 2@ (0) = ni? e D(A4; + B;).

ey

We first investigate existence, properties and structure of the resolvent ope-
rators R(1; A; + B;) = [Al — (4; + B;)I"!, i =1, 2, that is we consider the equa-
tions, with 1 e C

(2) [A—(4; + B)In® =g® gVeX, g®Pey

ie. the systems

1)
S 4t o) + @ @) = 40 @
(2"
dn P (2) o
@I @) = g0 )
® @
on, a(w, v | o a(x, Y) 1A+ () 1) + 1) +y @] 0@, y) =92 (x, )
(2//) &L Yy
d'néz)(z)

(2) _ (@
o +[A+ p, (R)]n," () =g,” (2)

equipped with boundary conditions. Let us put:

@V () = exp { —Of[ﬂe(u) +yw)ldu}  D,(2) =exp{ —szua(u) du}

&2 (1, y) = exp { —f[w(uma(u Ty s ) + y )] du) .

IfnDem@;+B;), n9=mP, n),i=1,2, is a solution of (2), then ne-



{7 COMPARISON BETWEEN TWO MODELS... 175
cessarily » satisfies the integral system
(3) n®=HPnD+ GO ()

where H{” is the linear operator. defined by

o 0 HP\ [r@
(@) () _ ea e
(31) H}‘I f - ( F{(i) (/’{) 0 (@)

and

HP W) FO) @) = e 0D (@) [ f2) £ () dz
3.1D xeo
HP R fPN2) =e ", (2) Jr@ 9 () dee

(HP Q) fPYw, y)=e WP (x,y — )y — ) £ (y — x)

B.I11D) Ty 2o+ X
HP W) fPY2) =e @, ] [ y) P, 9 dyde
0 @

and GP) =GP QR), GP ), i =1, 2, with

o (x)

X
G (w; ) = fe Me®) 0@ g (") dae’
0 X
3.IV) €
G (a5 1) = fetems) LaEL iy gy
L 0 D, (") “°
(2) v ' ¢22)(x’ y—x+ x,) (2)
G, (a, ys A) = [e 10750 —o— < g (@ y-x+a)de
3.y 0 (pe (iU,’!/_x"‘“x)
z y DPa(2)
Géz) ’l — —Mz=2") a 2) /1 dz' .
(z; 1) Ofe ERCB L (z")de

Lemma 1. H ,{i) s a bounded linear operator, with domain the whole spa-
ce Xifi=1,Y if i=2) and range in M(A; +B,), for all LeC, i=1,2

HY:X>®A,+By) YieC, HP:Y->®(A:+B;) VieC.

Furthermore, Hy? is positive if A eR.
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Proof. VlieC we have

HPQ): X, —»X, HPW: Y,-7,
HPW):X,—X, H®W:Y,-7,.

It is easily seen that for A e R, H (1) and H® (1) are positive bounded ope-
rators and therefore H'” too is positive and bounded with domain the whole
space X if i=1, Y if ¢ =2, for all A R.

Obviously, HX (W) fY, HY (W)fP, i =1, 2, have ordinary derivatives with

ea

respect to their arguments almost everywhere; the function HZ (1) £2, is diffe-
rentiable too, in ordinary sense, along the direction (1,1) a.e., and

( % * %)(Héi)u)ff’)(x,y) = =2+ @) pay) e @) +y @IHL D) f2)e,y)

To see this it is sufficient to consider the variable change

V2 V2

§=7(y+x), 77=7(y~x)

corresponding to a % radians anticlockwise rotation of the cartesian axes.

The boundary conditions defining the domains M(4;) are satisfied, as it is
immediate to verify, V/'Y e X, Vf® e Y. It is now sufficient to prove that:

pHG WV eXy, o HEMDF ) eXo=Ys, o+ ou)HE AWfP)eY,
for any A of C, to be able to state that
HP fPedA;+B)=0@A;)NOMB;) i=1,2 VPeX, V?PeY.

If e R it results
Ty @) + @ (D D@ dw < B max e 18],

as @ (x,) = 0 because of hypothesis b on mortality rate u,. In the same way,
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as @2 (x,,y) =0, ®,(z,) =0, we have:

Xy 2 TX

S S [p@ra@) +ue @)+ y @] H (D@, y) dy do <B(max eI,

x

Sa@) [ HE WP | (2) de < 7( max ¢~ 121, i=1,2.
0 zel0, 2,

It results from that: H f? e ®(4; + B), ¥V e X, VfP Y, VieR. Ta-
king into account that each X;(Y;) is the complexification of a real Lebesgue
space and that Vf D e x(Vf®eY) we may split: J-(” = fj(f) - f](gl) + z'f}? -4 ](4” ,

where: fj(,f) 20,j=e0a,k=1,2,8,4; [ =1, 2, we can also state

HO P4, +B)  YPeX, vPeY, ViecC.

Lemma 2. IfgPeX, (g®eY) then: GV (1) e X, (GP ) e V), with diffe-
rentiable components, a.e. so that

GO + HPfY e @(A; + B;) VieC;i=1,2.
Thus problems (2) and (3) are equivalent.

The easy proof is omitted.
Now we solve the problem, equivalent to (3), obtained by obvious substitu-
tions

(4) nd = HQ W HD W + HY WGP ) + 6 ()
nd = HY QWHG Wnd + HY A GP ) + GP ().

We ean note that it is sufficient that one of the two equations of system (4)

be solvable, in order to be solvable the other too; for insfcance, the first equation

of (4) has an unique solution if and only if 0 ¢ P, (I — H,g (A) Hge () ie. 1 is not

an eigenvalue of the operator HY (1) HP (A).

Lemma 3. The linear operators HY (AW HE (A), HY (W) HE (A) are Fred-
holm integral operators with degenerate kernel (and so compact operators),
well defined for all A € C with domain X,, X,, respectively if 1 =1, Y1, Y,, if
i = 2. They are positive if 2 € R. If they are not null operators, as it happens if
and only if the following assumptions are fulfilled:
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c. y>0 i a set with positive measure n (0, x,)
d. >0 1 a set with positive measure in (0, z,),

then they have only one not null eigenvalue oV (1), i = 1, 2, depending on A, the
same for all two the operators.

Proof. We omit the dependence of the operators on A for sake of semplici-
ty. These four operators are positive for A e R. Let us consider, for example, the
positive operator H H'> and let us determine its spectrum; first, we note that
the conditions c, d, are necessary and sufficient in order to have this operator
not zero in X; . They are necessary and sufficient in order the other three opera-
tors are not null. With these assumptions let us solve the following equation,
with p, e X,

[P T -HP HP1p,(2) =0 ie.:
oVp (@) =e D (@) [B(2) Do (2)e 7 dz [ y(x)p, (@) dw =~ &P () ¢ e, -
0 0

The meaning of the factors c;, c; is clear; ¢; # 0 because of the assumptions
done. Let us suppose c, # 0, i.e. we suppose that exists p,eX; such that

Jy@@)p,(x)da # 0. If ¢; 0 the term on the right hand is not zero, so that it
0

must be o = 0. By substitution we obtain

C1Cz

222D (g)dx.
e

Ze
crese PP (@) =cre P () [ y(x)
0
So it necessarily results
o= [B(2) P, e dz [y(@) @ (@ e *dx > 0.
0 0

This is the only eigenvalue not zero; the corresponding eigenfunction is, but for
Te

a factor, p, (x) = ¢ ®L (). It results: ¢, = ¢2(p,) = [y(@)e DM (x)dw > 0
0

because of the assumption ¢, showing that really this unique not zero eigenvalue
exists. By means of similar arguments, we can prove that the operator HY HY
too has 0¥ as unique not null eigenvalue, with eigenfunction p, (2) = ¢ % @, (2),
but for a factor.
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The operators Héf) H(ff), He(f) H,Ef) too have the same not null, positive eigen-
value, that is unique

Ty Zqt W

oP=[ [ y@e oL (v, y - 2)Bly —a) P, (y — x)dydx
0 x

with eigenfunctions, respectively:
Gola, P =e MO (0, y —0)ly —0) Do (y)  qu(2)=e *D,(2)

but for a factor.

Remark. We have the following relation between the eigenvalues o (1)
of Hy WHZ (), i=1,2

ad® ) <o) VieR.

In fact, if we consider o®(1), putting # = y — x, we have
0@ @) < [y @) 2P (@) e dx [ Bly) Do(n)ePdn = 0P (1),
0 0

If the integral operators in Lemma 3 are not null, then the eigenfunctions
defined in the proof are the components of the eigenfuncions p € X, g € ¥ corre-
sponding to the eigenvalue 1 of H®, i =1, 2 respectively, if the numerical fac-

tors are suitably chosen. Indeed H:" has eigenvalue

o) = fuﬁ(z)qﬁa(z)e“”dz . \/_ng(m)di'gl) () e *dx
0 0

with eigenvector: p = p(0¥) = (p,, p,), where:

P () =bd P (x)e ™
_1
2

Pu(e) = b Do) e ( [y(@) 8P (@) e dm)E -( [ B(2) By (e~ o)
0 0
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and H;® has eigenvalue

Ty Zg+ T

0@ =Alf [ y@e MdP(m,y—x)ply —x) D, (y — x)dy de
0 x

with eigenvector: g = q(0®) = (q,, ¢,), Where

g.(x,y) =00 (v, y —w)e WPy —w) D,y — ),
Ty 2t

0.(2) =be @, ()([ [ y(w)e—w@gm,y-x)ﬁ(y-x)@a@-m)dydmé
0 x

with the constant b # 0, arbitrary. If the eigenvalue ¢ = 1 then we have the
following couples:

(5 p, (@) =be DL (x) p.(2) = be " ®,(2) [y DD (@) e .
[¢]

Qe(@, y) =be MO (v, y — ) fly — ) D, (y — %)

(5" T, Zgt
@) =be "D, 2) ] [ y@e MDD (&, y—2)ply —1) D, (y—2)dyde
0 x

=be P, (z).

In other words: p e @(A4; + By) c X, (ge M(A4p + By) cY) is an eigenfunction
associated to the eigenvalue 1 e C of the operator (4; + By) (4 + B,)) if and
only if p(q) has the form (5'), ((5")), ie. A € C is eigenvalue of (4; + B;) if and
only if one of the integral operators above defined as functions of 4, has 1 as
eigenvalue.

From the preceding results we easily deduce

Theorem 4. If the functions y, § satisfy the hypotheses ¢, d, of Lemma 3,
then A e C is an eigenvalue of the operator (A; + B;) if and only if 0¥ (1) =1,
1=1, 2. On the contrary, even if only one of the two hypotheses is not satisfied,
the operator (A; + B;) has no eigenvalues.

Now, we put 49 (1) =1-0%(A), i =1, 2. The equation

(6) 490) =0,
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is said characteristic equation. We can define:

kP (@) = yx) P (2) k,(2) = B(2) D, (2)

v
k2 (y) =0fy(y) P (m,y — ) fly — ©) D, (y — ) dev

with k& (y) =0 if y = x, being &P (x,, y) = 0.

Because of the hypotheses on the mortality rates u,, u,, it results that k,
has compact support in [0, 2, ], £” i = 1, 2 have compact support in [0, x,] and
so are well-defined their Laplace transforms. It results

o) =k, (k" () o ® ) = k(1)

where the over-bar denotes Laplace transforms. As k., k, have compact sup-
ports, they are of exponential order — «, and & (1), k, (1) are entire functions
Vi eC. For 1 on the real axis, all three transforms are strictly decreasing fun-
ctions of A, which approach 0 as A — + « and approach + « as 1 — — oo it fol-
lows that equation (6) has an unique real root 1 =A%, i =1, 2; A is called the
intrinsine growth constant. On the other hand, if léi) e C is another root of (6),
we have

1=k AN kAP <P Re 2Pk, (Re 1)
1=E2P) <kP[Re 19).

Because of the strictly decreasing behaviour of & (1), k, (1), as functions of
AeR, it follows that Re 1§ < 1{, i =1, 2, VA§ e €, A’ root of (6). So the real
root A{ not only is unique real, but is grater than the real part of any other
root. Further, since 4% (1) is holomorphic, its zeros cannot accumulate in any
bounded region, ie. P,(4; + B;) consists of isolated points, 7 =1, 2.

Since, as a function of A € R, 4% (A) is increasing from — o to 1, it follows
that the sign of the unique real root 1% is that of —4®(0), i =1, 2.

Remark. As 0®(1) € oW (4), 1eR, it results A{” = 1, ie. the intrinsic
growth constant in a population whose dynamies is described by model M, is al-
ways greater or equal than that in a population described by M,.

Let us go back to problems (2) and (3). Since

P,(A;+Bj)c{leC:Re A<} i=1,2
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and
GO0 + HYfYe (4, + B;), VieC; ¥V, gWeXx, Wf?, ¢%ey

we can assert that problem (3) has an unique solution in X(Y) VgV e X,
(Vg® e Y), VA e C such that 4@ (1) # 0, 7 = 1, 2. We can summarize this fact in

Theorem 5. Fori=1,2, 0(4;+ B;)={AeC: 49() = 0} and the spec-
trum of the operator (4; + B;) contains only eigenvalues.

Under the hypothesis: Re A > 4;, we can explicitly determine the solution of
the system of integral equations (4) and so of (2). For example, if =1, let us
consider the operator HY (1) HY (A). As A ¢ P,(A; + By), and so 47 (1) =0,
the operator I — HY (A)HS (A) has an inverse that is

(I - HYWHED O™ = 5 HD 0V HD )

By computation of the subsequent iterates we obtain the solution of the first
equation of (4) with ¢ =1, which is given by

k., (2)
A(l)(l)

7D (@) =GV (w; 1) + e 2 dW (o) [ (@) G (a3 A) dee
0

1 12 O () [ @,
+A(1)(l) ¢ 2. (x)dfﬂ(z)Ga (z; A)dz.

Because of the equivalence of problems (2) and (4), nY is solution of the first
equation of system (2') VgV € X and, in particular, [|2"|; < «. We can go on
in the same way to determine the solution of the second equation of (2'), or we
can determine n.” by substitution in (4). We choose this last method. We
have

']Eél) (/’{)

Wy = @Dy
N (2) =G, (25 4) + 200

e~ 0. (2) [B(2) G (23 ) de
0
1

_|_
A(l)(/l)

e~ 2D, (2) [ y(@) GO (w; A)dw .
0
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Proceeding in the same way, we can caleculate the solution of problem (2) if

i=2. We obtain the function #'® = (n®, »l?), with components:

n® (@, ) =GP, y; ) + —2— e MDD (2, y — ) fly — ) P (y — ) -

A(Z)(l)
Xy Z2q+ X
S @GP @, y; Vdydate P (w, y—x) By — 2)GE (y; A)
0 x
+—L PPy, y—2)Bly —2) D,y ) -
I e (o, Y Yy o (¥

T, 2gt X

g y@e P,y —x)Bly —2)GP(y —a; )dy de .
0 T

Xe gt T

@ @, 1 —iz @ .
ng (2) = Gg~ (z; 1) + o0 e ’@a(z)of J y(x)G.” (x, y; A)dy dx

1 iz KA i g (@) _ _ @, .
WIS [ [ y@e (@, y —0)fly—w) Ga” (y —w; Dy da.

We remark that, if AR, 1> A‘li), then the resolvent operator
[AI — (4; + B;)]™!, is a positive operator. We can estimate |R(1; A; + B;)| by
using this property; we consider ¢ € X*, the positive cone of X, g® e Y*, and
n® solution of (2), ie.: n® = R(A; 4; + B;)g®, under the hypothesis 1 > A®,
By integration of systems (2") and (2") with respect to the age variables, taking
into account the boundary conditions, we obtain

Aa®ly + mPn® e <llg®le  An®ly + m® 2@ [y < @]y
where m‘Y = min {ess inf x,(x),ess inf[u,(z) — B(2)]},
xe (0, x) ze (0, z4)
and  m® = min {ess inf (@) ua () + o (0)], €58 inf 1y (2) = B2}
z, Y e 2e(0, 2,

Note that, because of the non negativity of the known parameters of the problem,
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it results m™® < m® ., Furthermore: —m® > A1® i=1,2,a8 AP (~m®) > 0. In
fact, for example

- fx[y(u) + pre(w) - mdu dw

L e
D (—m™) = [y(@) &P () e™ " d =0fV(w)6 0
0

"fzqi(u)du de=1-¢ —ofy(u)du

< [y@e o <1
0

if the hypothesis ¢ of Lemma 3 is fullfilled.
In this way we have obtained an extimate of |R(1; 4; + B;)|| useful to the
application of the Hille-Yosida theorem [1], [6]: if 2> —m®, 1eR then

Leo(A; +B;) and |R(; A; + By)| < ﬁ—— i=1,2.

m@’
Note that —m® may be positive; in particular this happens if we have

gs%ignj[ua(z) - B(=)1<0

corresponding to a population in which the birth rate per capita is greater then
the mortality rate in adult stage, at least in a neighbourhood of a suitable
age.

To apply the Hille-Yosida theorem, we have to prove that M(4; + B;) is den-
sein Xifi=1,in Yif 1=2.

Lemma 6. ®(4; + B;) is dense, 1 =1, 2.

Proof. Let (4; + B;), the operator with non reentry boundary conditions,
defined starting from (4; + B;), ¢ = 1, 2, i.e. with ¥, = 0 a.e. in their domain. It
is known that (4; + B;), is the generator of a strongly continuous semigroup
and that, in particular, its domain is dense in X if 1 =1, in Y if i =2,

Let R(1;(4; + B;),) be the resolvent operator of (A4; -+ B;), with A e C as
o(A; + B;), = 0 because of Lemma 4; if 2 > 1 we can consider R(1;(4; + B;))
and we note that it is possible to write it as

R(A;(A; + B g = R(A;(A; + B g® + MP (1) g®

Vi>A9, vgPeXx, VgP eV, i=1,2, where M? is a suitable linear operator,
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whose components act as (for i =1)

ko (2)
A(l)(;{.)

MP W gM), (x) = e oM (i) Ofey(w) GV (x5 ) dae

1 - (1) Fa My,
+A(1)(ﬂ.) € M@e (x)dfﬁ(z)Ga (z; 1) dz

£ ()
AP 4)

MPR) g, (2) = e P, (2) f“ﬁ(z)G;Wz; A)dz
0

1 —Az - N, ..
O MOE L

with GV (1), GV (4) defined by (3.IV). The definition of M ® (1) is quite the sa-
me, see the expression of the resolvent operator found in the previous sec-

tion.

If JAMP ) gD |x—0 as A— o, Yg@PeX, then we can assert that
M(A; + B;) is dense in X; the proof of this statement can be found in a work of
A. Belleni-Morante and G. Busoni [2].

Because of the definition of G(1), GP(A), M (L), if A >0 we have:

‘ Brllgs" I + 2B llge” |
122V ) g™l < 121—/‘37 2

A g,y < B10" e+ 2Bl

A2 — By
and these expressions approach zero as 1> ©, Vg’ e X. In the same way it
can be shown that [AM® (L) g®P|y—0 as A— ©, VgP e 7.
In consenquence of Theorem 5, the subsequent discussion, and Lemma, 6, the
Hille-Yosida theorem may be applied and the following theorem may be
stated.

Theorem 7. System (1) has an wuwique strict solution n® =n9(¢),
nV:R* - X, n®: R* - Y, which belongs to ®(A; + B;), Vt = 0, provided that
néi) e W(A; + B;), i =1, 2. This solution is non negative if néi) = 0 and can be
represented as

2P =T nd® t=z=0, i=1,2
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where {T (1), t = 0} is the positive, strongly continuous semigroup in X(Y),
generated by (A; + B;), 1 =1, 2. Such a solution satisfies

I @l < e~ ]

It is possible to determine explicitly the structure of the semigroup
{T9(t), t = 0}, i =1, 2. First we can integrate along the characteristic lines
systems M;, M,, equipped with the boundary conditions and the assigned initial
conditions:

oD ()
(1) e
o v (e — t) ————-————-q§(1)(”_t) O0st<z
N, (x, 1) = e\
(0, t — x) @ (x) O<sa<t
®® , Y -
P @ =ty — ) —o @Y=29  ci<u<y
n (x, y, t) = D7 (1t y—®)
néZ)(O,y—m,t—m)@ff)(w,y—m) Ose<t,y>2x
D, (z
Y. (z-1) @) 0st<z

D, (z—1)

Pz, t) =
120, t — 2) D, (2) 0<z<t.

This is not the explicit expression of the solution 7% (t) ¥®, as the boundary
conditions involve the solution itself. However it is possible to express 7 (0, t),
n?(0, z, t), n(0, 1), i =1, 2, only by means of the initial distributions ¥,
solving an integral Volterra equation [4], so we have the solution expressed only
by means of known parameters, and the result of this heuristic procedure is a
one parameter family of bounded, linear operators {S? (), ¢ = 0}, 7 = 1, 2, ope-
rating on the initial distribution ¥®.

It can be shown that {S®¥(¢),t= 0}, i =1, 2, is, at most, an extension of
{T9@),t=0}, i=1,2, so that

SOy pD =)D YD e d(4; + B;)

and SO (t) ¥ gives the explicit expression of the strongly continuously diffe-
rentiable solution, ¢ =1, 2.

Because of the study done on the spectrum of (4; + B;), 1 = 1, 2, we can assert
that the essential spectral bound of the generator (4;+ B;) is — o (see
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H. H. Schaefer [7] for definitions), and the type (or growth bound) of the semigroup
{TP@), t=0} coincides with AP :wes(4; +B;) = —©, w(4;+B;) =17,
i=1, 2.

So, we can state the following theorem, that is a generalization of Sharpe-
Lotka’s theorem [8], [9] to the present problem

Theorem 8. Under the assumptions ¢, d, done on the parameters ¢, B,
the following holds: there exist M® > 0, o < 0 such that for any ni® e X, for
any n$> e Y it results

e 4"n 1) ~ PO ni® e < MO
letn® &) = PP ly < M e ng
where P is the projection onto the eigenspace associated to A, i=1, 2.

Proof. As l(li) is an isolated point of the spectrum o(4; + B;), i =1, 2, the-
re exists a closed, regular curve I'” in the plane, surrounding A9 such that 1
is the unique point of the spectrum in the closed region surrounded by . So
we can consider the projection P(’) , Pél) XX, Péz) :Y—Y, onto the eigen-
space associated o the eigenvalue /1(1“, 1 =1, 2, such that

PPgP =L [ RO A+ B VgPVeX, VgPer.

27 o

Such a projection coincides with the residue of the resolvent operator in
A9 P{? = Res ((4; 4; + B;); AY). Because of the structure of AP (1), i =1, 2
we see that A is a simple pole of [4® (1)1 and also of R(1; A; + B;),
i=1, 2,

The Laurent expansion of [4®(1)]7! gives

@ )Y (1) i (O]
Res[(4™ ()71 AP] hmm( )A“)(/l) (dAA()(l N7t

If we examine the structure of the resolvent operator, we have

R(;A;+B) = —— )(/1) —— FPQ) +LOA) i=1,2
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where F® (1) g®, L@ (1) g™, are analitic functions VgV € X, Yg® e Y. Therefo-
re

Res (R(/l; Ai + Bi)g(i); /-L(li)) — (% A(i)(A(li)))——lF(i)(/‘L(li))g(i) i = 1’ 2.

The projections P{? are given by

w 1 e " (2)
Po AP DY Ty, -2z '
( AN EP QM e 20, (2)
B A7) [ y(@) G (w5 A7) dx + [ B(2) GV (25 A37) de]
0 0
po g 1[0l @y —n) duy — ),
0

T a®PaP)y e 2P (2)
Ty gt

I T y@e By — ) 0P (e, y ~ )G (y — =3 4?) dy dw
1}

x

X Zgt T

+f [ y@GP (x, y; 17P) dy dx].
[4] x

We may write, with obvious meaning

Cm (A (1i) ’ g(i)) )

P® @ = 21
@®ady

VgPeX, VgPeY

where ¥® is the eigenfunction associated to the eigenvalue A% of the operator
(4; + B;), not depending on g®.

Let us consider the projection PP =1 - P{; it is possible to prove that: if
oPeR, 3 <2, then a constant M = 1 exists, such that:

17O PR <MDt |PP|  t=0,4=1,2 (9] Prop. 4.15, p. 180).

Then we have:

lle —a{ TP g® - PO gD |,

_ ”6 —l(ll)t T(l) (t)g(l) —e —).( ) T(l) (t)P(l)g(D +e ——Amt T(l) (t)P(l) (1) Pél)g(l) “X

< ”e—ag% ) (t)Pl(l)g(l)“X + ||e ~a{Mt 7 (t)Pél)g(l) _ Pél)g(l)”X i
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le=5" 1&g ~ PP g Py

< |Ie"‘§2)‘T(2)(t)P(2) @, + ”e—)‘z’tT(z)(t)P(Z) @ _ p®g@)

As P{?g® is an eigenfunction associated to the eigenvalue A{”, it results
T(t)(l)P(l) @ _ )“)tP(l) (‘L)’ i= 1,2, and s0 e /1 tT(l)(t)P(l) @ _ P(Z)g(i) and
the second norm is zero in both cases.

From the above remark about Pl(i), 1=1,2, as o< /1(1i), we have:

=4 7 ) PO gl < M-8 -51 [P g0
o5 7 PO gl < M ¢ -0 -57 [Py 2

and these norms approach zero as {— + .

Thus, we can make the following predlctlon the population is asymptotic to a
persistent age distribution, given by eh tP“) g?,i=1,2, where P{’ ¢ is defi-
ned in the preceding proof. In particular, if A = 0, the population, whose evolu-
tion is described by model Mt , is asympotie to a stationary solution, given by the
same expression with /1(1)

4 - Further remarks

Let us examine shortly a possible change in problems seen till now, pointing
out expecially the related variations of the spectrum of the evolution operator.
Models M;, M, can be respectively considered in the spaces

X =L,((0, ®); dz) X Ly ((0, ©); dz) = X; X X,

Y=L(T; dyde) XL;((0, ©);dz) =¥, x ¥,

being T = {(&, y): 0 <z < y}, assuming that the parameters y, @, 8 belong to
L, (0, ©) and the mortality rates u,, u. satisfy the hypothesis b of divergent
integral on a suitable bounded interval, with, in addition, the following beha-
viour after the limit ages: 4, e L, (®,, ©), g€ L, (z,, ©). We point out that in
this case the distinction between y and z is not very important.

If we tackle the study of the spectrum of the operator (4;, B;), 1 =1, 2 un-
der these assumptions, running over the done steps again, we note that, while
the same results for the operator H{?,i=1,2 are valid, (Lemma 1), as regard
the function G]-(i) (A),j=e, a,i=1, 2, some restrictions to the domain of 1 C
are needed in order to state an analogous of Lemma 2. More precisely, in order
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to have GV (1) belonging to X, VgV € X, G*® (4) belonging to ¥, Vg@ e Y, it is
sufficient that Re 1 > —v®, i =1, 2 respectively, being

v = min ( ess inf[x, + y],ess inf u,)
T > ©, 2> 2y

v® =min( essinf [@u,+ u,+ ylessinf u,).
T> X, Y > 2>z,
We can note that vV < »®, This hypothesis is sufficient to assure the validity
of the analogous of Lemma 2.

The Hille-Yosida theorem can be applied to the operator (4; + B;) in this
situation too, to assert that it generates a strongly continuous semigroup, which
gives the solution of the evolution Cauchy problem.

If the hypotheses ¢, d, of Lemma 3 are satisfied, as the condition Re A > —v¢
is only sufficient to have

)

GO+ HPfYe @A+ B) WP, 9V eX; WP, g®e¥; i=1,2

the essential spectral bound w . (A4; + B;) of the generator (4; + B;) is not grea-
ter than —v®, i =1, 2. The following cases may occur:

i A9 > —y®: the type (or growth bound) of the generated semigroup
coincides with 1 : w(4; + B;) =AY, wes(A; + B;) < —v®

ii. 1< -v®: we can only assert that the essential spectral
bound is not greater than the type of the semigroup, which is not greater
that —v?: we A +B) <0l +B)< —v®, If AP=—-v® we have
w(d; +B;)= —v® =20,

The analogous of Theorem 8 can be stated only if 1) > —»®, i=1,2; on
the contrary, as the intrinsic growth constant can not be an isolated point of the
speetrum of (4; + B;), we can only assert that the type of the semigroup gene-
rated by (4; + B;) is negative, and the population decays exponentially.
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Sommario

Si considerano esistenza, unicitd, comportamento asintotico e altre proprietd per
due modelli di dinamica delle popolazioni a molti stadi. Si confrontano poi © risultati
pit importanti.






